MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo."

Transcripción

1 MA3002

2 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. En lo que sigue, las funciones cuyo nombre está en letra azul son funciones variable compleja y las que tienen su nombre en color negro son las funciones reales conocidas; a priori no se tiene información pensar que tienen algo que ver su contraparte real, aunque a posteriori son efectivamente su extensión al plano complejo.

3 La función exponencial compleja Sea z = x + y i un número complejo. Se fine la función exponencial compleja por la expresión: Propiedas que cumple: e z = e x cos(y) + e x sen(y) i La exponencial compleja extien la real: e x = e x e z 1+z 2 = e z1 e z 2 La función satisface la ecuaciones Cauchy-Riemann en el plano complejo (es cir, es entera) y d dz ez = e z La función exponencial es una función periódica con periodo 2 π i: e z+2 π i = e z

4 Para probar la ley los exponentes usando la calculadora procemos como en la siguiente figura. Como hemos visto en algún ejemplo anterior, notemos que probar que e z 1+z 2 = e z1 e z 2, nos conviene revisar que e z 1+z 2 e z1 e z 2 = 0. La expresión a la izquierda tiene muchos términos pero cuando se sarrolla por medio intidas trigonométricas se simplifica a cero.

5 Para comprobar que la función exponencial es entera, es cir, que es rivable en todo complejo usaremos las ecuaciones Cauchy-Riemann. Comprobaremos el cumplimiento las ecuaciones Cauchy-Riemann la función exponencial. Revisaremos también que su rivada es ella misma comprobando que d dz ez e z es cero. Esto lo ilustramos en las siguientes figuras.

6 Para comprobar que la función es periódica verificamos que e z+2 π i e z es cero.

7 Ejemplos evaluación la función exponencial Calcule e z z 1 = i y z 2 = 0.5 π/3 e z 1

8 Ejemplos evaluación la función exponencial Calcule e z z 1 = i y z 2 = 0.5 π/3 e z 1 = e 2 (cos(3) + sen(3) i) i

9 Ejemplos evaluación la función exponencial Calcule e z z 1 = i y z 2 = 0.5 π/3 e z 1 = e 2 (cos(3) + sen(3) i) i e z 2

10 Ejemplos evaluación la función exponencial Calcule e z z 1 = i y z 2 = 0.5 π/3 e z 1 = e 2 (cos(3) + sen(3) i) i e z 2 Como z 2 = 0.5 π/3 = 0.5 cos(π/3) sen(π/3) i i

11 Ejemplos evaluación la función exponencial Calcule e z z 1 = i y z 2 = 0.5 π/3 e z 1 = e 2 (cos(3) + sen(3) i) i e z 2 Como Así z 2 = 0.5 π/3 = 0.5 cos(π/3) sen(π/3) i i e z 2 e 0.25 (cos(0.4330) + sen(0.4330) i) i

12 Ejemplos evaluación la función exponencial Calcule e z z 1 = i y z 2 = 0.5 π/3 e z 1 = e 2 (cos(3) + sen(3) i) i e z i Como Así z 2 = 0.5 π/3 = 0.5 cos(π/3) sen(π/3) i i e z 2 e 0.25 (cos(0.4330) + sen(0.4330) i) i

13 Los cálculos anteriores puen relizarse en la TI como se ilustra en las siguientes figuras. Al final l primer cálculo se usó la combinación punto ver-enter calcular el valor aproximado. En el segundo ejemplo no hubo necesidad calcular el valor aproximado; ya lo dió aproximado. Esto se be a que en el número complejo dado había un número punto flotante. Esto arrastra la artimética manera que todo se haga en forma aproximada. Si esto no hubiera sido seable, entonces bimos haber puesto 1/2 en lugar 0.5 en nuestro ejemplo.

14 Mapeo asociado a f (z) = e z (recuer que el periodo es 2 π i 6.28 i) y v 2 π i e 1 i O x e 1 i u

15 Con la introducción la función exponencial compleja pomos extenr nuestra forma representar números complejos en la forma polar: si z tiene módulo r y argumento principal θ tenemos que z = r θ = r e θ i

16 La función logaritmo ln(z) Sea z un número complejo diferente cero cuyo módulo es r y cuyo argumento es θ, se fine como el logaritmo natural complejo z a la expresión ln(z) = ln(r) + (θ + 2 n π) i n = 0, ±1, ±2,... y el logaritmo natural principal complejo z está dado por: Propiedas: Ln(z) = ln(r) + θ i ln y Ln están finidas en C excepto en z = 0. Ln extien el logaritmo natural sobre los reales positivos; Ln(x) = ln(x) x real y positivo. ln es la inversa la exponencial e ln(z) = z.

17 Para comprobar que la función logaritmo es rivable en todo punto excepto en z = 0, comprobaremos el cumplimiento las ecuaciones Cauchy-Riemann la función exponencial. Revisaremos también que su rivada es 1/z comprobando que dz d ln(z) 1/z es cero. Esto lo ilustramos en las siguientes figuras. Note que en la primera las ecuaciones Cauchy-Riemann aparece la rivada l la función signo en y. Esta función vale -1 negativos y vale 1 positivos; es infinida en cero. La rivada esta función es cero cualquier y diferente 0; y en cero no está finida. Pero cuando y = 0 entonces la función logaritmo coinci en su rama principal con ln( x ) el cual es rivable en todo punto excepto en cero. O sea que (x = 0, y = 0) es nuestro problema la rivación; pero no hay problema porque no está en el dominio.

18 La función logaritmo ln(z); ejemplos Calcule ln(z) z 1 = 4, z 2 = 2 i y z 3 = i:

19 La función logaritmo ln(z); ejemplos Calcule ln(z) z 1 = 4, z 2 = 2 i y z 3 = i: ln(z 1 ) Como z 1 = 4 e π i, z 1 = 4 y θ = π por tanto: ln( 4) = ln(4) + (π + 2 n π) i

20 La función logaritmo ln(z); ejemplos Calcule ln(z) z 1 = 4, z 2 = 2 i y z 3 = i: ln(z 1 ) Como z 1 = 4 e π i, z 1 = 4 y θ = π por tanto: ln( 4) = ln(4) + (π + 2 n π) i ln(z 2 ) Como z 2 = 2 e π/2 i, z 1 = 2 y θ = π/2 por tanto: ln(2 i) = ln(2) + (π/2 + 2 n π) i

21 La función logaritmo ln(z); ejemplos Calcule ln(z) z 1 = 4, z 2 = 2 i y z 3 = i: ln(z 1 ) Como z 1 = 4 e π i, z 1 = 4 y θ = π por tanto: ln( 4) = ln(4) + (π + 2 n π) i ln(z 2 ) Como z 2 = 2 e π/2 i, z 1 = 2 y θ = π/2 por tanto: ln(2 i) = ln(2) + (π/2 + 2 n π) i ln(z 3 ) Como z 3 = 5 y θ = π/2 tan 1 (3/4) por tanto: ln(3 + 4 i) = ln(5) + ( π/2 tan 1 (3/4) + 2 n π ) i

22 Los cálculos anteriores puen relizarse en la TI como se ilustra en las siguientes figuras. Note el uso la las comprobaciones que los resultados encontrados satisfacen la propiedad; este símbolo en la calculadora representa un entero cualquiera. El se obtiene la combinación 2nd

23 Si en la fórmula el logaritmo z tomamos n = 0, el resultado se llama el valor principal l ln(z) y diferenciarlo ln(z) se utiliza la notación: Ln(z) = ln( z ) + θ i esta función está finida z diferentes cero y se cumple: d dz Ln(z) = 1 z

24 y Mapeo asociado a f (z) = Ln(z) usando el valor principal v O ln(0.5) ln(4) x O u

25 complejas Con base en la igualdad x a = e a ln(x) que se cumple reales positivos se fine: z α = e α ln(z) Si se usa Ln(z) en lugar ln(z), al resultado se le llama el valor principal z α. Ejemplo: calcule el valor i 3 i : aquí z = i, z = 1 y θ = π/2: i 3 i = e 3 i ln(i) = e3 i(ln(1)+(π/2+2 π n) i) = e 3/2 π 6 π n El valor principal queda:n = 0 = e 3/2 π

26 complejos Ejemplo: Calcule las raices cúbicas z 1 = i. Éstas puen calcularse como z 1/3 1 = e 1/3 ln(z1) : como z 1 = 1 y θ = π/4, entonces por tanto z 1/3 ln(z 1 ) = ln(1) + (π/4 + 2 π n) i = 0 + (π/4 + 2 π n) i 0+1/3(π/4+2 π n) i 1 = e 1/3 ln(z1) = e = e 0 (cos (π/ π n/3) + sen (π/ π n/3) i) Para n = 0 r 0 = cos (π/12) + sen (π/12) i Para n = 1 r 1 = cos (3 π/4) + sen (3 π/4) i Para n = 2 r 2 = cos (17 π/12) + sen (17 π/12) i Para n = 2 r 3 = cos (25 π/12) + sen (25 π/12) i = r 0

27 Los cálculos anteriores puen relizarse en la TI como se ilustra en las siguientes figuras.

28 Seno y Coseno complejas Para cualquier numero complejo z = x + y i se fine: sen(x + y i) = sen(x) cosh(y) + cos(x) senh(y) i = ei z e i z cos(x + y i) = cos(x) cosh(y) sen(x) senh(y) i = ei z + e i z Recuer que: La función seno hiperbólico se fine como senh(t) = 1 2 ( e t e t) 2 i 2 La función coseno hiperbólico se fine como cosh(t) = 1 2 ( e t + e t)

29 Seno y coseno: Resultados sen y cos extienn a sus contrapartes reales. Son anaĺıticas en todo el plano complejo. Son periodicas con periodo 2 π. d dz sen(z) = cos(z) y d cos(z) = sen(z) dz sen( z) = sen(z), cos( z) = cos(z) cos 2 (z) + sen 2 (z) = 1

30 Para comprobar que las funciones sen(z) y cos(z) son enteras y que sus rivadas cumplen las relaciones conocidas, procemos como en la figura.

31 Otras funciones: tan(z) = sen(z) cos(z), cos(z) cot(z) = sen(z), sec(z) = 1 cos(z), csc(z) = 1 sen(z) senh(z) = ez e z y cosh(z) = ez + e z 2 2 sen 1 (z) = i ln (i z + ) 1 z 2 cos 1 (z) = i ln (z + i ) 1 z ( ) 2 tan 1 (z) = i 2 ln i+z i z

32 No haremos más la distinción colores entre las funciones: por ejemplo cuando escribamos se entenrá que si z es complejo la función be ser e z. e z

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002 MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. La función exponencial Sea z = x + y i un número complejo. Se fine la función

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Continuidad. Derivada.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Continuidad. Derivada. MA3002 variable compleja Cuando el dominio una función f es un conjunto números complejos y cuando los valores que proporciona la función son también números complejos, diremos que f es una función variable

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces MA3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Laurent. Departamento de Matemáticas. Singularidad. Sing. Aislada. S. de Laurent.

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Laurent. Departamento de Matemáticas. Singularidad. Sing. Aislada. S. de Laurent. Ejemplos MA3002 Ejemplos Puntos singulares una función Si una función variable compleja ja ser anaĺıtica en un punto z = z o, entonces se dice que este punto es una singularidad o un punto singular la

Más detalles

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y))

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y)) Capítulo 3 Funciones elementales En este capítulo se introducen la funciones elementales variable compleja: la exponencial, el logaritmo y las funciones trigonométricas e hiperbólicas. Como veremos, muchas

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

Variable Compleja I Tema 5: Funciones elementales

Variable Compleja I Tema 5: Funciones elementales Variable Compleja I Tema 5: Funciones elementales 1 La exponencial 2 Logaritmos El conjunto de los logaritmos El problema del logaritmo holomorfo Ejemplos de logaritmos holomorfos Desarrollos en serie

Más detalles

Ecuaciones de Cauchy-Riemann

Ecuaciones de Cauchy-Riemann Ecuaciones de Cauchy-Riemann Por lo tanto, si las primeras derivadas parciales son continuas y satisfacen las ecuaciones de Cauchy-Riemann en todos los puntos de la vecindad (entorno), entonces f(z) es

Más detalles

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1 Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Funciones (continuación)

Funciones (continuación) Nivelación de Matemática MTHA UNLP Funciones (continuación) Funciones trigonométricas Consideremos un ángulo x y seleccionemos un punto (a, b) sobre el rayo que determina dicho ángulo Sea R = a + b, la

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c 0

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

a) Dominio, imagen y periodo (T) (no olviden considerar qué valores no puede tomar tan(x) en el dominio).

a) Dominio, imagen y periodo (T) (no olviden considerar qué valores no puede tomar tan(x) en el dominio). Función tan(x) y ecuaciones trigonométricas. Funciones trigonométricas.. Función f(x) = tan(x) Analicen la gráfica de f(x) = tan(x) e indiquen: a) Dominio, imagen y periodo (T) (no olviden considerar qué

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS C. NÚMEROS COMPLEJOS. C.1 Noción de número complejo.

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

FUNCIONES POLINÓMICAS

FUNCIONES POLINÓMICAS PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Mapeo. Continuidad. Derivada.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Mapeo. Continuidad. Derivada. MA3002 variable compleja Cuando el dominio una función f es un conjunto números complejos y cuando el codominio mismo es también el conjunto números complejos diremos que f es una función variable compleja

Más detalles

Funciones elementales

Funciones elementales Tema Funciones elementales.1. Función real de variable real Una función real de variable real es cualquier aplicación f : D R! R. Se dice que el conjunto D es el dominio de f. El rango de f es el conjunto

Más detalles

Matemáticas Empresariales I. Funciones y concepto de ĺımite

Matemáticas Empresariales I. Funciones y concepto de ĺımite Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS FUNCIONES TRIGONOMÉTRICAS DEFINICIÓN PREVIA: Una función periódica es aquella que se repite una y otra vez en una dirección horizontal. El periodo de una función periódica es la longitud de un ciclo (o

Más detalles

Factorización. 1) Al factorizar 6x 2 x 2 uno de los factores es. A) 2x + 2. B) 3x + 2. C) 2x 2. D) 3x 2

Factorización. 1) Al factorizar 6x 2 x 2 uno de los factores es. A) 2x + 2. B) 3x + 2. C) 2x 2. D) 3x 2 www.matematicagauss.com Factorización 1) Al factorizar 6x x uno de los factores es A) x + B) x + x x ) Al factorizar a b 4 + 4b uno de los factores es A) 1 + b B) a b a b + a b ) En la factorización completa

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002 MA3002 Intro Suponga una serie potencias a k (z z o ) k Para un valor z que pertenezca al interior l círculo convergencia dicha serie, el valor ĺımite la serie L es un número complejo perfectamente finido

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Comprobar que la familia de funciones del seno y la del coseno de la forma: Estando definidas entre 0 y L y donde son familias ortogonales por sí

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Funciones complejas. (excluyendo del dominio los valores de z en los que el denominador se anula).

Funciones complejas. (excluyendo del dominio los valores de z en los que el denominador se anula). Funciones complejas Una manera natural de definir funciones complejas es extendiendo las funciones reales. Las funciones reales mas sencillas son las lineales, polinomiales y las racionales (cocientes

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Números complejos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Sería conveniente realizar un ejercicio

Más detalles

Función exponencial compleja

Función exponencial compleja Función exponencial compleja Genaro Luna Carreto * Los números reales y los complejos satisfacen los axiomas de campo, pero los segundos, no satisfacen los axiomas de orden. Sin embargo, a raíz de que

Más detalles

Teoría Tema 4 Ampliación - Infinitésimos

Teoría Tema 4 Ampliación - Infinitésimos página 1/8 Teoría Tema 4 Ampliación - Infinitésimos Índice de contenido Qué son los infinitésimos?...2 Infinitésimo de la exponencial y el logaritmo para x 0...4 Infinitésimo de las funciones seno, coseno

Más detalles

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente.

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente. Solución. En el primer cuadrante: En el segundo cuadrante: En el tercer cuadrante: En el cuarto cuadrante: cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan

Más detalles

INTEGRACION POR PARTES

INTEGRACION POR PARTES INTEGRACION POR PARTES Se basa en la regla de derivación del producto de dos funciones derivables en un dominio común. Sean u(x)y v(x) común. Entonces: dos funciones derivables en un dominio udv = uv vdu

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se estudian en este tema las relaciones que se puedan establecer entre conjuntos de números complejos, extendiendo a C el concepto de función, como aplicación

Más detalles

Herramientas computacionales para la matemática MATLAB:Introducción

Herramientas computacionales para la matemática MATLAB:Introducción Herramientas computacionales para la matemática MATLAB:Introducción Verónica Borja Macías Marzo 2013 1 Variables predefinidas MATLAB tiene un conjunto de variables predefinidas Variables predefinidas ans

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Capítulo 2 Funciones de Variable Compleja Se trata en este capítulo de estudiar las relaciones que se establecen entre conjuntos de números complejos a través de funciones entre ambos. Se definirá el concepto

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Fourier. Departamento de Matemáticas. Intro. Serie de. Fourier. S k. Convergencia.

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Fourier. Departamento de Matemáticas. Intro. Serie de. Fourier. S k. Convergencia. Series Serie Series MA3002 Series Serie Las Series trigonométricas, o simplemente series fueron sarrolladas por el matemático francés Jean-Baptiste Joseph (21 marzo 1768 en Auxerre - 16 mayo 1830 en París).

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones y Series. Departamento de Matemáticas. lim z n. Resultados. Series. Geométrica.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones y Series. Departamento de Matemáticas. lim z n. Resultados. Series. Geométrica. P MA3002 Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna un

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales.

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales. (a) Leyes de los Exponentes (b) Como resolver ecuaciones exponenciales Ejercicio Reto 1. Si a y b las soluciones

Más detalles

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas 6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,

Más detalles

Sistemas Aleatorios: Números Complejos

Sistemas Aleatorios: Números Complejos MA2006 Números Complejos Los números complejos simbolizados por C son una generalización de los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z

Más detalles

Teoría Tema 3 Derivabilidad - Aplicación a funciones

Teoría Tema 3 Derivabilidad - Aplicación a funciones Asignatura: Matemáticas II 2ºBacillerato página 1/16 Teoría Tema 3 Derivabilidad - Aplicación a funciones Derivada de una función constante f(x) = k Vamos a aplicar la definición analítica de derivada

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN El dominio de la función f(x) x / x es: a) + b) c) [0, ) 9 El período de la función f(x) cos (x + π) es: a) π b) π c) π/ Una sustancia radiactiva

Más detalles

1. Análisis en variable compleja y transformadas

1. Análisis en variable compleja y transformadas 1. Análisis en variable compleja y transformadas Ampliación de Matemáticas y Métodos Numéricos Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez M a Luz Muñoz Ruiz José Manuel González Vida

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): 1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x

Más detalles

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo Tema 6 y de Laurent Marisa Serrano Ortega José Ángel Huidobro Rojo Índice 1 2 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 3 Observación Teorema 6.1 Sea f función analítica en D(z 0, R). Existe

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2.

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2. MA3002 Inversa La transformada Z inversa una función variable compleja X () se fine como x(n) = 2 π i C X () n d don la integral se calcula sobre una curva cerrada simple C postivamente orientada que encierra

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

Cálculo:Notas de preliminares

Cálculo:Notas de preliminares Cálculo:Notas de preliminares Antonio Garvín Curso 04/05 1 Recordando cosas Recordaremos los conjuntos con los que vamos a trabajar, en especial R y R n. A fin de cuentas el cálculo trata basicamente de

Más detalles

Lección: Ortogonalidad y Series de Fourier

Lección: Ortogonalidad y Series de Fourier Lección: Ortogonalidad y Series de Fourier Dr. Miguel Angel Uh Zapata, Centro de Investigación en Matemáticas, Unidad Mérida Facultad de Matemáticas, UADY Octubre 2015 Miguel Uh Lección: Ortogonalidad

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se

Más detalles

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b) FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.

Más detalles

PRACTICA 1. ANÁLISIS COMPLEJO I y II.

PRACTICA 1. ANÁLISIS COMPLEJO I y II. Práctica 1 - Matemáticas II.wxm 1 / 9 PRACTICA 1. ANÁLISIS COMPLEJO I y II. 1 Análisis Complejo I: Operaciones básicas con números complejos. Veremos incialmente algunos comandos específicos para trabajar

Más detalles

S3: Números complejos, números reales

S3: Números complejos, números reales S3: Números complejos, números reales Cada número complejo se corresponde con un punto en el plano. Este punto puede estar definido en coordenadas cartesianas (figura 1) o en coordenadas polares (figura

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

LOGARITMOS. Sea a un número positivo distinto de 1. La definición formal del logaritmo base a de x es: y=log a

LOGARITMOS. Sea a un número positivo distinto de 1. La definición formal del logaritmo base a de x es: y=log a UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II TERCER PARCIAL LOGARITMOS Sea a un número positivo distinto de 1.

Más detalles

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes: 22 CAPÍTULO 3. INTEGRALES: CÁLCULO POR MEDIO DE PRIMITIVAS 3.2. La derivada En la sección 3. analizamos los incrementos y cocientes incrementales de varias funciones. En esta sección nos concentraremos

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Suma: (a, b) + (c, d) = (a + c, b + d) AP1.1. Proposición: Se cumple: ii) es una operación en C.

Suma: (a, b) + (c, d) = (a + c, b + d) AP1.1. Proposición: Se cumple: ii) es una operación en C. APÉNDICE 1 Los Números Complejos Estructura de Campo En R la ecuación x 2 = 1 no tiene solución. No puede tenerla además, por que R es un campo (cuerpo) ordenado y por lo tanto 1 es negativo, mientras,

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO Matemáticas 4º ESO Página 1 NOTA IMPORTANTE: Estos ejercicios se entregarán en septiembre, el día del examen de recuperación de matemáticas. La entrega de los mismos

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

Ecuaciones de Cauchy-Riemann

Ecuaciones de Cauchy-Riemann Ecuaciones Ecuaciones MA3002 Ecuaciones La manera como se finió la rivada una función compleja ja algunas dudas; mientras que las funciones muy sencillas como los polinomios y los cocientes polinomios

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Funciones de Una Variable Real II: Cálculo de Primitivas

Funciones de Una Variable Real II: Cálculo de Primitivas Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia http://webs.um.es/beca Grado en Matemáticas

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja MATEMÁTICA D D Módulo I: Análisis de Variable Compleja Unidad Funciones de variable compleja Mag. María Inés Baragatti - Funciones de variable compleja Si a todo número z de un conjunto D de números complejos

Más detalles

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz

PRÁCTICA 5. #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1. k #3: (z - a) f. 1 d k - 1. #5: ((z - a) f) (k - 1)! dz #1: LOAD(C:\Derive\Complejos.mth) #2: true EJERCICIO 1 k #3: (z - a) f d k - 1 k #4: ((z - a) f) dz PRÁCTICA 5 1 d k - 1 k #5: ((z - a) f) (k - 1)! dz 1 d k - 1 k #6: lim ((z - a) f) z a (k - 1)! dz 1

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

En este tipo de relaciones siempre existe una variable que depende de la otra, es decir, una de ellas es independiente y la otra dependiente.

En este tipo de relaciones siempre existe una variable que depende de la otra, es decir, una de ellas es independiente y la otra dependiente. I-MIP71_MAAL1_Cédula Funciones Por:SandraElviaPérez Relacionesyfunciones En la vida diaria es muy común encontrar variables que se relacionan entre sí, por ejemplo la longitud de un bebé con respecto al

Más detalles

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos. Si z 3 + i y z 4 + 7 i, calcule: a) z + z b) z z c) z z d) z /z e indique la opción con su resultado dentro de la siguiente

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades Algebra ducción Los valores y vectores propios son muy importantes en el análisis sistemas lineales. En esta presentación veremos su finición y cómo se calculan. vectores propios Sea A una matriz cuadrada,

Más detalles

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares 1 Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares Prof. Adán Salas Gutiérrez Álgebra 1. El factorial de un número n N es el producto de todos

Más detalles

Funciones Parte 1. Prof. Derwis Rivas Olivo

Funciones Parte 1. Prof. Derwis Rivas Olivo Universidad de Los ndes Facultad de Ingeniería Escuela ásica de Ingeniería Departamento de Cálculo Funciones Parte 1 Prof. Derwis Rivas Olivo 1.- Dadas las funciones f : R R / f(x) = x 3 + x 3 y g : R

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Reporte de Actividades 30

Reporte de Actividades 30 Reporte de Actividades 30 Profesores: Arturo Ramírez, Alejandro Díaz. Acompañantes: Paulina Salcedo. 1. Sesión del 23 de noviembre de 2011. 1.1 Apuntes de la clase con Arturo Ramírez. 1.1.1. Semejanza

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles