UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas"

Transcripción

1 Funciones Inversas UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof Jorge Ruiz Castillo Repaso e propieaes e funciones inversas Sea f : A B una función biectiva sea f : B A su función inversa Recoremos que se tienen las siguientes propieaes: ( A) f () f () f f I B f f I A 3 ( B) f f () ( A) f (f ()) 4 Toa función estrictamente creciente toa función estrictamente ecreciente es inectiva 5 La gráfica e una función biectiva e su inversa son simétricas con respectoalarectaeecuación Continuia erivabilia e funciones inversas Teorema- Sea f : I J una función biectiva, I J son intervalos e R Sif es continua, entonces f : J I también lo es Teorema- Supongamos que f tiene una inversa es continua sobre um intervalo I Sea 0 I e 0 f ( 0 ) Si f 0 ( 0 ) eiste si f 0 ( 0 ) 6 0, entonces f 0 (0 ) eiste aemás f 0 (0 ) f 0 ( 0 ) Iea e la emostración- f es continua sobre J (a que f lo es sobre I) En particular f es continua en 0 f ( 0 ) f 0 f () f ( 0 ) f (f ()) f (f ( 0 )) (0 ) lim lim f () f ( 0 ) 0 lim 0 f () f ( 0 ) f 0 ( 0 ) ;(f f son continuas) Ejemplos- Sea f () Encontrar f 0 ( 3) si eiste Solución- f () 3 f es continua sobre R ], + [ f es erivable ( R) f 0 () En particular f 0 () Luego f es erivable en 0 f () 3 f 0 ( 3) f 0 () Sea ln Encontrar Solución- Sea f (), entonces f 0 () Supongamos que f eiste sobre un intervalo abierto I Entonces poemos escribir: f (), luego f 0 ()

2 f es continua sobre I f es erivable Por lo tanto f 0 () f 0 () es ecir 3 La función eponencial natural , La función inversa e f : R + R,f() ln es f : R R +,f () e ( >0) e ln ( R)lne e 3 e (ln ) e (one e ) ln 4 e e + c Ejemplos- Encontrar f 0 () si f () e cos f () tane 34 3 e ln, one f () Encontrar la integral: 4 e tan cos 5 e (e +) 6 e t e t e t t + e t

3 4 La función eponencial logaritmo ( a R) (a )a a Demostración- a e a ln Ejemplo- Sea f () (3) cos Encontrar f 0 () Solución- f () e sin ln 3 (Alternativa: ln cos(ln3)) a (con a>) a (con 0 <a<) (a )a ln a 4 a ln a a + c 5 Teorema- Sea a>0,a6 Entonces log a ln ln a,>0 Demostración- log a a ln a ln ln ln a 6 Son válias las lees e logaritmos (a concias) ( a, b, c > 0) log a bc log a b +log a c log a b r r log a b 5 Crecimiento ecrecimiento eponencial Señalamos el siguiente: Teorema- Sea f :[0, + [ R continua tal que ( >0) f 0 () kf () Entonces: ( >0) f () f (0) e k Observación- Si f satisface la relación anterior ecimos que crece eponencialmente cuano k>0 o que ecrece eponencialmente cuano k<0 Si ( R) f 0 () kf (), entonces el resultao anterior también se etiene a ( R) f () f (0) e k 6 Funciones trigonométricas inversas Las erivaas e las funciones trigonométricas inversas se obtienen usano irectamente el teorema corresponiente e la sección 5 3

4 f : π, π [, ],f() sin f :[, ] π, π,f () arcsin (arcsin ), < (a) arcsin (sin ) (b) sin (arcsin ) (c) arcsin + c () a arcsin + c, a es un nímero fijo maor que 0 a f :[0,π] [, ],f() cos f :[, ] [0,π],f () arccos (cos ) sin (arccos ), < 3 f : π, π ], + [,f() tan f :], + [ π, π,f () arctan (tan ) sec (arctan ) +, R 4 f :]0,π[ ], + [,f() cot f :], + [ ]0,π[,f () arccot (cot ) csc (arccot ) +, R 5 f : 0, π π,π ], ] [, + [,f() sec f :], ] [, + [ 0, π π,π,f () arcsec (sec ) sec tan (arcsec ), > 6 f : π, 0 0, π ], ] [, + [,f() csc f :], ] [, + [ π, 0 0, π,f () arccsc (sin ) cos Observación- (csc ) csc cot Demostración- Inicación- (arcsin ) (arccsc ), > (sin ) cos sin * ], [ π, π cos >0 El resto se emuestra e la misma manera Quea como ejercicio Ejemplos- sin cos 3 etan tan sec e tan utan u tan sec e u u eu + c etan + c (36 ) u8 36 u u 3 +(9 v3 6 +) 36 ln u 9 +v v 36 ln arctan v + c 36 ln arctan (3 ) + c 3 Para <a b<: 3 3 u u 4

5 u u arcsin + c µ u u 3 u arcsin + c q ( ) 3 + c 4 Suponga que la rapiez con que se enfría la superficie e un material, en un meio ambiente a 0 o C, es proporcional a su temperatura Sabieno que el material, se encuentra a 90 o, eplique como puee preecir al cabo e minuto cuanto emorará en estar a una temperatura e 0 o? Solución- t kt, k > 0 T (t) T (0) e kt T (t) 90e kt T (t )090e kt Al cabo e un minuto la temperatura estará a 0 o en t t 7 Funciones hiperbólicas Definición- Se efinen las funciones llamaas "seno hiperbólico" "coseno hiperbólico" respectivamente e la siguiente manera: sinh : R R, sinh () e e cosh : R R, cos () e + e Estas funciones tienen las siguientes propieaes: sinh (0) 0 cosh (0) 3 f () sinh g() cosh 0 f () 0 f 0 () f 00 () % % f () 0 g () g 0 () g 00 () & % g () 73 ( R) sinh () cosh() cosh () sinh() Demostración- ³ e cosh () +e e e sinh() 4 ( R)cosh sinh Demostración- ³ cosh sinh ³ e +e + e e 5 La función sinh es impar la función cosh epar 5

6 6 ( t R)(cosht, sinh t) pertenece a la hipérbola: 7 Se efinen las funciones "tangente hiperbólica", "cotangente hiperbólica", "secante hiperbólica", "cosecante hiperbólicas" respectivamente por: f () tanh() tanh : sinh () R R, tanh () cosh () e e e + e coth : cosh () R {0} R, coth () sinh () sec h : R R, sec h () cosh () csc h : R {0} R, csc h () sinh () f () coth() f () sech () 0985 f () csch () Las funciones hiperbólicas verifican las siguientes propieaes: (a) cosh sinh (b) tanh +sech (c) coth csc h () sinh ( ) sinh () 6

7 Observación- Las funciones hiperbóliocas no son perióicas La función seno hiperbólico inverso Sea f : R R,f() sinh seag : R R,g() ln + +, entonces g f f g I R,porlotantog f,esecir,lafuncióninversa e la función "sinh" es aquella efinia por g () ln + +, R Nota- Para la función inversa e "sinh" se aopta también la notación "sinh " siempre que este claro el conteto en que se usa no ha lugar a confusión con el recíproco e sinh que es sinh Por otra parte, la función "sinh" es continua, erivable aemás ( R) (sinh ) 6 0 Luego e sinh,setiene sinh por el teorema para la erivaa e la inversa sinh cosh p sinh + Por lo tanto (e) cosh ( ) cosh() (f) sinh ( ± ) sinh()cosh() ± cosh ()sinh() (g) cosh ( ± ) cosh()cosh() ± sinh ()sinh() (h) tanh ( ± ) tanh()±tanh() ±tanh()tanh() Demostración- () sinh ( ) e e sinh () (f) sinh ( + ) e+ e (+) sinh ()cosh()+cosh ()sinh() e e e +e + e +e e e e+ e (+) Por lo tanto sinh ( + ) sinh()cosh()+cosh()sinh() Aemás: sinh ( ) sinh( +( )) () (e) sinh()cosh( )+cosh ()sinh( ) sinh()cosh() cosh ()sinh() Ejemplos- (tanh ) 3 (sinh ) sinh sinh + sinh cosh cosh sinh cosh cosh sech + q ( + ) + q 3 + u q ( + ) + u u + sinh u+c sinh ( 3 ) +c Cálculo I II e Mao e 005 JRC 7

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

1. Función exponencial y funciones definidas mediante la exponencial

1. Función exponencial y funciones definidas mediante la exponencial TEMA 3 FUNCIONES COMPLEJAS ELEMENTALES 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial 1. Funciones trigonométricas 1.3 Funciones hiperbólicas. Función logaritmo

Más detalles

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM.... Definición. FUNCINES REALES DE UNA VARIABLE REAL.. FUNCINES ELEMENTALES Se llama función real de una variable real a cualquier aplicación

Más detalles

2. Funciones reales de una variable real Funciones elementales PROPIEDADES

2. Funciones reales de una variable real Funciones elementales PROPIEDADES . Funciones reales de una variable real.1. Funciones elementales.1.1. POPIEDADES Definiciones Se llama función real de una variable real a cualquier aplicación f : D, D, que hace corresponder a cada D

Más detalles

Práctico 4: Funciones inversas

Práctico 4: Funciones inversas Práctico 4: Funciones inversas 1. Averiguar acerca e la inyectivia e las siguientes funciones en sus ominios naturales: 1.- y = ax + bx + c con a 6= 0.- y = x + ax + b con a>0.- y = x + ax + b con a

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

GLOSARIO DE REGLAS DE DERIVACIÓN

GLOSARIO DE REGLAS DE DERIVACIÓN CÁLCULO GLOSARIO DE REGLAS DE DERIVACIÓN RESUMEN 1. Derivadas de funciones elementales o Derivada de una constante o Derivada de una función potencial (monomio) o Derivada de una raíz cuadrada (caso particular

Más detalles

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Universia Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Grupo e Matemáticas Especiales Resumen Se presenta la efinición

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

OBJETIVO : Cálculo Diferencial e Integral. Cálculo Diferencial e Integral. Cálculo.

OBJETIVO : Cálculo Diferencial e Integral. Cálculo Diferencial e Integral. Cálculo. . F U N C I O N E S OBJETIVO: EL ALUMNO ANALIZARA LAS CARACTERISTICAS PRINCIPALES DE LAS FUNCIONES REALES DE VARIABLE REAL FORMULARA MODELOS MATEMATICOS. Bibliografía: Cálculo Diferencial e Integral. Arnulfo

Más detalles

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO.

Si x lr y > 1-x lr, y lr Dom( R2) = lr, Ran( R2) = lr. X y : y > 1-x. 1 y : y > 0. 2 y : y > RELACIONES. EN EL PLANO CARTESIANO. R = { (, y) A B / + y > } Si lr y > - lr, y lr Dom( R) = lr, Ran( R) = lr Funciones en una variable Real Para aproimar el gráfico realizamos una tabulación: X y : y > -. y y : y > 0. y : y > -.. RELACIONES.

Más detalles

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica FUNCIONES TRIGONOMETRICAS INVERSAS Son necesarias para calcular los ángulos de un triangulo a partir de la medición de sus lados,aparecen con frecuencia en las soluciones de ecuaciones diferenciales Sin

Más detalles

() 25 de mayo de / 9

() 25 de mayo de / 9 DEFINICION. Una función es iferenciable en a si f (a) existe, y iremos que es iferenciable en un intervalo abierto si es iferenciable en caa uno e los puntos el intervalo. NOTA. Para las funciones que

Más detalles

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial Funciones potenciales A A. Funciones potenciales La función potencial f : R + R definida como f (x) = x b tiene sentido para cualquier exponente b real. En el caso particular de potencias naturales, se

Más detalles

Función Logaritmo y exponencial. Función logaritmo natural

Función Logaritmo y exponencial. Función logaritmo natural Función Logaritmo y exponencial Función logaritmo natural En términos matemáticos la función logaritmo natural es una herramienta de mayor utilidad que el logaritmo del álgebra elemental, el cual está

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

f(x) = 2 x f(x) = ( 1 5 )x = 5 x f(x) = ( 1 2 )x = 2 x

f(x) = 2 x f(x) = ( 1 5 )x = 5 x f(x) = ( 1 2 )x = 2 x 3.4. Ficha 4: Funciones transcendentes Funciones eponenciales La epresión f() = a con a > 0 define una función eponencial de base a. El dominio de una función eponencial es todo R con independencia del

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coorinación e Matemática II (MAT0) Primer semestre e 03 Semana 6: Lunes e Abril Viernes 6 e Abril CÁLCULO Contenios Clase : Funciones Trascenentales: Función logaritmo natural y eponencial. Propieaes algebraicas

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

Principios de graficación

Principios de graficación Graicación Principios de graicación En algunas oportunidades tenemos que graicar una unción que es casi igual a las que a sabemos graicar, llamadas básicas, sólo que estas presentan elementos adicionales

Más detalles

Funciones Transcendentes

Funciones Transcendentes Funciones Transcendentes Unidad Gil Sandro Gómez Santo Domingo 04 de diciembre de 0 Contenido Introducción....0 Función logaritmo natural... 3. Propiedades de la función logaritmo natural... 3. El número

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

REGLAS DE DERIVACIÓN

REGLAS DE DERIVACIÓN REGLAS DE DERIVACIÓN.- DERIVADA DE UNA FUNCIÓN REAL DE VARIABLE REAL. Consideremos una función f definida en un conjunto abierto D un punto 0 Se dice que f es derivable en el punto 0 si el cociente f (

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

2 = 1, de manera semejante a

2 = 1, de manera semejante a INTRODUCCIÓN (Apuntes en revisión para orientar el aprendizaje) FUNCIONES HIPERBÓLICAS En el campo de las unciones escalares, conocidas como unciones trascendentes, hubo quienes observaron que determinadas

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

Derivación de funciones trascendentes.

Derivación de funciones trascendentes. 57 Derivación e funciones trascenentes. Como en el caso e las funciones algebraicas eisten teoremas para erivar las funciones trascenentes como se muestra a continuación: Teoremas e erivación: Sean u y

Más detalles

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Escuela Colombiana e Ingeniería 4.. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Derivaa e y La erivaa e y se puee obtener como: y + Lim 0 Para calcular este límite se utilizan los siguientes conceptos previamente

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles

IDENTIDADES TRIGONOMETRICAS

IDENTIDADES TRIGONOMETRICAS IDENTIDADES TRIGONOMETRICAS. ESTANDARES Modelar situaciones de variaciones de variación periódicas con funciones trigonométricas.. LOGROS.. Deducir las identidades trigonométricas fundamentales.. Demostrar

Más detalles

Funciones Trigonométricas Directas.

Funciones Trigonométricas Directas. 2.2. Funciones Trascendentes. 2.2.1. Funciones trascendentes: funciones trigonométricas y funciones eponenciales. Funciones Trascendentes No siempre se puede modelar con funciones del tipo algebraico;

Más detalles

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada Tema 1. Números reales y funciones reales de variable real. Números complejos Departamento de Análisis Matemático Universidad de Granada Números reales Números reales Universidad de Granada Septiembre,

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

Este taller es la base fundamental para el Primer Parcial y por lo tanto es un deber su realización y presentación.

Este taller es la base fundamental para el Primer Parcial y por lo tanto es un deber su realización y presentación. Universidad del Norte Facultad de Ciencias Básicas Departamento de Matemáticas Taller de Cálculo II Segundo Parcial Profesor Coordinador: Javier de la Cruz Periodo 0 de 08 Nombre: Fecha: Observación: Recuerde

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

Ejercicios de derivadas e integrales

Ejercicios de derivadas e integrales Ejercicios e erivaas e integrales Este material puee escargarse ese http://wwwuves/~montes/biologia/matceropf Departament Estaística i Investigació Operativa Universitat e València Derivaas Reglas e erivación

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad Funciones, límites y continuidad Funciones Las funciones de una variable real son el principal objeto de estudio de este curso. Notación. Sea f : D f R R una función de una variable real. Entonces: D f

Más detalles

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada

Contenidos. Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Contenidos Concepto de aplicación Dominio e Imagen Igualdad Función Compuesta Función Inversa Crecimiento. Decrecimiento Función Acotada Máximo, mínimo Función par o impar Función periódica Función Potencial

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc

Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc A continuación les presento los gráficos de las funciones trigonométicas hiperbólicas. No les indico en detalle cómo utilizar

Más detalles

FORMULARIO MATEMÁTICO

FORMULARIO MATEMÁTICO Formulario matemático L. Gámez, B. Gámez FORMULARIO MATEMÁTICO Ientiaes trigonométricas tg a sen a cos a, cot a tg a sec a csc a cos a sen a sen a + cos a, + tg a sec a sen(a ± b) sen a cos b ± cos a sen

Más detalles

Funciones Trigonométricas

Funciones Trigonométricas Unidad. Trigonometría.5 funciones trigonométricas e identidades trigonométricas Funciones Trigonométricas Denición 1. Dado un circulo de radio 1 y un punto P sobre el circulo a un ángulo θ, denimos cos

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1 Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc

Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc Gráficos de las Funciones Trigonométricas Hiperbólicas con OpenOffice.org Calc A continuación les presento los gráficos de las funciones trigonométicas hiperbólicas. No les indico en detalle cómo utilizar

Más detalles

Cálculo:Notas de preliminares

Cálculo:Notas de preliminares Cálculo:Notas de preliminares Antonio Garvín Curso 04/05 1 Recordando cosas Recordaremos los conjuntos con los que vamos a trabajar, en especial R y R n. A fin de cuentas el cálculo trata basicamente de

Más detalles

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0 Cuadro de derivadas y = k La derivada de una cte es igual a cero. Es decir: 0 y = x y = + g(x) y = g(x) y = k y = g(x) La derivada de la función identidad es igual a. Es decir: La derivada de una suma

Más detalles

El dominio de la función logaritmo natural es el conjunto todos los reales positivos. Gráfica de la función logarítmica.

El dominio de la función logaritmo natural es el conjunto todos los reales positivos. Gráfica de la función logarítmica. . Funciones trascendentes..función logaritmo natural. Definición de la función logaritmo natural. La función logaritmo natural se define como ln dt, 0 t. El dominio de la función logaritmo natural es el

Más detalles

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21 Lección 3. Funciones Trigonométricas de Ángulos /0/0 Prof. José G. Rodríguez Ahumada de Actividades 3. Referencia Texto: Seccíón 6. Ángulo; Ejercicios de Práctica: Problemas impares -33 página 09 (375

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

LA DERIVADA. Introducción:

LA DERIVADA. Introducción: LA DERIVADA Introucción: Fue Isaac Newton que estuiano las lees el movimiento e los planetas que Kepler había escubierto meio siglo antes, llegó a la iea e incremento e una función como se nos ofrece en

Más detalles

FUNCIONES CIRCULARES E HIPERBÓLICAS Y SUS INVERSAS. SITUACIONES REALES EN LAS QUE APARECEN

FUNCIONES CIRCULARES E HIPERBÓLICAS Y SUS INVERSAS. SITUACIONES REALES EN LAS QUE APARECEN FUNCIONES CIRCULARES E HIPERBÓLICAS Y SUS INVERSAS. SITUACIONES REALES EN LAS QUE APARECEN Índice. INTRODUCCIÓN.... LAS FUNCIONES TRIGONOMÉTRICAS... 3 DEFINICIÓN GEOMÉTRICA... 3 DEFINICIÓN ANALÍTICA...4

Más detalles

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N. Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos

Más detalles

. Manual General para el Uso del Software Graphmatica.

. Manual General para el Uso del Software Graphmatica. 1. Manual General para el Uso del Software Graphmatica. http://www.graphmatica.com/espanol/grmat0n.html Graphmatica es un software de uso libre muy fácil de utilizar y que puede ser descargado de Internet

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

LA DERIVADA DE UNA CONSTANTE

LA DERIVADA DE UNA CONSTANTE DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

1. FUNCIONES DEFINIDAS EN MATHEMATICA 2. LA FUNCIÓN 3. LA INSTRUCCIÓN 4. FUNCIONES DEFINIDAS POR EL USUARIO 5. INTERPOLACIÓN ELEMENTOS DEL PROGRAMA

1. FUNCIONES DEFINIDAS EN MATHEMATICA 2. LA FUNCIÓN 3. LA INSTRUCCIÓN 4. FUNCIONES DEFINIDAS POR EL USUARIO 5. INTERPOLACIÓN ELEMENTOS DEL PROGRAMA SESION 3. FUNCIONES DEFINIDAS EN MATHEMATICA. LA FUNCIÓN Plot 3. LA INSTRUCCIÓN Limit 4. FUNCIONES DEFINIDAS POR EL USUARIO 5. INTERPOLACIÓN ELEMENTOS DEL PROGRAMA . Funciones definidas en MATHEMATICA

Más detalles

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca) CONCEPTO TRADICIONAL DE FUNCIÓN Cuando dos variables están relacionadas en tal forma que a cada valor de la primera corresponde un valor de la segunda, se dice que la segunda es función de la primera.

Más detalles

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es:

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es: SERIE DE ÁLULO INTEGRAL PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) alcule la suma ) Determine n tal que ) Determine n tal que i i ( ) ( ) 0 i= i+ i n i = 9 n=6 i= n i = 78 n=7 i= ) Determine el valor del siguiente

Más detalles

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO

1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO 1.- CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO Definición: Una función es una relación entre dos conjuntos X e Y, que asocia a cada elemento x X un único elemento y Y. Diremos que y es la imagen del elemento

Más detalles

Gráfico Exponencial, Polinominal y Cuadrático. Grafico de la funcion exponencial F(x)=a^ x, con a > 1. F(x)= 2^x

Gráfico Exponencial, Polinominal y Cuadrático. Grafico de la funcion exponencial F(x)=a^ x, con a > 1. F(x)= 2^x Gráfico Exponencial, Polinominal y Cuadrático Grafico de la funcion exponencial F(x)=a^ x, con a > 1 F(x)= 2^x Rec: R+ F(x):creciente en su recorrido ( la curva crece de izquierda a derecha) Asintótica

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque PROBLEMARIO DE CÁLCULO 0 Semestre A-010 Prof. Cosme Duque TEMA 1 DERIVADAS 1. Derivada en un punto. Derivabilidad. Derivadas laterales. (a) Encuentre las pendientes de las recta tangente a la curva y =

Más detalles

Identidades Trigonométricas

Identidades Trigonométricas Identidades Trigonométricas Unidad TR.4: Identidades trigonométricas Las identidades trigonométricas son útiles en la transformación de expresiones. Repaso Hemos estudiado la unidad del circulo ya que

Más detalles

FÓRMULAS DE DERIVACIÓN

FÓRMULAS DE DERIVACIÓN SESIÓN Nº 1 Derivaas e Funciones Trigonométricas, Eponenciales y Logarítmicas Ahora correspone revisar las fórmulas principales e erivación y algunos ejemplos e aplicación. FÓRMULAS DE DERIVACIÓN 1) (

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

Derivadas logarítmicas, exponenciales y regla de la cadena

Derivadas logarítmicas, exponenciales y regla de la cadena CDIN0_MAAL_Logarítmicas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaaslogarítmicas,eponencialesyreglaelacaena por Sanra Elvia Pérez Las funciones logarítmicas y eponenciales se aplican con frecuencia

Más detalles

Funciones. Objetivos Definición. Repasar las funciones elementales. Recordar los conceptos de continuidad y límite.

Funciones. Objetivos Definición. Repasar las funciones elementales. Recordar los conceptos de continuidad y límite. Capítulo 6 Funciones Objetivos Repasar las funciones elementales. Recordar los conceptos de continuidad y límite. Revisar el concepto de derivada y su aplicación. Representar funciones. 6.1. Definición

Más detalles

2. Funciones reales de una variable real Límites DEFINICIONES Y PROPIEDADES

2. Funciones reales de una variable real Límites DEFINICIONES Y PROPIEDADES .. Límites..1. DEFINICIONES Y PROPIEDADES Límite de una función en un punto Sea y = f() definida en un entorno del punto a R (aunque no, necesariamente, en el punto). Se dice que f tiene límite l en el

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real En la primera parte de este tema vamos a tratar con funciones reales de variable real, esto es, funciones

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05 Sustituyeno 5, el nivel e proucción actual, obtenemos 0. Repita el ejemplo 6 para la función e costo C() 5 3 C t 5 0 (0.7).05 Así que los costos e proucción se están incrementano a una tasa e.05 por año.

Más detalles

Capítulo 4 Trigonometría

Capítulo 4 Trigonometría Capítulo Trigonometría Introducción La trigonometría es una rama de las matemáticas que fue desarrollada por astrónomos griegos, quienes consideraban al cielo como el interior de una esfera. Aún cuando

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles