Seminario de problemas. Curso Hoja 5. Soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Seminario de problemas. Curso Hoja 5. Soluciones"

Transcripción

1 Seminario e problemas. Curso Hoja. Soluciones 49. Encuentra una expresión cerraa para la suma S m = m+1 m 1 aplicano el cálculo e iferencias, o/y e otro moo. Solución. S n = n 4n 1 = A n B n, con A n = n y B n = n 1, y estas os son sumas e progresiones aritméticas e oren. A partir e las tablas e iferencias siguientes obtenemos entonces, e acuero con la fórmula vista en la sesión anterior, A n = n , 4 B n = 7n , 4 y entonces n S n = A n B n = 6n 19 + n + 1 = 6n 19 = 6n nn 1 = n 6n = n 4n. n Por otra parte tenemos S n+1 = S n + 4n + 1 = n + 48n + 18n + 1 = n + 116n + 16n + 1 = n + 1 4n + 1, e moo que se puee poner, para terminar, S m = 1 m+1 m4m.

2 0. Resolver la recurrencia b 0 = B, b n+1 = b n + a n n 0, si a n es la sucesión efinia por a 0 = A, a n+1 ra n + = 0 one las constantes A, B, r 0 y nos vienen aas. Solución. Como hemos visto en la sesión anterior, la sucesión a n correspone a un moelo e crecimiento mixto aritmético-geométrico, y la expresión explícita el término general es a n = Ar n rn 1. Por otra parte, para la sucesión b 0 = B, b n+1 = b n + a n se tiene n 1 b 1 = B + a 0, b = b 1 + a 1 = B + a 0 + a 1,..., b n = B + a 0 + a a n 1 = B + a j, e manera que aplicano la fórmula que a la suma e una progresión geométrica tenemos finalmente n 1 b n = B + Ar j rj 1 = B + = B + = A A A n 1 r j + n 1 1 r n 1 + n r n + n A + B. 1. El banco nos ha conceio un préstamo e euros para subvencionar nuestros estuios e máster en Matemáticas. Cuano empecemos a trabajar empezará a evengar intereses el préstamo, a una tasa e interés compuesto el 1 % anual y a partir e ese momento tenremos que irlo evolvieno meiante 1 mensualiaes iguales e x euros urante 1 años exactamente. A cuánto asciene x? Solución. Vamos a llamar b n al balance a favor el banco espués e pagar nosotros n mensualiaes. Ese balance evenga, el siguiente mes, la oceava parte el 1 % e su interés anual. Tenemos b 0 = y luego b n+1 = b n + 0,01b n x = 1,01b n x, b n = ,01 n x 1,01n 1 0,01 = ,01 n 100x1,01 n 1. Se pretene que sea b 144 = 0. Despejano resulta x = 180 1, , ,4 euros.

3 . Colocamos moneas e 0,01 euros sobre la mesa en un arreglo plano e filas, e moo que en cualquiera e las filas las moneas son consecutivamente tangentes una a otra sin que queen huecos, y caa monea que no está en la primera fila o fila base es tangente a os moneas e la fila inmeiatamente inferior. Por ejemplo, vale el arreglo, pero no vale el. Cuántos arreglos hay que tengan n moneas en la fila base? Como ilustración, y por claria, hay arreglos con n =, a saber, Solución. Crux Mathematicorum, problem 167 propuesto por R. K. Guy [1988, 0]. Denotaremos por An al número e arreglos con n moneas en la fila base. Llamaremos primera fila a la fila base y a partir e ella hacia arriba, seguna fila, etc. Tenemos A1 = 1, A =, A =, A4 = 1, A = 4. Los arreglos con n moneas en primera fila y n 1 moneas en seguna fila son An 1. Poemos construir, y contar a la vez, los arreglos con n moneas en primera fila y estrictamente menos e n 1 moneas en seguna fila e la manera siguiente: Añaieno una monea por la izquiera e la primera fila e un arreglo con n 1 moneas en primera fila: An 1 arreglos. Añaieno una monea por la erecha e la primera fila e un arreglo con n 1 moneas en primera fila: An 1 arreglos. Con esto ya están toos los arreglos con n moneas en primera fila y estrictamente menos e n 1 moneas en seguna fila pero, e ellos, los que se forman añaieno una monea por la izquiera y otra por la erecha a un arreglo cualquiera con n moneas en primera fila, en número e An, están contaos os veces. Entonces tenemos la recurrencia An = An 1 An lineal, e coeficientes constantes, homogénea. La ecuación característica es r r + 1 = 0, con soluciones reales r = ± /. La solución general e la recurrencia es entonces + n n. An = A + B A partir e A0 = 1 este valor permite que se cumpla también la relación A = A1 A0, así que es la prolongación natural e la sucesión hacia la izquiera y A1 =, tenemos el sistema e ecuaciones { A + B = 1, + A + B =.

4 Resulta A = 1, B = +1 y, finalmente, 1 + n + 1 n An = + = n 1 1 n 1, one hemos usao ± = 6± = 1± 4 y 1 = 1 ±1 1. De manera que comparar con la Activia c los números An son términos alternaos e la sucesión e Fibonacci F 0 = 0, F 1 = 1, F =,..., e hecho An = F n 1.. a Probar por inucción: Si C cueras e un círculo, entre las cuales no hay tres concurrentes en un mismo punto, eterminan P puntos interiores al círculo, entonces el número S e segmentos eterminaos sobre las cueras es S = C + P. 1 b Sobre una circunferencia se marcan n puntos e tal forma que cuano se trazan toas las cueras posibles que los unen e os en os no hay tres cueras concurrentes. En cuántas regiones quea iviio el círculo por esas cueras? Inicación: Usar la fórmula e Euler e los polieros y el apartao a. Solución. Ver M. e Guzmán, Aventuras matemáticas, Cap. 10: Problema e la región peria. a Por inucción en el número e cueras C. Cuano C = 1 es P = 0 y S = 1 y se cumple la relación 1. También cuano C =, ya sea P = 0, S =, o P = 1, S = 4 ver la figura. Supongamos que se cumple 1 en una situación en la que es C = h, es ecir, supongamos que se verifica que S h = h + P h en una cierta configuración e h cueras. Añaimos una cuera a esa confuguración. Supongamos que esta nueva cuera corta a 4

5 p algunas o toas las h e las cueras que había, y por tanto que ahora hay p puntos interiores más e los que había, es ecir, ahora es P h+1 = P h + p. Por caa punto añaio hay que contar que uno e los segmentos que había ha queao cortao en os segmentos y por otra parte, como toos estos puntos añaios son e la cuera nueva, sobre esta cuera añaia hay que contar tantos segmentos como puntos añaios más uno. Así, por la hipótesis e inucción y estas consieraciones se tiene y esto termina la prueba e inucción. S h+1 = S h + p + p + 1 = h + P h + p + 1 = h P h + p = h P h+1, b En este caso, con las notaciones el apartao anterior, se tiene C = n ya que caa par e puntos e la circunferencia etermina una única e las C cueras que cumplen la conición el apartao a, y P = n 4, ya que caa cuatro puntos el círculo en oren antihorario, por ejemplo: 14 eterminan uno único el 1 4 e los P puntos e intersección interiores. De acuero con el apartao a el número e segmentos interiores al círculo es C + P = n n + 4 Denotemos por R n R 1 = 1, R =, R = 4, R 4 = 8, R = 16, R 6 = 1,... el número e regiones que buscamos. Son las caras e un mapa plano en el que se cumple la fórmula e Euler caras + vértices = aristas + 1. El número e aristas es A = n n + 4 ya que hay son aristas los segmentos rectilíneos interiores y los n arcos e circunferencia eterminaos por los n puntos e la misma. Y el número e vértices es P +n = n 4 +n, ya que hay que añair a los P puntos interiores al círculo los n puntos e la circunferencia. Entonces R n = + + n n n n = = n 1 n 1 n 1 n 1 n 1 = Es ecir, R n es la suma e los cinco primeros elementos e la fila n 1 el triángulo e Pascal. La suma e toa la fila es n 1, lo que explica el fenómeno curioso e perer una región cuano n = 6: R 6 = 1 = 1; ese ahí, R 7 = = 7, etc.. + n,

Relaciones de recurrencia

Relaciones de recurrencia MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia

Más detalles

A y B

A y B TIVIDDES DE MTRIES. º HILLERTO Hallar el rango e la matriz: 7 8 7 9 8 Se observa que el menor e oren formao por la primera y tercera filas y columnas no es nulo sino igual a 8, veamos: 8 Luego rg () es

Más detalles

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado Grafos Sea V un conjunto finito no vacío, y E V V. El par ( V, E) es un grafo sobre V, one V es el conjunto e vértices y E el conjunto e aristas. Lo anotaremos G ( V, E). Vértice(s) repetio(s) Arista(s)

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

Seminario de problemas. Curso Hoja 13

Seminario de problemas. Curso Hoja 13 Seminario e problemas Curso 2014-15 Hoja 13 85 Calcula la ea e Diofanto e Alejanría e acuero con los siguientes atos que aparecen en un escrito fechao entre los siglos V y V I: Dios le conceió que fuera

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias

Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias Semana 07[/] de abril de 007 Semana 07[/] Progresiones aritméticas Progresión aritmética Es una sumatoria del tipo (A + d) es decir, donde a A + d, para valores A, d Ê. Utilizando las propiedades de sumatoria,

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

Seminario de problemas. Curso Hoja 17

Seminario de problemas. Curso Hoja 17 Seminario de problemas. Curso 015-15. Hoja 17 11. [Olimpiada Matemática de Española, 00, Islas Canarias] Las alturas de un triángulo ABC se cortan en un punto H. Sabemos que AB = CH. Determinad el valor

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

Cálculo matricial de pórticos biempotrados a dos aguas

Cálculo matricial de pórticos biempotrados a dos aguas Desplazamientos y solicitaciones e una barra Cálculo matricial e pórticos biempotraos a os aguas. Hipótesis e cálculo. e verifica la ley e Hooke, lo que significa que en las estructuras los esplazamientos

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

Ejercicio Práctico 1 Enunciado

Ejercicio Práctico 1 Enunciado Funamentos e Programación Grupo 5 Samuel Martín Ejercicio Práctico Enunciao Instrucciones generales El alumno eberá presentar los ejercicios planteaos en este ocumento. Aicionalmente, se han facilitao

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1

Universidad Distrital Francisco José de Caldas - Análisis de Señales y Sistemas - Marco A. Alzate 1 Universia Distrital Francisco José e Calas - Análisis e Señales y Sistemas - Marco A. Alzate Décimo-quinta clase. Respuesta al impulso. Implementación e sistemas LTI. Ecuaciones e iferencia y iferenciales

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

SOLUCIÓN: Sea x la distancia entre A y C. Por el Teorema del coseno tenemos:

SOLUCIÓN: Sea x la distancia entre A y C. Por el Teorema del coseno tenemos: EJERCICIO 30 Dese un punto A se ivisan otros os puntos B y C bajo un ángulo e 5º 9. Se sabe que B y C istan 450 m y que A y B istan 500 m. Averigua la istancia entre A y C. Sea la istancia entre A y C.

Más detalles

Ecuaciones Diferenciales de primer Orden

Ecuaciones Diferenciales de primer Orden 4 Ecuaciones Diferenciales e primer Oren 1.1 1.1. Introucción Las palabras ecuaciones y iferenciales nos hacen pensar en la solución e cierto tipo e ecuación que contenga erivaas. Así como al estuiar álgebra

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

Mecanismo de reacción. Orden y Molecularidad

Mecanismo de reacción. Orden y Molecularidad Química General II puntes Cinética Mecanismos primavera 0 Mecanismo e reacción. Oren y Molecularia Mecanismo e reacción: Descripción etallaa y completa e caa una e las etapas o secuencia e reacciones que

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

Seminario de problemas. Curso Hoja 5

Seminario de problemas. Curso Hoja 5 Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

Seminario de problemas-eso. Curso Hoja 14

Seminario de problemas-eso. Curso Hoja 14 Seminario de problemas-eso. Curso 011-1. Hoja 14 6. Determina el valor de m tal que la ecuación en x x 4 (3m + )x + m = 0 tenga cuatro raíces en progresión aritmética. Como la suma de las cuatro raíces

Más detalles

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico.

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico. MMII_CV_c CÁLCULO VARIACIONAL: Introucción moelo básico. Guión Esta es una clase e introucción al Cálculo e Variaciones (CV). Por un lao, se establece su relación con otros campos e la Optimización en

Más detalles

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de

Más detalles

TALLER DE TALENTO MATEMÁTICO 23 de octubre de 2015

TALLER DE TALENTO MATEMÁTICO 23 de octubre de 2015 TALLER DE TALENTO MATEMÁTICO 23 de octubre de 2015 ESTHER GARCÍA (IES RÍO GÁLLEGO) ROLEMAS DE OOSICIÓN DEL CUERO DE ROFESORES DE ENSEÑANZA SECUNDARIA ROUESTOS EN TRIUNALES DE MADRID EN 2002, 2008 y 2010

Más detalles

FÍSICA FARMACIA. EXTRAORDINARIO JUNIO 2011

FÍSICA FARMACIA. EXTRAORDINARIO JUNIO 2011 FÍSICA FAMACIA. ETAODINAIO JUNIO 0 POBLEMA ( p). Un accientao reuiere ue se le apliue tracción en la pierna, lo cual se consigue meiante un sistema e poleas como el mostrao en la figura. (a) Dibujar el

Más detalles

Tablas de mortalidad Metodología

Tablas de mortalidad Metodología Tablas e mortalia Metoología INSTITUTO NACIONA DE ESTADÍSTICA Mayo e 016 Ínice 1 Introucción 5 Tablas e mortalia e España 8 3 Tablas e mortalia e comuniaes autónomas y provincias 11 4 1 Introucción a

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos

Más detalles

PRINCIPIO DE INDUCCIÓN

PRINCIPIO DE INDUCCIÓN PRINCIPIO DE INDUCCIÓN Axioma del Buen Orden en los naturales Principio de Inducción (I) Principio de Inducción (II) Principio Fuerte de Inducción Ángeles Martínez Sánchez Curso 2016/2017 DMATIC ETSISI

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

2. Asignar los ejes z, sabiendo que z i 1 es el eje de la articulación i.

2. Asignar los ejes z, sabiendo que z i 1 es el eje de la articulación i. 1. Ienticar cuántos graos e liberta tiene el robot, y cuántas articulaciones; si tuviera alguna articulación con más e un grao e liberta (igamos, n) habrá n sistemas superpuestos en un punto.. Asignar

Más detalles

Curso Curso

Curso Curso Problema 84. Sea AB el diámetro de una semicircunferencia de radio R y sea O el punto medio del segmento AB. Con centro en A y radio OA se traza el arco de circunferencia OM. Calcular, en función de R,

Más detalles

TEMA 3: PROGRESIONES

TEMA 3: PROGRESIONES 3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Seminario de problemas ESO. Curso Hoja 10

Seminario de problemas ESO. Curso Hoja 10 Seminario de problemas ESO. urso 014-1. Hoja 10 64. Iván escribe los números del 1 al 0 en orden y, puesto que los números del 10 al 0 tienen cifras, se da cuenta de que en total ha escrito 31 cifras.

Más detalles

6. MODELOS KT-KD DIARIOS, CÁCERES

6. MODELOS KT-KD DIARIOS, CÁCERES 6. MODELOS KT-KD DIARIOS, CÁCERES Una vez realizao el control e calia e los atos registraos en la estación e Cáceres se escartan, para el esarrollo el moelo e escomposición iaria, aquellos ías que no hayan

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

Curso Curso

Curso Curso Problema 77. Se considera un triángulo equilátero de lado 1 y centro O, y vértices A, B y C. Un rayo luminoso parte de O, se refleja una vez en cada uno de los tres lados, AB, AC y BC (en el orden dado)

Más detalles

HABILIDAD CUANTITATIVA

HABILIDAD CUANTITATIVA MATEMÁTICA] de enero de 0 HABILIDAD CUANTITATIVA Esta parte de la prueba consta de 5 preguntas (numeradas desde la a la 5) y se estima un máximo de 50 minutos para contestarlas todas. Si termina antes,

Más detalles

Series. Denición y Ejemplos de Series. a n o bien a n

Series. Denición y Ejemplos de Series. a n o bien a n 7. Denición y ejemplos de sucesiones y series convergentes y no convergentes. Series Denición y Ejemplos de Series Denición. Al sumar los términos de una sucesión innita {a n } forma a + a + a + + a n

Más detalles

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan En general una Ecuación Diofántica es una ecuación polinomial en una o más variables para la que buscamos soluciones en los números enteros,

Más detalles

Unidad 7 Producto vectorial y mixto. Aplicaciones.

Unidad 7 Producto vectorial y mixto. Aplicaciones. Unidad 7 Producto vectorial y mixto. Aplicaciones. 5 SOLUCIONES 1. Al ser u v =(,5,11), se tiene que ( u v) w = ( 17,13, 9 ). Como v w =( 3,, 7), por tanto u ( v w) = ( 19,11, 5).. Se tiene que: 3. Queda:

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

CONCEPTOS BÁSICOS DE CONFIABILIDAD

CONCEPTOS BÁSICOS DE CONFIABILIDAD CAPÍTULO II CONCEPTOS BÁSICOS DE CONFIABILIDAD El iseño e sistemas, comprene los aspectos más amplios e la organización e equipo complejo, turnos e operación, turnos e mantenimiento y e las habiliaes necesarias

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

Soluciones al examen de Estadística Aplicada a las Ciencias Sociales Junio ª Semana

Soluciones al examen de Estadística Aplicada a las Ciencias Sociales Junio ª Semana Soluciones al eamen e Estaística Aplicaa a las Ciencias Sociales Junio 009 ª Semana Ejercicio. Una agente e iguala está interesaa en conocer las iferencias salariales en España entre hombres y mujeres

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

Curso Curso

Curso Curso Problema 38. Tenemos un cubo de madera de cerezo, compuesto por 27 cubitos iguales: el cubito interior, 8 cubitos-vértice, 12 cubitos-arista y 6 cubitos-cara. Y una termita que pretende llegar lo más rápido

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Seminario de problemas. Curso 204-5. Hoja 9 57. Se pincha aleatoriamente un punto P en el interior de un triángulo equilátero ABC. Cuál es la probabilidad de que los segmentos P A, P B y P C sean los lados

Más detalles

ENERGÍA RETICULAR Y ECUACIÓN DE BORN-LANDÉ. Silvia Bello

ENERGÍA RETICULAR Y ECUACIÓN DE BORN-LANDÉ. Silvia Bello ENERGÍA RETICULAR Y ECUACIÓN DE BORN-LANDÉ Silvia Bello El enlace iónico es otro moelo one se sobresimplifica la interacción real existente en ciertos compuestos meiante un símil electrostático. Este moelo

Más detalles

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

3º E.S.O. II.- ÁLGEBRA

3º E.S.O. II.- ÁLGEBRA 3º E.S.O. Se consideran mínimos exigibles para el tercer curso de E.S.O. todos los del segundo curso y los siguientes: I.- NÚMEROS Números racionales - Definir (no de forma rigurosa ) y distinguir los

Más detalles

Resumen: Geometría Básica

Resumen: Geometría Básica Resumen: Geometría Básica Postulados de Euclides Los postulados se basan en elementos primitivos que en esencia son elementos que no podemos definir, sino que los asumimos de forma intuitiva, en el caso

Más detalles

LA OLIMPIADA ASIÁTICO-PACÍFICA DE MATEMÁTICAS LA OLIMPIADA ASIÁTICO-PACÍFICA DE MATEMÁTICAS

LA OLIMPIADA ASIÁTICO-PACÍFICA DE MATEMÁTICAS LA OLIMPIADA ASIÁTICO-PACÍFICA DE MATEMÁTICAS LA OLIMPIADA ASIÁTICO-PACÍFICA DE MATEMÁTICAS Las Olimpiadas Asiático-Pacíficas de Matemáticas es una competencia de Matemáticas anual para estudiantes de secundaria de los países en las costas del Océano

Más detalles

01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real.

01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real. 1.6 Criterios específicos de evaluación. 01. Simplifica y compara fracciones y las representa, de forma aproximada, sobre la recta real. 02. Realiza operaciones aritméticas con números decimales y francionarios.

Más detalles

aletos CAPÍTULO 6.04 SISTEMAS ÓPTICOS CENTRADOS

aletos CAPÍTULO 6.04 SISTEMAS ÓPTICOS CENTRADOS aletos 1 6.04-1 Conceptos funamentales Un conjunto e superficies que separan meios e istinto ínice e refracción constituyen un sistema óptico. Si, como caso particular, estas superficies son esféricas

Más detalles

Unidad 7 Producto vectorial y mixto. Aplicaciones. Superficie esférica

Unidad 7 Producto vectorial y mixto. Aplicaciones. Superficie esférica Unidad 7 Producto vectorial y mixto. Aplicaciones. Superficie esférica PÁGINA 157 SOLUCIONES 1. La recta es x y + z = 0 x y z = 0. Puede ser el vector: 3. La altura es la distancia entre los planos, es

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1 TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

El rincón de los problemas

El rincón de los problemas Junio de 008, Número 14, páginas 113-11 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Problema Proponer una actividad lúdica que ilustre que si

Más detalles

Sucesiones de puntos buenos

Sucesiones de puntos buenos Sucesiones e puntos buenos Granja Barón, A. Roríguez Sánchez, C. Abstract In this paper we stuy the evolution by quaratic transforms of Abhyankar s goo points. In fact, we etermine the minimal number of

Más detalles

Seminario de problemas Curso Estrategias matemáticas: recurrencias.

Seminario de problemas Curso Estrategias matemáticas: recurrencias. Seminario de problemas Curso 017-18. Estrategias matemáticas: recurrencias. Contar cosas es uno de los problemas más típicos de las matemáticas y la habilidad para contar bien es una de las más valoradas

Más detalles

XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008

XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008 XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008 SOLUCIONES 1 2 2008 1. Calcular la suma 2 h + h +... + h, 2009 2009 2009 siendo Se observa que la función

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

PROBLEMAS PARA LA PREPARACIÓN DE LA FASE LOCAL NAVARRA DE LA OLIMPIADA MATEMÁTICA ESPAÑOLA

PROBLEMAS PARA LA PREPARACIÓN DE LA FASE LOCAL NAVARRA DE LA OLIMPIADA MATEMÁTICA ESPAÑOLA MODO DE EMPLEO Como este año no ha habido una sesión específica para álgebra, se recomienda previamente leer los documentos para la preparación de este tema concreto. Nos referimos a los siguientes: Polinomios

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

Geometría: ( griego; geo: tierra; metria: medición ) Parte de la matemática que trata de las propiedades y medida de la extensión.

Geometría: ( griego; geo: tierra; metria: medición ) Parte de la matemática que trata de las propiedades y medida de la extensión. EL CUBO DESDE LA GEOMETRÍA: Geometría: ( griego; geo: tierra; metria: meición ) Parte e la matemática que trata e las propieaes y meia e la extensión. Cuano nos referimos a un objeto, en varias oportuniaes

Más detalles

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8.1. TANGENCIAS Se dice que dos figuras planas son tangentes cuando tienen un solo punto en común, al que se conoce como punto de tangencia. Las tangencias pueden

Más detalles

CUESTIONES DEL TEMA - III

CUESTIONES DEL TEMA - III Presentación En el tema 3 se analiza la influencia que ejerce la realimentación negativa sobre los parámetros e un amplificaor. También se analiza el concepto e Estabilia e un amplificaor, y se presenta

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday.

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday. 1. Qué es capacitancia? Se efine como la razón entre la magnitu e la carga e cualquiera e los conuctores y la magnitu e la iferencia e potencial entre ellos. La capacitancia siempre es una cantia positiva

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Ecuación vectorial de la recta en el plano y su ecuación cartesiana

Ecuación vectorial de la recta en el plano y su ecuación cartesiana iceo Técnico Aolfo Matthei ierano la Eucación Técnico Profesional Docente: Cristian Casas. GUIA MATEMATICA Departamento e Matemática Curso: 4 Meio Fecha : Puntos : NOMBRE: Nota : Ecuación vectorial e la

Más detalles

1. Sea la recta de ecuaciones paramétricas x = 2 - t; y = 3 + 2t. Escribe la ecuación de esta recta en forma continua, general y explícita.

1. Sea la recta de ecuaciones paramétricas x = 2 - t; y = 3 + 2t. Escribe la ecuación de esta recta en forma continua, general y explícita. UNIDAD 4: Geometría afín del espacio CUESTIONES INICIALES-PÁG 94 Sea la recta de ecuaciones paramétricas x = - t; y = 3 + t Escribe la ecuación de esta recta en forma continua, general y explícita Las

Más detalles

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común.

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común. Recurrencias Def. Progresión geométrica. Es una sucesión infinita de números, como: 5, 45, 135, donde el cociente de cualquier término entre su predecesor es una constante, llamada razón común. (Para nuestro

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Simulación numérica. Modelo Malthusiano. Modelo simplificado de pesca. Modelo de Verhulst. Ecuación logística. dp dt = rp, P(0) = P 0

Simulación numérica. Modelo Malthusiano. Modelo simplificado de pesca. Modelo de Verhulst. Ecuación logística. dp dt = rp, P(0) = P 0 Moelo Malthusiano Simulación numérica Aner Murua Donostia, UPV/EHU P = rp, P(0) = P 0 one r es la iferencia entre la tasa e natalia y la tasa e mortana por unia e tiempo. La solución exacta es P(t) =P

Más detalles

Segundo grado Bloque I. Eje Aprendizajes esperados Contenido Sentido numérico y pensamiento algebraico

Segundo grado Bloque I. Eje Aprendizajes esperados Contenido Sentido numérico y pensamiento algebraico Comunicar matemática Bloque I Resuelve problemas que implican el uso de las leyes de los exponentes y de la notación científica Resuelve problemas que impliquen calcular el área y el perímetro del círculo..resuelve

Más detalles

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 3: Técnicas de Conteo 1 /

Más detalles

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables MATEMÁTICAS II Valores etremos Curso - e unciones e varias variables EJERCICIOS ) Calcular el volumen e la caja rectangular más grane situaa en el primer octante con tres e sus caras en los planos coorenaos

Más detalles

Congreso Internacional: Tecnologías Computacionales en el Currículo de Matemáticas

Congreso Internacional: Tecnologías Computacionales en el Currículo de Matemáticas 4. Con la opción formato elija mostrar el plano de coordenadas cartesianas. Dibuje tres líneas paralelas al eje X (en el resto de las instrucciones nos referiremos a estas líneas como l1, l2 y l3 respectivamente).

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles