Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1 e MATEMÁTICA APLICADA TECNOLOGIA EN ELECTRÓNICA CÁLCULO TALLER DE DERIVADAS Manizales, 26 e Marzo e 20 Solucionar los siguientes problemas referenciaos el teto e moulo CALCULO DIFERENCIAL E INTEGRAL (Purcell). Se han añaio las imágenes escaneaas e las páginas sugerias. ORDEN TEMA PAGINA PROBLEMA Conjunto e 0 problemas Conjunto e problemas Conjunto e problemas

2 Sección 2.2 La erivaa los I \ \-. La erivaafen está aa por f'() = lím o De formaequivalente,f'() = lím o h~o 2. t~ La peniente e la recta tangente a la gráfica e = f () en el punto (e, f(e)) es o. Si f es erivable en c, entonces f cs en c. El inverso es falso, como se emostró meiante el ejemplo f() = o 4. Si Y = f (), ahora tenemos os símbolos iferentes para la erivaa e con respecto a. Son o ra [l- te :a Jn ~c,n- :ta leín. rte líe la 'go un o las en m, la se Conjunto e problenlas 2.2 En los problemas el -4, utilice la efinición f'(e) = lím f(e + h) - f(e) h~o h para encontrar la erivaa inicaa.. f'() sif() = 2. f' () si f (t) = t 2 - t 2. '(2) si f(t) = (2t)2 4. '(4) sif(s) = s _ En los problemas el -22, use f'() = lím [f( + h) - f()]/h h~o para eterminar la erivaa en.. s() = f() = a + f 7. r() = f() = f() = a 2 + b + c 0. f() = 4. f() = g() = h() = ~ 4. S() = F() = F() = ~ 2 7. G() = G() = X -- X 9. g() = ~ 20. g() = ~ 2. H() = ~ 22. H() =W+4-2 En los problemas el 2-26, use f'() = lím [f(t) - f()]/[t - ] t~ para eterminar f'() (véase el ejemplo ). 2. f() = 2 ~. 2. f () = _ En los problemas el 27 al6 el limite ao es una erivaa, pero e quéfunción? Yen qué punto? (Véase el ejemplo 6). 2( + h) - 2() 27. lím '--- h~() h, (+h)2+2(+h)- 28. hm h~() h 24. f() = f() =._- lím 2 ~ 4 lím ~ X - 2 -)o X - t 2-2 ' ~. lím lím ---!--- t- p--- p- 2 2 t sen - sen. lím-- 4. lím ~t X - t --- -, cos( + h) ~ cos,tan(t + h) - tant. hm 6. hm ---'------' h~o h h- () h En los problemas el 7 al 44 se a la gráfica e una función = Utiliee esta gráfica para bosquejar la gráfica e = L---r-----'---+-'----.~ t Y = + 2, Xl =, X2 =. I I -::; Y = , Xl = 0.0, X2 = 0. f' (). 4ft 2 f () );;-...L-.!~I~_'----'-----"--- _ -,!.! I ~ En los problemas el 4 al 0 etermine Li para los va/ores aos e Xl X2 (véase el ejemplo 7).

3 Sección 2. Reglas para encontrar erivaas J ~ri, el EJEMPLO [] Encuentre DY si = SOLUCIÓN DY = D X( 4 ~ J+ D(~) ( 4 + )DA2) - 2DA 4 + ) DA) - DA) -'------'---"-'--'------=-'-'--'-----'--+-~--'---=---"-'---"- ( 4 + )2 2 ( 4 + )(0) - (2)(4 ) ()(O) - ()() -----,----' '----'----c---'---'-c- ( 4 + )2 2 EJEMPLO 6 IDemuestre que la regla para la potencia se cumple para eponentes enteros negativos, es ecir, n O - l'n n - 2n Como parte el ejemplo, vimos que D (/) = -/ 2. Ahora tenemos otra forma e ver la misma cosa. h)] h)}. La erivaa e un proucto e os funciones es la primera por más la por la erivaa e la primera. En símbolos, D[f()g()] = -' 2. La erivaa e un cociente es el por la erivaa el numeraor, menos el numeraor por la erivaa el, too iviio entre el o En símbolos, D [ ()/ g ()] = o Conjunto e problemas 2.. El seguno término (el término que inclue a h) en la epansión e ( + h) n es o Este hecho lleva a la fórmula D [ n ] = 4. L se enomina operaor lineal, si L(kf) = Y L(f + g) = o El operaor e erivación enotao por es un operaor lineal. En los problemas el al 44, encuentre DY meiante las reglas e = esta sección. 7. = = = 2 Y = 7TX 9. = =---. Y = 7TX 4. X 2 4. = = Y 2 2 = = --- 7T a 2 7. Y =- 8. Y =- Y = ( 2 X 2. + ) 24. Y = ( - ) 00 a 9. = = (2 + lf 26. =(-+2)2 Y = 4 = ( 2 + 2)( + ) = ( 4 - )( 2 + ). Y = = Y = = ( 2 + 7)( - + ) 4. Y = T + 7T 2 0. Y = (4 + 2)( ). Y = 7TX Y = ( 2-7)( ) 6. Y = TX- O 2. = ( 2 + 2)( )

4 4 Capítulo 2 La erivaa l 2. Y=~~- 4 Y-~~ ~ 2 - l 4. Y = 6 Y - -~~ l 2-7. Y = + 8. Y = ~ Y = Y = 2 + (o, Yo) un punto e tangencia. Determine os coniciones que (o, Yo) ebe satisfacer. Véase la figura Y = Y = - tre Y = 44. Y = ----, Si[(O) = 4,['(0) -,g(o) = -,g'(0) =,encuen- (a) (f'g)'(o) (b)(f + g)'(o) (c)(f/g)'(o) -2 - Araña 4 tre 46. Si[() = 7,['() = 2,g() = 6,g'() = -IO,encuen- (a) (f - g)'() (b) (f' g)'() (c) (g/f)'() Figura 4 Figura 47. Utilice la regla el proucto para mostrar que D [[() ] 2 = 2, [() Df(). [EPl] 48. Desarrolle una regla para D [[() g () h() ]. 49. Encuentre la ecuación e la recta tangente a = en el punto (, ). 0. Encuentre la ecuación e la recta tangente a = /( 2 + 4) en el punto (, /).. Encuentre toos los puntos en la gráfica e = - 2, one la recta tangente es horizontal. 2. Encuentre toos los puntos en la gráfica e = ~ + 2 -, en one la recta tangente tenga peniente.. Encuentre toos los puntos en la gráfica e = 00/, one la recta tangente sea perpenicular a la recta =. 4. Demuestre el teorema F e os formas.. La altura, s, meia en pies, a la que se encuentra un balón, por encima el suelo a los t segunos está aa por s = -6t t + loo. (a) Cuál es su velocia instantánea en t = 2? (b) Cuáno su velocia instantánea es cero? 6. Una pelota ruea hacia abajo a lo largo e un plano inclinao, e moo que su istancia s ese su punto e inicio espués e t segunos es s = 4.t 2 + 2t pies. Cuáno su velocia instantánea será e 0 pies por seguno? 7. Eisten os rectas tangentes a la curva = 4-2 que pasan por el punto (2,). Encuentre las ecuaciones e ambas. Sugerencia: sea [' '] 8. Una viajera espacial se mueve e izquiera a erecha a lo largo e la curva = 2. Cuano apague los motores, continuará viajano a lo largo e la recta tangente en el punto en que ella esté en ese momento. En qué momento ebe apagar los motores para que alcance el punto (4, )? 9. Una mosca se arrastra e izquiera a erecha a lo largo e la parte superior e la curva = 7-2 (véase la figura ). Una araña espera en el punto (4, O). Determine la istancia entre los os insectos cuano se ven por primera vez. 60. Sea P(a, b) un punto en la parte el primer cuarante e la curva = l/ suponga que la recta tangente en P interseca al eje en A. Demuestre que el triángulo AO? es isósceles etermine su área. 6. El raio e una sania esférica está crecieno a una velocia constante e 2 centímetros por semana. El grosor e la cáscara siempre es la écima parte el raio. Qué tan rápio está crecieno el volumen e la cáscara al final e la quinta semana? Suponga que el raio inicialmente es cero. 62. Vuelva a resolver los problemas el 29 al 44 en una computaora compare sus respuestas con las obtenias e forma manual. Respuestas ala revisión e conn'ptos:. la erivaa e la seguna;seguna;f()dg() + g()d[() 2. enominaor, enominaor; cuarao el enominaor; [g()d[() - [()Dg()]/g2(). nn-h; n n - 4. kl(f); L(f) + L(g); D 2.4 Derivaas e funciones trigonométricas La figura nos recuera la efinición e las funciones seno coseno, En lo que sigue, t ebe consierarse como un número que mie la longitu e un arco en el círculo unitario o, e forma equivalente, como el número e raianes en el ángulo corresponiente. Por lo tanto, f(t) = sen t g(t) = cos t son funciones para las cuales tanto el ominio como el rango son conjuntos e números reales, Poemos consierar el problema e eterminar sus erivaas, "órmulas e las erivaas. Elegimos utilizar en lugar e t como nuestra variable básica. Para eterminar DAsen ), apelamos a la efinición e la erivaa utilizamos la ientia e suma e ángulos para sen( + h).

5 Sección 2. La regla e la caena 2 ~l a. ~). :s- le- re- lar le! co-. Si Y = f(u), one u = g(t), entonces D = DuY. En notación e funciones, (Jo g)'(t) = o 2. Si w = G(v), one v = H(s), entonces D,w = D,v. En notación e funciones (G o H)'(s) = _ Conjunto e problemas 2. En los problemas el al20 encuentre DY.. = ( + ) 2. = (7 + ). =(-2) 4. = ( )7. = ( ) 6. Y = ( )-7 7. = 8. = ( + ) ( 2 +-)9 9. = sen( 2 + ) 0. = cos( 2-2). = cos 2. = sen 4 ( 2 ). =(~Y 4. Y = ( r - X-7T ( 2 ) = cos ( ~). Y = cos = ( - 2)2( - X 2 )2 8. = (2 - X 2 )4( 7 + ) ( + ) = Y = ( 2 + 4f En los problemas el 2 al28 encuentre la erivaa que se inica. 2. ' one = ( 2 + 4)2 22. ' one = ( + sen)2 D(~) Como g es erivable en, es continua allí (véase el teorema 2.2A), e este moo il - Ofuerza a ilu - O. De aquí que, / il / Áu u hm -. hm - = -.- Au--->O Áu A--->O Á u Esta emostración es mu irecta, pero esafortunaamente contiene un error sutil. Eisten funciones u = g() con la propiea e que ilu = Opara algunos puntos en toa vecina e (la función constante g() = k es un buen ejemplo). Esto significa que la ivisión entre ilu en nuestro primer paso poría no ser legal. No ha una forma sencilla e ar la vuelta a esta ificulta, aunque la regla e la caena es vália, incluso en este caso. Damos una emostración completa e la regla e la caena en el apénice (véase la sección A.2, teorema B). D,(~) 2. t+ 24. 's+4 ~(t-2)) (sen 0) t t + O ( sen ) 27. -,one = --2- cos 28. i' one = [sen t tan(t 2 + )] 4. Si Y = (2 + ) sen( 2 ), entonces DY = (2 + ). + sen( 2 ).. 0. G'(l) si G(t) = (t 2 + W(t2-2)4. F'() si F(t) = sen(t 2 + t + ) 2. g'(~) si g(s) = COS 7TS sen 2 7TS En los problemas el al 40 aplique la regla e la caena más e una vez para encontrar la erivaa que se inica.. DAsen 4 ( 2 + )] 4. Dt[cos (4t ~ 9»). Dt[sen (cos t)] 6. Du [ COS4(~ ~ ~) ] 7. De[cos4(sen ( 2 )] 8. DA sen 2 (2)] 9. {sen[cos(sen 2)]} 40. -{cos 2 [cos(cos t)]} t En los problemas 4 al 46 utilice las figuras 2 para aproimar las epresiones que se inican. 4 2 Figura (f + g)'(4) 4. (fg)'(2) 4. (f o g)'(6) X 246 Figura 42. (f - 2g)'(2) 44. (f/ g )'(2) 46. (g 0)'() En los problemas el 29 al 2 evalúe la erivaa que se inica. X2 + ) 29. f'(),si f() = ( ~ En los problemas el 47 al 8 eprese la erivaa que se inica en términos e la función F(). Suponga que F es erivable. 47. D (F(2» 48. D (F( 2 +»

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

La derivada. 2.1 Dos problemas con el mismo tema. recta secante de P y Q tiene pendiente dada por (véase la figura 4): m sec = Rectas secantes

La derivada. 2.1 Dos problemas con el mismo tema. recta secante de P y Q tiene pendiente dada por (véase la figura 4): m sec = Rectas secantes CAPÍTULO La erivaa. Dos problemas con el mismo tema. La erivaa. Reglas para encontrar erivaas. Derivaas e funciones trigonométricas.5 La regla e la caena.6 Derivaas e oren superior.7 Derivación implícita.8

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN.3 Reglas el proucto, el cociente erivaas e oren superior 119.3 Reglas el proucto, el cociente erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar la erivaa

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05 Sustituyeno 5, el nivel e proucción actual, obtenemos 0. Repita el ejemplo 6 para la función e costo C() 5 3 C t 5 0 (0.7).05 Así que los costos e proucción se están incrementano a una tasa e.05 por año.

Más detalles

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación 96 CAPÍTULO Derivación. La erivaa el problema e la recta tangente Hallar la peniente e la recta tangente a una curva en un punto. Usar la efinición e límite para calcular la erivaa e una función. Comprobar

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-1-M--00-017 CURSO: Matemática Básica SEMESTRE: Seguno CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Primer eamen

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Curso Introductorio a las Matemáticas Universitarias

Curso Introductorio a las Matemáticas Universitarias Curso Introuctorio a las Matemáticas Universitarias Tema 8: Derivación Víctor M. Almeia Lozano Jorge J. García Melián Licencia Creative Commons 2013 8. DERIVACIÓN En este tema veremos el concepto e erivaa

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe DERIVADA DEFINICION DE DERIVADA Sea una función efinia en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite eiste Dicho límite, cuano eiste, se llama DERIVADA e f

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

3.4. Derivadas de funciones trigonométricas. Derivada de la función seno

3.4. Derivadas de funciones trigonométricas. Derivada de la función seno 3.4 Derivaas e funciones trigonométricas 83 T 6. Drenao e un tanque El número e galones e agua que ay en un tanque t minutos espués e que éste empezó a vaciarse es Q(t) (3 t). Qué tan rápio salía el agua

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

2.1. Derivada de una función en un punto

2.1. Derivada de una función en un punto Capítulo 2 Diferenciación 1 2.1. Derivaa e una función en un punto Ritmo (o razón, o tasa) e cambio e una función en un momento ao. Peniente e la recta tangente. Aproximación por la peniente e las rectas

Más detalles

LA DERIVADA UNIDAD III III.1 ENTORNOS. a, donde δ es la

LA DERIVADA UNIDAD III III.1 ENTORNOS. a, donde δ es la LA DERIVADA UNIDAD III III. ENTORNOS Se enomina entorno e un punto a en, al intervalo abierto ( δ a δ ) semiamplitu el intervalo. a, one δ es la El entorno e a, en notación e conjuntos puee escribirse

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

Escuela de Economía UTPL Cálculo I Autora: Ing. Ana Lucía Abad Ayavaca UNIDAD II: DERIVADA

Escuela de Economía UTPL Cálculo I Autora: Ing. Ana Lucía Abad Ayavaca UNIDAD II: DERIVADA UNIDAD II: DERIVADA Continuano con el estuio e la seguna unia lo iniciaremos con el estuio el cálculo iferencial que se ocupa e cómo varía una cantia en relación con otra (LA DERIVADA). En el teto guía

Más detalles

5.2 La función logaritmo natural: integración

5.2 La función logaritmo natural: integración CAPÍTULO 5 Funciones logarítmica, eponencial otras funciones trascenentes 5. La función logaritmo natural: integración Usar la regla e logaritmo e integración para integrar una función racional. Integrar

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

f(x,y) = e x+y cos(xy)

f(x,y) = e x+y cos(xy) Universia e los Anes Departamento e Matemáticas MATE1207 Cálculo Vectorial Tarea 1 Iniviual Entregue en clase a su profesor e la MAGISTRAL la semana 6 (Lu. 3 Sep. Vi. 7 Sep.) 1. Consiere la función f efinia

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

Derivadas algebraicas

Derivadas algebraicas CDIN0_M1AAL1_Algebraicas Versión: Septiembre 01 Revisor: Sanra Elvia Pérez Derivaas algebraicas por Sanra Elvia Pérez Derivaa e una función El concepto e erivaa, base el cálculo iferencial, ha permitio

Más detalles

() 25 de mayo de / 9

() 25 de mayo de / 9 DEFINICION. Una función es iferenciable en a si f (a) existe, y iremos que es iferenciable en un intervalo abierto si es iferenciable en caa uno e los puntos el intervalo. NOTA. Para las funciones que

Más detalles

Práctico 4: Funciones inversas

Práctico 4: Funciones inversas Práctico 4: Funciones inversas 1. Averiguar acerca e la inyectivia e las siguientes funciones en sus ominios naturales: 1.- y = ax + bx + c con a 6= 0.- y = x + ax + b con a>0.- y = x + ax + b con a

Más detalles

ENGRANAJES TIPOS DE ENGRANAJES

ENGRANAJES TIPOS DE ENGRANAJES EGRAAJES Son piezas generalmente e forma cilínrica provistas e ientes en una e sus superficies, con el fin e embonarse (conectarse) con otra pieza similar y transmitir potencia. TIPOS DE EGRAAJES RECTOS:

Más detalles

Ejercicios propuestos Cálculo 20. Sem-A10

Ejercicios propuestos Cálculo 20. Sem-A10 Ejercicios propuestos Cálculo 0. Sem-A10 Prof. José Luis Herrera 1. Dibuje la gráfica de la función f para la cual f(0) = 0, f (0) = 3, f (1) = 0 y f () = 1.. Dibuje la gráfica de la función g para la

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

LA DERIVADA. Introducción:

LA DERIVADA. Introducción: LA DERIVADA Introucción: Fue Isaac Newton que estuiano las lees el movimiento e los planetas que Kepler había escubierto meio siglo antes, llegó a la iea e incremento e una función como se nos ofrece en

Más detalles

Derivación e vectorial

Derivación e vectorial 1. Vectores variables Derivación e vectorial Los vectores porán ser constantes o variables. Ahora bien, esa característica se verificará tanto en las componentes como en la base. Esto quiere ecir que cuano

Más detalles

Logaritmo Natural. Z x. 1 t dt = ln(x) = I 1 1. ln(x) < 0 para x 2 (0; 1) y ln(x) > 0 para x 2 (1; 1)

Logaritmo Natural. Z x. 1 t dt = ln(x) = I 1 1. ln(x) < 0 para x 2 (0; 1) y ln(x) > 0 para x 2 (1; 1) Logaritmo Natural Si n 6= ya sabemos que R x t n t = n+ xn+ + C, con C una constante. De nición. La regla e corresponencia ln(x) = Z x t t = Z x I e ne una función con ominio D ln = (0; ): A esta función

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita:

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita: José María Martíne Meiano La esfera La superficie esférica la esfera es el conjunto e puntos el espacio que equiistan e otro punto fijo, llamao centro Si el centro es el punto Oa, b, c el raio vale r,

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS CAPÍTULO 7 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 7. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS Una fnción eponencial es aqella en la qe la variable está en el eponente. Ejemplos e fnciones eponenciales son

Más detalles

3.1 Ejercicios. En qué punto de la curva y e x es paralela la recta tangente a la recta

3.1 Ejercicios. En qué punto de la curva y e x es paralela la recta tangente a la recta SECCIÓN 3. DERIVADAS DE FUNCIONES POLINOMIALES Y EXPONENCIALES 8 = FIGURA 9 3 (ln, ) = EJEMPLO 9? En qué punto e la curva e es paralela la recta tangente a la recta SOLUCIÓN Como e, tenemos e. Sea a la

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

Clase 6: Derivadas direccionales

Clase 6: Derivadas direccionales Clase 6: Derivaas ireccionales C. J. Vanegas 27 e abril e 2008 preliminares Sean x R 3 y v R 3 fijos en R 3. Consiere la recta L que pasa por x y tiene irección v, es ecir: L = {y R 3 : y = x + t v t R}

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coorinación e Matemática II (MAT0) Primer semestre e 03 Semana 6: Lunes e Abril Viernes 6 e Abril CÁLCULO Contenios Clase : Funciones Trascenentales: Función logaritmo natural y eponencial. Propieaes algebraicas

Más detalles

ELECTRICIDAD 6. Campo eléctrico 1

ELECTRICIDAD 6. Campo eléctrico 1 LCTRICIDAD 6. Campo eléctrico 0*. n 838, Faraay, a través e los experimentos realizaos con los campos magnéticos y visualizar como se orientaba el polvillo e hierro en tales campos, sugirió una forma e

Más detalles

MATEMÁTICAS VI (ÁREA1)

MATEMÁTICAS VI (ÁREA1) MATEMÁTICAS VI (ÁREA) VERSIÓN Unidad I. Funciones..- El dibujo de la gráfica de... 8 9 9 0.- El Lim 0 cuando tiende a 0 es :....- La función es continua en :...,,, 0,, 0.- El lim Sen 0....- El dominio

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim FORMULARIO V1.00 - Introucción a la Física Licenciatura en Física 1 Operaor Derivaa 1.1 De nición formal f (z 0 ) lim lim z 0!z z z 0 4z!0 f (z + 4z) 4z (1) 1. Derivaas e algunas funciones elementales

Más detalles

4. CÁLCULO INTEGRAL...71

4. CÁLCULO INTEGRAL...71 Inice. FUNCIONES..... NATURALEZA Y DEFINICIÓN DE FUNCIÓN MATEMÀTICA..... PRINCIPALES TIPOS DE FUNCIONES...9.. APLICACIONES DE LAS FUNCIONES.... LÍMITES..... LÌMITE DE UNA FUNCIÒN..... PROPIEDADES DE LOS

Más detalles

Nombre:...Curso:... CAMPO ELECTRICO

Nombre:...Curso:... CAMPO ELECTRICO Nombre:...Curso:... CAMPO ELECTRICO El concepto e campo es un importante meio para la escripción e algunos fenómenos físicos, un ejemplo e esto es el caso e la Tierra, ya que cualquier objeto e masa m

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN Capítulo 6 DERIVADA DE UNA FUNCIÓN 6.1. Definiciones básicas Definición 6.1 La erivaa e una función f con respecto a la variable x es la función f 0 efinia por f 0 f (x + h) f (x) (x) lím para too x one

Más detalles

Ejercicios Resueltos de Intensidad de Campo Eléctrico

Ejercicios Resueltos de Intensidad de Campo Eléctrico Reública Bolivariana e Venezuela Unia Eucativa Colegio Valle Alto Carrizal- Eo. Mirana Cátera: Física e 5to año Docente: Wagi Naime Ejercicios Resueltos e Intensia e Camo Eléctrico 1) Una carga eléctrica

Más detalles

Capítulo 30: Campos magnéticos y momento de torsión. Paul E. Tippens

Capítulo 30: Campos magnéticos y momento de torsión. Paul E. Tippens Capítulo 30: Campos magnéticos y momento e torsión Paul E. Tippens 017 Fuerza sobre una carga en movimient Recuere que el campo magnético en teslas (T) se efinió en términos e la fuerza sobre una carga

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009 Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 2009 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define

Más detalles

Lección 2.1. La Derivada y las Reglas básicas de la Diferenciación. 02/07/2011 Prof. José G. Rodríguez Ahumada 1 de 30

Lección 2.1. La Derivada y las Reglas básicas de la Diferenciación. 02/07/2011 Prof. José G. Rodríguez Ahumada 1 de 30 Lección. La Derivaa y las Reglas básicas e la Dierenciación 0/07/0 Pro. José G. Roríguez Aumaa e 0 Objetivos Interpretar la erivaa e una unción como la peniente e la tangente e una curva en un punto y

Más detalles

Seminario de problemas. Curso Hoja 5. Soluciones

Seminario de problemas. Curso Hoja 5. Soluciones Seminario e problemas. Curso 018-19. Hoja. Soluciones 49. Encuentra una expresión cerraa para la suma S m = 1 + 7 +... + 1 m+1 m 1 aplicano el cálculo e iferencias, o/y e otro moo. Solución. S n = 1 +

Más detalles

Apuntes sobre la Parábola: su medición según Arquímedes y otras propiedades

Apuntes sobre la Parábola: su medición según Arquímedes y otras propiedades Investigación y Docencia por Néstor guilera puntes sobre la Parábola: su meición según rquímees y otras propieaes Introucción (Versión revisaa e mayo e 2001) Muchas veces habrán oío que rquímees fue el

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

1. Función exponencial y funciones definidas mediante la exponencial

1. Función exponencial y funciones definidas mediante la exponencial TEMA 3 FUNCIONES COMPLEJAS ELEMENTALES 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial 1. Funciones trigonométricas 1.3 Funciones hiperbólicas. Función logaritmo

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves,

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, Explicación e la velocia e rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, yulalebran9@gmail.com) A continuación se presenta una emostración e la velocia e rotación en galaxias

Más detalles