UNIDAD 2 Elementos de las turbomáquinas: conversión de energía potencial en cinética, toberas y difusores. Flujo compresible. Performances.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 2 Elementos de las turbomáquinas: conversión de energía potencial en cinética, toberas y difusores. Flujo compresible. Performances."

Transcripción

1 UNIDAD Elementos de las turbomáquinas: conersión de energía otencial en cinética, toberas y difusores. Flujo comresible. Performances. 1. CONVERSIÓN DE EP EN EC: Toberas y Difusores. Parte de la cascada de conersión de energía en las turbomáquinas requiere la conersión de energía otencial en energía cinética, y iceersa. Estas transformaciones se roducen en elementos estáticos de las turbomáquinas denominados Toberas y Difusores. En las rimeras la energía otencial (resión) se conierte en energía cinética (aumento de elocidad) y en los segundos sucede la inersa. Para las turbomáquinas hidráulicas (fluído incomresible) y ara las máquinas de muy bajas relaciones de resión (entiladores) es suficiente trabajar con las relaciones de flujo incomresible (ecuación de Bernouilli) ara deducir los cambios de resión y elocidad. Cuando los cambios de resión y elocidad son imortantes y se trabaja con gases se comienzan a manifestar fenómenos de comresibilidad, que requieren consideración de la elocidad del gas resecto a la elocidad del sonido en el mismo.. VELOCIDAD ISENTRÓPICA DEL SONIDO Consideramos un conducto de sección constante lleno de un fluído comresible en reoso, en el cual se roaga, de izquierda a derecha, una erturbación de resión con elocidad c (Figura.1a): Fig..1: Proagación de una erturbación de resión (Shairo) La erturbación de resión es suficientemente equeña ara considerar el flujo isentróico. Detrás de la erturbación la resión sufre un incremento d y el flujo adquiere una elocidad d. Fijamos ahora el sistema de coordenadas en la erturbación (Figura.1b), con lo que asamos a considerar las elocidades relatias del flujo indicadas en la Figura. Planteamos el balance de fuerzas sobre el frente de erturbación (Fuerza=cambio en la cantidad de moimiento): A[ ( d) ] = G[ ( c d) c], donde A es la sección del conducto y G el gasto másico. Como G = Ac, siendo la densidad, resulta d = cd Planteamos ahora la conseración de la masa: ca = ( d)( c d)a, de donde, desreciando el roducto de infinitésimos, resulta 9

2 De los dos balances resulta d d =. c c = d d Al ser la entroía constante adotamos la exresión de la adiabática Luego, d = d 1.const = c = =.const = RT =. const = RT, de donde Esta exresión ermite calcular la elocidad de transmisión de una equeña erturbación de resión, tal como una onda de sonido, en un gas. Por ejemlo, ara el aire (=1.4, R=87.6) en condiciones normales (T=88.15K) resulta c =34.3 m/s. En adelante, ara eitar confusión con la elocidad absoluta del fluído, denominaremos a a esta elocidad isentróica del sonido: a = RT El cociente entre la elocidad absoluta del fluído c y la elocidad isentróica del sonido es un número adimensional denominado el número de Mach: M = c / a 3. CONDICIONES DE REMANSO En la Unidad 1 se encontró que el trabajo total realizado or o sobre el fluído en su asaje or un sistema estaba dado or: l i = i En el asaje or una tobera o difusor no se realiza trabajo y consideramos a estas transformaciones sin intercambio de calor con el exterior, or lo que i = const Luego, odemos considerar un unto en el camo de flujo donde la elocidad sea nula y la entalía sea máxima. Este será un unto de remanso, también denominado de estagnación o de tanque. En este unto las ariables las indicaremos con el subíndice cero, con lo que odemos escribir Considerando que i T = c = i T = ct c = 1 R = RT 1 = T 1 M, y que El asaje del fluído desde el tanque o unto de remanso al unto actual fue isentróico, or lo que odemos considerar la relación de la adiabática: 1

3 T 1 = const ara establecer la relación entre la resión de remanso y la del unto actual: y también entre las densidades: 1 1 = 1 M, 1 1 = 1 M. A las condiciones en el unto actual (, T, ) se las denomina alores estáticos, ara diferenciarlos de los alores de remanso. Para areciar el significado de las condiciones de remanso, considérese un conducto con dos mediciones de resión y una de temeratura (Figura.): 1 Fig..: Mediciones en un conducto La medición de temeratura y la de resión enfrentando al flujo crean untos de remanso y or consiguiente, desreciando los rozamientos que afectan a la reersibilidad, miden las condiciones de remanso. La medición de resión sobre la ared mide la resión sin afectar a la elocidad del flujo, es decir, la resión estática. Con las mediciones de resión y el coeficiente de la adiabática del fluído se uede obtener el número de Mach, con esto y la temeratura de remanso T se obtiene la temeratura estática T, de donde se uede comutar la elocidad del sonido a, y con M comutar la elocidad del fluído c. 4. CONDUCTOS CON CAMBIO DE SECCION Para el caso de flujo isentróico en un conducto tenemos de donde di d =. De la Termodinámica tenemos que y, siendo la transformación isentróica, ds= y resulta La conseración de la masa es: de donde, tomando logaritmos y deriando, i = i = TdS d = d const d di =, A= const 11

4 d d Reemlazando a =d/d y M=/a y oerando con las exresiones anteriores obtenemos: da A = da 1 M = A Esta exresión nos relaciona el cambio de sección transersal A con el cambio de resión d a traés del número de Mach. Podemos construír la siguiente tabla:. d Mach da d d tio régimen <1 > > < difusor subsónico <1 < < > tobera subsónica >1 > < > tobera suersónica >1 < > < difusor suersónico Se arecia que un conducto conergente (da<) uede acelerar el flujo (tobera) si la elocidad del fluído es menor que la del sonido, y decelerarlo (difusor) si la elocidad es suerior a la del sonido. Un conducto diergente se comorta a la inersa. 5. CONDUCTO CONVERGENTE-DIVERGENTE:Tobera de Laal Consideramos un conducto conergente-diergente en régimen comresible, subsónico. La conseración de la masa se exresa como: G = A = const Reemlazamos utilizando las exresiones de flujo comresible ara obtener: 1 ( 1) G 1 = AM 1 M T R Esta exresión nos relaciona la sección transersal y el número de Mach en el conducto. Al ser la rimera orción conergente, la sección disminuirá hasta el alor A *, al que corresonde M *, y or consiguiente T *, *, etc. Si la sección mínima es tal que el número de Mach que se alcanza es unitario (régimen sónico) la segunda orción del conducto se comortará como una tobera suersónica, y la elocidad continuará aumentando. Podemos así graficar la ariación de todos los arámetros en el conducto conergente-diergente en régimen subsónico-suersónico (Figura.3): 1

5 Fig..3: Funciones de flujo comresible ara =1.4 (Wilson) La tobera conergente-diergente (tobera de Laal) es entonces útil ara alcanzar elocidades suersónicas en un conducto. Sin embargo, ara alcanzar M=1 es necesario que la garganta A * no exceda el alor de A * = G 1 TR 1 1 Además, se requiere una cierta diferencia de resión mínima que estará dada or la exresión de la resión de remanso con M=1: = 1 1 Luego, la resión en la garganta y la resión a la entrada de la tobera (asumiendo muy baja elocidad de entrada) deben estar en la roorción máxima de La resión de descarga a la salida de la orción diergente debe ser más baja aún, deendiendo del alor del área de salida. Si la resión de descarga es la que corresonde al área de salida según las fórmulas anteriores se dice que la tobera está correctamente exandida. Si la resión externa es más baja que la correcta se dice que la tobera está subexandida, ya que odría exandir más aún, y en la salida del flujo se roducen fenómenos de exansión suersónica hasta alcanzar la resión ambiente. Si la resión externa es suerior a la correcta se dice que la tobera está sobreexandida, y se roducen dentro de la misma saltos discretos de resión, elocidad y temeratura denominados ondas de choque, que reducen bruscamente la elocidad or debajo de la del sonido. El roceso continúa con una difusión subsónica, aumentando la resión hasta igualar la exterior. La intensidad de la onda de choque deende de la resión exterior, y el roceso se ilustra en la Figura.4: ( 1) 13

6 Fig..4: Presiones en la tobera de Laal (Lee) A caudales inferiores al crítico la tobera rimero acelera y luego decelera el flujo, todo en régimen subsónico (7%, 9%). Luego se alcanza el caudal crítico G c, a artir del cual ya no se incrementa el caudal or más que se continúe reduciendo la resión de descarga. Sin embargo, al ser la resión de descarga suerior a la correcta, se roducen ondas de choque y difusión subsónica (líneas c, d y e) hasta la descarga. La figura también es alicable a flujo inicialmente suersónico, en que la resión inicialmente aumenta (difusor) y luego disminuye (tobera) a bajos caudales. Al alcanzarse el caudal crítico la elocidad en la segunda orción ya no aumenta sino que continúa disminuyendo, hasta la descarga, formando así un difusor suersónico-subsónico. En este caso no se resentan ondas de choque. Es imortante notar que, si se ha alcanzado M=1 en la garganta, el caudal máximo de la tobera conergente-diergente está fijado or la relación de resiones entre la entrada y la garganta, y no es afectado or la resión de descarga. Para demostrar esto formamos el roducto = y sustituímos las relaciones de flujo comresible ara eliminar M en función de /. Obtenemos así: = Esta exresión la odemos maximizar deriando con resecto a / e igualando a cero, con lo que obtenemos el alor de / que maximiza el caudal másico. Este resulta ser recisamente el alor crítico que corresonde a M=1. Luego, la tobera conergente-diergente, o simlemente conergente con una descarga suae (da=) al exterior, tiene un caudal másico máximo que se alcanza cuando la relación de resiones entradagarganta es la crítica. A artir de allí el caudal másico sólo uede aumentarse aumentando la densidad del fluído, es decir, la resión de entrada. La resión de descarga, asada la resión crítica en la garganta, no tiene efecto sobre el caudal másico. 6. DIAGRAMA Y CONO DE STODOLA 1 M 1 14

7 El caudal másico uede exresarse en función de la relación de resiones en lugar del número de Mach, obteniéndose: G = A En el esacio (G,, ), ara cada alor de, el caudal másico G es nulo cuando =. Al reducirse aumenta el caudal másico hasta que se alcanza la relación crítica de resiones y el caudal máximo. Para alores de resión de garganta aún inferiores, el caudal másico se mantiene constante. Esto forma un cono de generatrices rectas conocido como el cono de Stodola, y también uede reresentarse en el lano como una familia de curas (el diagrama de Stodola), con o como arámetros (Figura.5) 1 Fig.5 : Diagramas y cono de Stodola (Gannio) Notar que cuando se fija (= 1 en la figura) y se aumenta el caudal continúa aumentando en forma lineal al excederse la relación crítica. 7. RENDIMIENTO DE TOBERAS:Factor j Debido a la fricción del fluído con las aredes de la tobera la elocidad de descarga será ligeramente inferior en un factor ϕ, que usualmente se toma entre.97 y.99 ara toberas conergentes y entre.96 y.94 ara conergentes-diergentes or las mayores elocidades alcanzadas (y or ende mayores érdidas). La Figura.6 ilustra la exansión en una tobera en el lano i-s: 15

8 Fig.6: Tobera con érdidas Esto uede interretarse de dos maneras: Para obtener la elocidad de descarga deseada con un salto entálico igual al isentróico o disonible, se debe exandir hasta una resión menor (unto ). Esto se debe a que arte de la energía cinética se conierte en calor or fricción, aumentando la temeratura y cancelando arte de la caída de entalía. Exandiendo hasta la resión dada la elocidad de descarga será menor (unto ) or las razones anteriores. En cualquier caso el efecto de la fricción es una érdida de resión de remanso, que asa a. El salto de entalía adiabático, desreciando la elocidad de entrada, es mientras que el salto real es or lo que el rendimiento es i = i ad = ( ϕ ) η = ϕ y las érdidas son i = ( 1 ϕ ) 8. DIFUSORES Para los difusores se emlea el mismo coeficiente ϕ, sólo que incrementando el alor de la elocidad de entrada. La Figura.7 ilustra la transformación: 16

9 Fig.7: Difusión en el lano i-s Nueamente, esto uede interretarse de dos maneras: Se requiere un mayor salto de entalía ara alcanzar la misma resión (unto ). Esto se debe a que arte de la energía cinética se conierte en calor or fricción, aumentando la temeratura y disminuyendo la densidad sin contribuir al aumento de resión. Con un salto de entalía dado se alcanza una menor resión (unto ), or la misma razón anterior. En cualquier caso se ierde arte de la resión de remanso. El salto de entalía adiabático, desreciando la elocidad de salida, es mientras que el salto real es or lo que el rendimiento es i = ( ) ϕ i ad = 1 ( ) η = ϕ y las érdidas son i = ( 1 ϕ ) 1 1. El diseño de difusores contemla muy esecialmente la osibilidad de que el fluído no ueda seguir el contorno de la ared or ser la diergencia demasiado alta, en cuyo caso el flujo se seara y el difusor se comorta como si la relación de áreas fuera mucho menor, alcanzando resiones mucho menores. En la Figura.8 se ilustran alores máximos recomendados de ángulos de aredes ara arios tios de difusores: Fig.8: Valores recomendados ara difusores (Smith) 17

Mecánica de Fluidos B 67.18

Mecánica de Fluidos B 67.18 Mecánica de Fluidos B 67.8 Exresiones útiles c v Ma c v h 0 h + 0 T ( ) + Ma ρ T 0 ρ 0 0 ρ ρ 0 ( ) + Ma 0 ( ) + Ma Ma : R T α asin T Ma velocidad del sonido ara gas ideal número de Mach ángulo del cono

Más detalles

PRINCIPIOS TERMODINÁMICOS. José Agüera Soriano

PRINCIPIOS TERMODINÁMICOS. José Agüera Soriano PRINCIPIOS TERMODINÁMICOS José Agüera Soriano 0 José Agüera Soriano 0 PRINCIPIOS TERMODINÁMICOS INTRODUCCIÓN CONCEPTOS PRELIMINARES PRIMER PRINCIPIO DE LA TERMODINÁMICA SEGUNDO PRINCIPIO DE LA TERMODINÁMICA

Más detalles

PRINCIPIOS TERMODINÁMICOS

PRINCIPIOS TERMODINÁMICOS PRINCIPIOS TERMODINÁMICOS PRINCIPIOS TERMODINÁMICOS INTRODUCCIÓN CONCEPTOS PRELIMINARES PRIMER PRINCIPIO DE LA TERMODINÁMICA SEGUNDO PRINCIPIO DE LA TERMODINÁMICA CÁLCULO DE LAS FUNCIONES DE ESTADO INTRODUCCIÓN

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS Mecánica de Fluidos I Examen 03011 Un deósito aislado térmicamente y de volumen inicial V 0) está lleno de aire a la

Más detalles

Fig. 8-2: sello de aro de goma

Fig. 8-2: sello de aro de goma Unidad 8 Juntas de estanqueidad, sellos laberínticos, curas de Fanno 1. Juntas de estanqueidad. En las turbomáquinas es necesario roeer mecanismos ara eitar o limitar la fuga del fluido de trabajo entre

Más detalles

VELOCIDAD DE PROPAGACION DE ONDAS SUPERFICIALES PLANAS

VELOCIDAD DE PROPAGACION DE ONDAS SUPERFICIALES PLANAS CI 4A HIDRAULICA DEPARTAMENTO DE INGENIERA CIIL Semestre Otoño 003 ELOCIDAD DE PROPAGACION DE ONDAS SUPERFICIALES PLANAS Consideremos un líquido en reoso con su suerficie libre a una distancia h de un

Más detalles

Coeficiente de fugacidad de CO 2

Coeficiente de fugacidad de CO 2 Química Física I Guía de Trabajos Prácticos Coeficiente de fugacidad de CO 2 OBJETIVO: Determinar el coeficiente de fugacidad de CO 2 en función de la resión y la temeratura Introducción: A temeratura

Más detalles

TEMA 8 Principios de la Termodinámica

TEMA 8 Principios de la Termodinámica Bases Físicas y Químicas del Medio Ambiente EMA 8 Princiios de la ermodinámica rabajo termodinámico Es la energía en tránsito entre dos o más cueros roducida or fuerzas alicadas Ejemlo: Émbolo con el que

Más detalles

Diversos tipos de toberas

Diversos tipos de toberas Diversos tipos de toberas Descarga de un gas ideal de un recipiente con alta presión a otro recipiente con baja presión Tobera convergente Si la descarga se realiza utilizando una tobera convergente entonces

Más detalles

5. MOVIMIENTO DE FLUIDOS: TOBERAS Y DIFUSORES

5. MOVIMIENTO DE FLUIDOS: TOBERAS Y DIFUSORES 5. MOVIMIENO DE FLUIDOS: OBERAS Y DIFUSORES 5. INRODUCCIÓN El propósito de este capitulo es describir los aspectos termodinámicos del moimiento de fluidos. En este estudio se tratará de la ariación de

Más detalles

El movimiento de un fluido puede ser descrito en términos de un flujo. El flujo de los fluidos puede ser de régimen estable o de régimen variable.

El movimiento de un fluido puede ser descrito en términos de un flujo. El flujo de los fluidos puede ser de régimen estable o de régimen variable. UNIVERIDAD TECNICA FEDERICO ANTA MARIA EDE VIÑA DEL MAR, JOE MIGUEL CARRERA 4 6. Dinámica de los fluidos: El moimiento de un fluido uede ser descrito en términos de un flujo. El flujo de los fluidos uede

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PRÁCTICA 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

Más detalles

SEGUNDA PRUEBA. 26 de febrero de 2010 INSTRUCCIONES. Esta prueba consiste en la resolución de un problema de tipo experimental

SEGUNDA PRUEBA. 26 de febrero de 2010 INSTRUCCIONES. Esta prueba consiste en la resolución de un problema de tipo experimental SEGUNDA PRUEBA 6 de febrero de 010 : INSTRUCCIONES Esta rueba consiste en la resolución de un roblema de tio exerimental Razona siemre tus lanteamientos No olvides oner tus aellidos, nombre y datos del

Más detalles

Tópico: Fluidos Tema: Estática de Fluidos Unidad Básica: Variación de la presión en un fluido en reposo.

Tópico: Fluidos Tema: Estática de Fluidos Unidad Básica: Variación de la presión en un fluido en reposo. Tóico: Fluidos Tema: Estática de Fluidos Unidad Básica: Variación de la resión en un fluido en reoso. Variación de la resión con la rofundidad en un fluido en reoso. Recordemos que un fluido ejerce fuerzas

Más detalles

Ondas de Choque en Toberas

Ondas de Choque en Toberas José Luis Rodríguez, Ph.D., Marzo del 004 1 Ondas de Choque en Toberas Características de una tobera conergente-diergente cuando se presentan las ondas de choque. Figura 1 Punto d: P E P B y se ha mantenido

Más detalles

TEMA 6: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 6: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TECNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 6: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la arte de la física

Más detalles

Física II. 1 Fluidos. 2 Movimiento Armónico. 3 Ondas Mecánicas. 4 Superposición de Ondas. 5 Sonido. 6 Calor. 7 Propiedades Térmicas de la Materia

Física II. 1 Fluidos. 2 Movimiento Armónico. 3 Ondas Mecánicas. 4 Superposición de Ondas. 5 Sonido. 6 Calor. 7 Propiedades Térmicas de la Materia Fluidos Física II Moimiento Armónico 3 Ondas Mecánicas 4 Suerosición de Ondas 5 Sonido 6 Calor 7 Proiedades Térmicas de la Materia 8 Primera Ley de la Termodinámica Fluidos Presión Un fluido en reoso esta

Más detalles

Termodinámica y Termotecnia

Termodinámica y Termotecnia Termodinámica y Termotecnia Tema 05. Flujo Compresible Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

PRIMER PARCIAL DE FÍSICA 4 - RESUELTO TERMODINÁMICA - 11/05/2013

PRIMER PARCIAL DE FÍSICA 4 - RESUELTO TERMODINÁMICA - 11/05/2013 PRIMER PARCIAL DE FÍSICA 4 - RESUELO ERMODINÁMICA - 11/05/013 1. Una máquina térmica utiliza una banda elástica cuya ecuación de estado es J = αl, con J la tensión, L la longitud, α una constante y la

Más detalles

XII.- FLUJO COMPRESIBLE

XII.- FLUJO COMPRESIBLE XII.- FLUJO COMPRESIBLE XII..- RELACIONES ENTRE EL COEFICIENTE ADIABÁTICO Y LA VELOCIDAD DEL SONIDO EN UN FLUIDO COMPRESIBLE Si en un fluido se origina una erturbación, la velocidad de avance del frente

Más detalles

TEMA 2 Principios de la Termodinámica

TEMA 2 Principios de la Termodinámica Bases Físicas y Químicas del Medio Ambiente EMA 2 Princiios de la ermodinámica Princiio cero de la termodinámica Si dos sistemas están en equilibrio térmico con un tercero, están en equilibrio térmico

Más detalles

2 m/s Cuerpo final: 60 kg. Denominando, por ejemplo, como a al que se dirige de izquierda a derecha: m =

2 m/s Cuerpo final: 60 kg. Denominando, por ejemplo, como a al que se dirige de izquierda a derecha: m = CAD DPTO MECÁNICA UNED UNED Curso de Acceso Directo Curso 998-99 Esaña (mañana) Mayo 999 Soluciones al examen de FUNDAMENTOS DE LA TECNOLOGIA - Un objeto de 0 kg de masa se deslaza sin rozamiento de izquierda

Más detalles

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 1: PRESIÓN. ECUACIÓN GENERAL DE LA HIDROSTÁTICA

UNIDAD 2 HIDRAÚLICA. GENERALIDADES. Capítulo 2 PRESIONES EN LOS LÍQUIDOS : HIDROSTATICA SECCIÓN 1: PRESIÓN. ECUACIÓN GENERAL DE LA HIDROSTÁTICA UNIDD HIDRÚLIC. GENERLIDDES Caítulo PRESIONES EN LOS LÍQUIDOS : HIDROSTTIC SECCIÓN : PRESIÓN. ECUCIÓN GENERL DE L HIDROSTÁTIC INTRODUCCIÓN La Hidrostática es la arte de la Hidráulica que estudia los líquidos

Más detalles

Sustancias puras. Diagramas de equilibrio en cuerpos puros. Ø características generales. Ø cambios de fase. Sólido Líquido. Presión. Gas.

Sustancias puras. Diagramas de equilibrio en cuerpos puros. Ø características generales. Ø cambios de fase. Sólido Líquido. Presión. Gas. Sustancias uras Presión Sólido Líquido Gas Ø características generales Vaor Ø cambios de fase Volumen Temeratura Sustancias Puras Sistema hidrostático: cualquier sistema de masa constante que ejerce sobre

Más detalles

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 1 Fricción en tuberías. Pérdidas de carga continuas

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 1 Fricción en tuberías. Pérdidas de carga continuas UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES Caítulo Fricción en tuberías. Pérdidas de carga continuas SECCIÓN : HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. INTRODUCCIÓN La Hidrodinámica estudia los fluidos

Más detalles

TEMA 7: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

TEMA 7: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 7: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se

Más detalles

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 4: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se

Más detalles

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE Auntes 3 TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE 3.. El rinciio de estado El rinciio de estado informa de la cantidad de roiedades indeendientes necesarias ara esecificar el estado

Más detalles

Evolución 3-4 : Cámara de combustión

Evolución 3-4 : Cámara de combustión Evolución 3-4 : Cámara de combustión En la cámara de combustión es donde se inyecta una cantidad de combustible en la unidad de tiempo, c, al aire comprimido por el compresor y se produce una combustión

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 4. Aplicaciones del primer principio

TERMODINÁMICA FUNDAMENTAL. TEMA 4. Aplicaciones del primer principio ERMODINÁMICA FUNDAMENAL EMA 4. Alicaciones del rimer rinciio 1. Ecuación energética de estado. Proiedades energéticas 1.1. Ecuación energética La energía interna, al ser función de estado, deende de, y.

Más detalles

1 Generalidades de Transferencia de Calor. Conducción en régimen estacionario

1 Generalidades de Transferencia de Calor. Conducción en régimen estacionario 1 Generalidades de Transferencia de Calor. Conducción en régimen estacionario 1.1 Introducción 1.1.1 Interés y modos de transferencia. La transferencia de calor en ingeniería se ocua de los roblemas asociados

Más detalles

PRÁCTICA 9. DISTRIBUCIÓN DE LA PRESIÓN EN TOBERAS CONVERGENTES Y DIVERGENTES

PRÁCTICA 9. DISTRIBUCIÓN DE LA PRESIÓN EN TOBERAS CONVERGENTES Y DIVERGENTES PRÁCTICA 9. DISTRIBUCIÓN DE LA PRESIÓN EN TOBERAS CONVERGENTES Y DIVERGENTES OBJETIVO GENERAL: Familiarizar al alumno con el análisis, operación y funcionamiento de toberas para flujo compresible. OBJETIVOS

Más detalles

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA T TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 4: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 7. Potenciales termodinámicos

TERMODINÁMICA FUNDAMENTAL. TEMA 7. Potenciales termodinámicos ERMODINÁMICA FUNDAMENAL EMA 7. Potenciales termodinámicos 1. Potenciales termodinámicos 1.1. Potenciales termodinámicos en sistemas simles P Hasta el momento hemos visto dos funciones energéticas de estado:

Más detalles

Explique porque un amperímetro IDEAL, (como instrumento de medida de corriente eléctrica en un circuito) debe tener una resistencia interna de CERO Ω?

Explique porque un amperímetro IDEAL, (como instrumento de medida de corriente eléctrica en un circuito) debe tener una resistencia interna de CERO Ω? :: NTODUCCÓN [8.1] Medir es comarar todo objeto o ariable mensurable de interés con el resectio atrón de medida; ero en todo sistema: natural, físico, biológico, industrial, químico ó de cualquier naturaleza

Más detalles

TEMA 2: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA : TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se

Más detalles

ACCEDE - INGENIERÍA AERONÁUTICA PROBLEMA Nº 3

ACCEDE - INGENIERÍA AERONÁUTICA PROBLEMA Nº 3 MINISTERIO DE EDUCCIÓN - RGENTIN CCEDE - INGENIERÍ ERONÁUTIC PROBLEM Nº 3 SITUCIÓN Una cámara de vacío aspira aire de la atmósfera a través de una tobera convergente-divergente, como se muestra en la figura

Más detalles

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante.

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Líneas de Fanno. El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Los principios que rigen el estudio de las curvas de Fanno se derivan de

Más detalles

MAQUÍNAS ELÉCTRICAS Tobera

MAQUÍNAS ELÉCTRICAS Tobera MAQUÍNAS ELÉCTRICAS Tobera Una tobera es una restricción o disminución de sección (garganta) precedida de una sección convergente y seguida de otra divergente o difusor. Se supone que el proceso de pasaje

Más detalles

CATALUÑA / SEPTIEMBRE 04. LOGSE SERIE 5/ FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 04. LOGSE SERIE 5/ FÍSICA / EXAMEN COMPLETO CATALUÑA / EPTIEMBE 04. LOGE EIE 5/ FÍICA EXAMEN COMPLETO esuela el roblema P1 y resonda a las cuestiones C1 y C. Escoja una de las ociones (A o B) y resuela el roblema P y resonda a las cuestiones C3

Más detalles

p ρ OBJETIVOS FLUJOS COMPRESIBLES ESTACIONARIOS Descripción de un GAS PERFECTO de dt = calor específico a volumen constante h C cte

p ρ OBJETIVOS FLUJOS COMPRESIBLES ESTACIONARIOS Descripción de un GAS PERFECTO de dt = calor específico a volumen constante h C cte FLUOS OMPRESIBLES ESTAIONARIOS Introdcción: Reaso de concetos de termodinámica. aracterísticas de la dinámica de gases comresibles. OBETIVOS - Presentar algnas características de los fljos comresibles.

Más detalles

6 MECANICA DE FLUIDOS

6 MECANICA DE FLUIDOS 04 6 MECANICA DE FLUIDOS 6. Estática de fluidos: La materia fundamentalmente se divide en sólidos y fluidos, y esta última en gases y líquidos. Un fluido es arte de un estado de la materia la cual no tiene

Más detalles

Aspectos salientes de flujos Compresibles. Aspectos salientes de flujos Compresibles. Cambios en la densidad en función del número de Mach.

Aspectos salientes de flujos Compresibles. Aspectos salientes de flujos Compresibles. Cambios en la densidad en función del número de Mach. FLUOS OMPRESIBLES ESTAIONARIOS Introdcción: Reaso de concetos de termodinámica. aracterísticas de la dinámica de gases comresibles. OBETIVOS - Presentar algnas características de los fljos comresibles.

Más detalles

OPERACIONES UNITARIAS IV Clase introductoria

OPERACIONES UNITARIAS IV Clase introductoria Uniersidad de Los Andes Facultad de Ineniería Escuela de Ineniería Química Dto. de Oeraciones Unitarias y Proyectos OPERACIONES UNITARIAS IV Clase introductoria Prof. oana Castillo yoanacastillo@ula.e

Más detalles

II. HIDROSTÁTICA. Es la parte de la hidráulica que estudia los líquidos en reposo.

II. HIDROSTÁTICA. Es la parte de la hidráulica que estudia los líquidos en reposo. UNIVERIDAD POLITENIA DE ARTAENA EUELA TENIA UPERIOR DE INENIERIA ARONOMIA II. HIDROTÁTIA Es la arte de la hidráulica que estudia los líquidos en reoso. El cálculo de los emujes hidrostáticos ejercidos

Más detalles

OBJETIVOS CONTENIDO. L2-3.- Renovación de la carga. L2-3.- Renovación de la carga

OBJETIVOS CONTENIDO. L2-3.- Renovación de la carga. L2-3.- Renovación de la carga L2-3.- enovación de la carga OBJETIVOS Conocer los factores rinciales que afectan el roceso de renovación de la carga en MCIA Comrender los factores que condicionan el diseño de las válvulas Entender la

Más detalles

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K.

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K. Flujo de gases Si el cambio en la presión es menor a aproximadamente el 10% de la presión de entrada, las variaciones en peso específico tendrán un efecto insignificante. Cuando la caída de presión se

Más detalles

El modelo constitutivo Cam Clay. Informe de avance 2. Laboratorio de Mecánica de Suelos

El modelo constitutivo Cam Clay. Informe de avance 2. Laboratorio de Mecánica de Suelos El modelo constitutio am lay Informe de aance PROYETO DE TESIS: LIRIÓN DEL M LY PR LOS SUELOS DEL POSTPMPENO Osaldo Nicolás Ledesma Laboratorio de Mecánica de Suelos Laboratorio de Materiales y Estructuras

Más detalles

TEMA 11 : ESPACIO AFÍN

TEMA 11 : ESPACIO AFÍN TEMA : ESPACIO AFÍN. Ecuaciones de la recta en el esacio Al igual ue en el lano ( R ), en el esacio ( R ), una recta ueda determinada or un unto P(x,y,z ) y un ector director V = (,, ) no nulo. Para ue

Más detalles

Aplicamos la ecuación de la ley completa o combinada de los gases: Atendiendo a los datos que nos da el problema p 2. y T 2.

Aplicamos la ecuación de la ley completa o combinada de los gases: Atendiendo a los datos que nos da el problema p 2. y T 2. Tema 2 Leyes fundamentales de la química OPCIÓN A 1. Tenemos un gas encerrado en un reciiente con un émbolo móvil. Si dulicamos la resión del mismo y reducimos la temeratura una décima arte, cómo se modifica

Más detalles

Dinámica de Fluidos. 4.1 Dinámica elemental

Dinámica de Fluidos. 4.1 Dinámica elemental 43 Caítulo 4 Dinámica de Fluidos 41 Dinámica elemental Se analizará en ésta sección la ecuación de cantidad de movimiento lineal ara una artícula fluida que se deslaza sobre una línea de corriente Suondremos

Más detalles

Dinámica de los Gases I - 1er Parcial Resuelto. Ec. IV.2.3. Eso es así porque el caudal a lo largo del túnel se mantiene constante.

Dinámica de los Gases I - 1er Parcial Resuelto. Ec. IV.2.3. Eso es así porque el caudal a lo largo del túnel se mantiene constante. inámica de los Gases I - er Parcial 03 - Resuelto Problema ( punto): Explicar como deberá ser el área en la garganta del difusor de un túnel supersónico, con respecto al área de garganta de la tobera,

Más detalles

UNIDAD 6 Turbinas de vapor. Operación. Eficiencias. Pérdidas 1. Clasificación Las turbinas de vapor son turbomáquinas en las que sólo se efectúa el

UNIDAD 6 Turbinas de vapor. Operación. Eficiencias. Pérdidas 1. Clasificación Las turbinas de vapor son turbomáquinas en las que sólo se efectúa el UNIDAD 6 Turbinas de vapor. Operación. Eficiencias. Pérdidas. Clasificación Las turbinas de vapor son turbomáquinas en las que sólo se efectúa el proceso de expansión. Si bien existen turbinas a vapor

Más detalles

Tema 1. Cinemática de partícula

Tema 1. Cinemática de partícula Tema 1. Cinemática de artícula Cinemática de artícula Tema 1 1. Introducción. Vectores osición, velocidad y aceleración 3. 4. Método gráfico en movimiento rectilíneo 5. de varias artículas Mecánica II

Más detalles

Unidad didáctica 1: Fundamentos físicos del sonido

Unidad didáctica 1: Fundamentos físicos del sonido DIEGO PABLO RUIZ PADILLO Profesor del Deartamento de Físia Aliada de la Universidad de Granada. Coordinador del Laboratorio de Aústia y Físia Ambiental de la Universidad de Granada. Tel: 958 44161 e-mail:

Más detalles

Flujo Compresible. h 0 = h + V 2 2. Es el estado alcanzado despues de una desaceleración hasta velocidad cero, pero con irreversibilidades asociadas.

Flujo Compresible. h 0 = h + V 2 2. Es el estado alcanzado despues de una desaceleración hasta velocidad cero, pero con irreversibilidades asociadas. José Luis odríguez, Ph.D., Marzo del 004 1 Flujo Compresible 1 Propiedades de Estancamiento: 1.1 Estado de estancamiento isoentrópico Es el estado que alcanzaría un uido en movimiento si experimenta una

Más detalles

INRODUCCIÓN A LA FÍSICA AMBIENTAL (IFA).

INRODUCCIÓN A LA FÍSICA AMBIENTAL (IFA). INRODUCCIÓN A LA FÍSICA AMBINTAL (IFA). (Gruo del Prof. Miguel RAMOS). Hoja de roblemas resueltos Tema. Tema.- Introducción y concetos básicos.. Se conectan dos bloques or medio de una cuerda ligera que

Más detalles

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas 1. Turbina radial 1.1 General La turbina radial es físicamente muy similar al compresor centrífugo. La Figura 5.1 muestra

Más detalles

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

3er. Parcial FS /07/2016 Pag. 1 de 6

3er. Parcial FS /07/2016 Pag. 1 de 6 er. Parcial FS-111 1/7/16 Pag. 1 de 6 UNIERSIDD SIMON OLIR Deartamento de Física FS-111 er. Parcial - 1/7/16 NOMRE: RNET: Sección: PRTE I: En las siguientes 8 reguntas de selección escoja la resuesta correcta

Más detalles

TERMODINÁMICA TÉCNICA

TERMODINÁMICA TÉCNICA TERMODINÁMICA TÉCNICA Pedro Fernández Díez I.- SISTEMAS TERMODINÁMICOS I.1.- INTRODUCCIÓN La Termodinámica, en general, tiene or objeto el estudio de las leyes de transferencia de calor en sistemas en

Más detalles

Termodinámica y Mecánica de Fluidos Grados en Ingeniería Marina y Marítima. MF. T3.- Dinámica de Fluidos

Termodinámica y Mecánica de Fluidos Grados en Ingeniería Marina y Marítima. MF. T3.- Dinámica de Fluidos Termodinámica y Mecánica de Fluidos Grados en Ingeniería Marina y Marítima MF. T.- Dinámica de Fluidos Las trasarencias son el material de aoyo del rofesor ara imartir la clase. No son auntes de la asignatura.

Más detalles

TEMA 4: CIRCULACIÓN DE FLUIDOS COMPRESIBLES

TEMA 4: CIRCULACIÓN DE FLUIDOS COMPRESIBLES TEM 4: CIRCULCIÓN E FLUIOS COMPRESIBLES Índice TEM 4: CIRCULCIÓN E FLUIOS COMPRESIBLES... 1 1. Consideraciones revias... 2 2. Velocidad de una onda sonora. Número Mach... 4 3. Flujo de gas isotermo con

Más detalles

Se cumplen las condiciones para aplicar Bernouilli (fluido no compresible, estado estacionario, T constante, proceso adiabático).

Se cumplen las condiciones para aplicar Bernouilli (fluido no compresible, estado estacionario, T constante, proceso adiabático). Tema 4: Princiios básicos lujo de luidos PROBLEMAS: Tema 4. En una tubería horizontal de in de diámetro interior luye leche de densidad relativa,0 a razón de 00 L/min a una resión de 0,7 kg/cm. Si la tubería

Más detalles

INDICE. Capitulo I. Introducción

INDICE. Capitulo I. Introducción INDICE Capitulo I. Introducción I 1.1. La mecánica de fluidos en la ingeniera 1 1.2. Los fluidos y la hipótesis del continuo 22 1.2.1. El modelo del continuo 4 1.3. Propiedades de los fluidos 1.3.1. Densidad,

Más detalles

Principio de la Termodinámica

Principio de la Termodinámica ema.- Primer P Princiio de la ermodinámica..- El rabajo en la Mecánica. rabajo realizado or una fuerza externa F, que actúa sobre los límites del sistema, cuando su unto de alicación exerimenta un deslazamiento

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Termodinámica. Problemas resueltos de Física. Universidad Tecnológica Nacional Facultad Regional Gral. Pacheco

Termodinámica. Problemas resueltos de Física. Universidad Tecnológica Nacional Facultad Regional Gral. Pacheco Universidad ecnológica Nacional ermodinámica POEM. En una transformación a resión constante (resión atmosférica) el volumen de un gas varía en 0, litros. Se le suministran,8 cal.. En una transformación

Más detalles

FUNDAMENTOS. VISCOSIDAD/

FUNDAMENTOS. VISCOSIDAD/ FUNDAMENTOS. VISCOSIDAD/ Versión.0/ MODULO 2/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ FUNDAMENTO VISCOSIDAD.0/ M2/ FISICA Definición de Viscosidad La viscosidad es una roiedad tanto de líquidos como de gases y refiere

Más detalles

Modelo integral del accionamiento neumático para un robot flexible industrial

Modelo integral del accionamiento neumático para un robot flexible industrial Modelo integral del accionamiento neumático ara un robot flexible industrial Kiyama Miramontes Fernando Francisco y Vargas Soto José Emilio ( ) Centro Regional de Otimización y Desarrollo de Equio Homero

Más detalles

Ondas elásticas.golpe de ariete. Flujo subsónico y supersónico.

Ondas elásticas.golpe de ariete. Flujo subsónico y supersónico. FLUJO COMPRESIBLE Ondas elásticas.golpe de ariete. Flujo subsónico y supersónico. ONDAS ELASTICAS Si se produce una perturbación en un fluido ésta se manifiesta como una variación de presión que se propaga

Más detalles

MOTORES COHETE. Curso 5º A2 y B 2009/10. Juan Manuel Tizón Pulido

MOTORES COHETE. Curso 5º A2 y B 2009/10. Juan Manuel Tizón Pulido MOTORES COHETE Clases Prácticas Curso 5º A2 y B 2009/10 Juan Manuel Tizón Pulido jmtizon@aero.um.es htt://webserver.dmt.um.es/zoe/dmt/members/jmtizon/motores-cohete-1 Motores Cohete: Caítulo 2 ACTUACIONES

Más detalles

du dv dp dt dh dp dv dt dp dt dv dt dt p 2 p José Agüera Soriano

du dv dp dt dh dp dv dt dp dt dv dt dt p 2 p José Agüera Soriano du d d d dh d d d c c d d d d h h ( ) c d d d d s s c ( ) d 0 d d d d d d d José Agüera Soriano 0 CÁLCULO DE LAS FUNCIONES DE ESADO GASES PERFECOS CON CAPACIDADES CALORÍFICAS VARIABLES VAPOR DE AGUA DIAGRAMA

Más detalles

Termodinámica Técnica Fundamentos

Termodinámica Técnica Fundamentos ermodinámica écnica Fundamentos Alexánder Gómez Caítulo 6.: Ciclos de otencia con turbinas de gas Bogotá, D.C., 0 6.0 Introducción 6. Ciclos Joule-Brayton ideal y real 6. Análisis termodinámico del ciclo

Más detalles

ECUACIONES FUNDAMENTALES DE UN FLUJO. José Agüera Soriano 2011 1

ECUACIONES FUNDAMENTALES DE UN FLUJO. José Agüera Soriano 2011 1 ECUACIONES FUNDAMENTALES DE UN FLUJO José Agüera Soriano 0 José Agüera Soriano 0 ECUACIONES FUNDAMENTALES DE UN FLUJO ECUACIÓN DE CONTINUIDAD ECUACIÓN DE LA ENERGÍA ECUACIÓN CANTIDAD DE MOIMIENTO APLICACIONES

Más detalles

CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS

CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS VIII Congreso Nacional de Ciencias Exloraciones fuera y dentro del aula 7 y 8 de agosto, 006 Universidad Earth, Guácimo, Limón, Costa Rica CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS Ing. Carlos E.

Más detalles

Transferencia de Energía. Grupo ª

Transferencia de Energía. Grupo ª Transferencia de Energía 1547 Grupo 3. 014-08-13 4ª 014-08-13 Contenido Balance de Energía Total; Balance de Energía Mecánica; Balance de Energía Térmica. dv D Dt ct q EG g p g c D p p : g Dt gc D c T

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVERSIDAD NAIONAL EXPERIMENTAL POLITENIA ANTONIO JOSÉ DE SURE VIERRETORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMIA ONTROL DE PROESOS QUÍMIOS Prof: Ing. (MSc). Juan Enrique Rodríguez. Octubre,

Más detalles

TOBERAS Y DIFUSORES. José Agüera Soriano

TOBERAS Y DIFUSORES. José Agüera Soriano TOBERAS Y DIFUSORES José Agüera Soriano 0 José Agüera Soriano 0 VELOCIDAD DEL SONIDO EN UN GAS κ s d d s a κ s d d s olumen eseífio κ s oefiiente de omresibilidad isoentróio d d s a K K gas erfeto a R

Más detalles

Palabras Claves: Viga Tirante Análisis - Dimensionado

Palabras Claves: Viga Tirante Análisis - Dimensionado Bellagio: a Viga Atirantada a Viga Atirantada Carlos Bellagio cbellg@arnet.com.ar Resumen En este trabajo nos roonemos analizar el comortamiento de la viga atirantada, estructura constituida or una viga

Más detalles

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 3 Modelos de problemas en tuberías

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 3 Modelos de problemas en tuberías UNIDAD 3 HIDRODINÁMIA. PRINIPIOS FUNDAMENTALES aítulo 3 Modelos de roblemas en tuberías SEIÓN : ESTUDIO DE LA Y LA EN TUERIA UNIA eamos como va la y la L.P en algunos casos en el transorte de un líquido

Más detalles

BALANCE MACROSCOPICO DE ENERGIA MECANICA

BALANCE MACROSCOPICO DE ENERGIA MECANICA BALANCE MACROCOPICO DE ENERGIA MECANICA -Existen numerosas aplicaciones de interés práctico donde resulta más importante ealuar magnitudes inculadas con la energía del sistema (por ejemplo la potencia

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

Sistema es la porción aislada del Universo para su estudio. 2. Estado: El estado de un cuerpo gaseoso queda definido por tres magnitudes:

Sistema es la porción aislada del Universo para su estudio. 2. Estado: El estado de un cuerpo gaseoso queda definido por tres magnitudes: . Sistema: CONCEPOS BÁSICOS DE ERMODINÁMIC Sistema es la orción aislada del Unierso ara su estudio.. Estado: El estado de un cuero gaseoso queda definido or tres magnitudes: Presión emeratura absoluta

Más detalles

Cálculo II 8 de junio de 2016

Cálculo II 8 de junio de 2016 Cálculo II 8 de junio de 6 Publicación de notas: 3-6-6. Revisión del examen: 6-6-6. Problema (3 untos). Se de ne la siguiente función en R : f (x; y) x 4 + y 4 4xy: (a) Calcula la derivada de f en el unto

Más detalles

ESTÁTICA DE LOS FLUIDOS. José Agüera Soriano

ESTÁTICA DE LOS FLUIDOS. José Agüera Soriano ESTÁTI DE LOS FLUIDOS José güera Soriano 0 ESTÁTI DE LOS FLUIDOS EQUILIBRIO DE UN LÍQUIDO LÍQUIDO EN REPOSO LÍQUIDO IRNDO LREDEDOR DE EJE VERTIL LÍQUIDDO UNIFORMEMENTE ELERDO MNÓMETROS FUERZ SOBRE UN PRED

Más detalles

MAQUINAS HIDRAULICAS ING. NELVER J. ESCALANTE ESPINOZA 1 ING. NELVER J. ESCALANTE ESPINOZA

MAQUINAS HIDRAULICAS ING. NELVER J. ESCALANTE ESPINOZA 1 ING. NELVER J. ESCALANTE ESPINOZA MAQUINAS HIDRAULICAS ING. NELVER J. ESCALANTE ESPINOZA 1 ING. NELVER J. ESCALANTE ESPINOZA TURBOMÁQUINAS HIDRAULICAS 1) DEFINICION Es un artefacto ó maquina en el cual se recibe o se transfiere energía

Más detalles

Técnicas de medición de flujo: Medidor de Flujo Sónico Mediante Agujeros Calibrados

Técnicas de medición de flujo: Medidor de Flujo Sónico Mediante Agujeros Calibrados Técnicas de medición de flujo: Medidor de Flujo Sónico Mediante Agujeros Calibrados Fecha: Septiembre 2 de 2016 Hora: 16:00-18:00 Aula: 3-101 Edisson Steven Castaño Mesa Contenido Objetivo Historia y Fundamentos

Más detalles

SIGNOS DEL CALOR Y EL TRABAJO EN TERMODINÁMICA

SIGNOS DEL CALOR Y EL TRABAJO EN TERMODINÁMICA El maíz en la olla es un sistema termodinámico. Si se agrega calor al sistema, éste efectúa trabajo sobre el entorno ara levantar la taa de la olla. figura 7 ENTORNO ENTORNO ENTORNO Q > W = Q < W = Q =

Más detalles

Matemáticas I: C2-2015

Matemáticas I: C2-2015 Matemáticas : - 5 Problema.Sobre una determinada montaña, la elevación z arriba de un unto (x; ) en el lano XOY a nivel del mar es de z :x :4, donde x, z están en metros. El eje x ositivo señala hacia

Más detalles

10. GASES Y FLUIDOS REALES

10. GASES Y FLUIDOS REALES 10. GASES Y FLUIDOS REALES En caítulos anteriores estudiamos las consecuencias de la Primera y Segunda Ley y los métodos analíticos ara alicar la ermodinámica a sistemas físicos. De ahora en más usaremos

Más detalles

Mecánica Teórica Curso Boletín 7

Mecánica Teórica Curso Boletín 7 Mecánica Teórica Curso 017-18 Boletín 7 Física Teórica, Universidad de Sevilla 7 de diciembre de 017 1.- Para una artícula libre con Hamiltoniano: H = H(q, ) = m, donde m es la masa de la artícula, obtener

Más detalles

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO 1 10.1. INTRODUCCIÓN Qué es el análisis C-V-B? Modelo que estudia la relación existente entre costes, recios, volúmenes de venta y beneficios, tomando ara el análisis

Más detalles

TEMA 3 (Parte II) Dinámica de fluidos viscosos

TEMA 3 (Parte II) Dinámica de fluidos viscosos TEMA 3 (arte II) Dinámica de fluidos viscosos B E db dm de dm e db t C db db r r de r r ( d ) ( ds) e( d ) e( ds) dm dm t S C S rimera ley de la Termodinámica: Energías específicas: de - Energía cinética

Más detalles

Velocidad de descarga

Velocidad de descarga Velocidad de descarga Dr. Guillermo Becerra Córdoa Uniersidad utónoma Chapingo Dpto. de Preparatoria grícola Área de Física Profesor-Inestigador 59595500 ext. 539 E-mail: gllrmbecerra@yahoo.com Km. 38.5

Más detalles

Física de semiconductores. El diodo

Física de semiconductores. El diodo Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo - Clasificación de los materiales. Teoría del electrón libre y teoría de bandas. Semiconductores extrínsecos e intrínsecos.

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles