Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r,"

Transcripción

1 egundo Examen Parial Cálulo etorial Abril de 16 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono elular. Toda respuesta debe estar justifiada matemátiamente. Tiempo máximo 1 hora y 5 minutos. Nombre: Código: 1. Considere la superfiie dada por x = r os θ, y = r sen θ, z = r, para r y θ π. i. Enuentre la reta normal a la superfiie en el punto (1,, 1). ii. Enuentre el plano tangente a la superfiie en el punto (1,, 1). iii. Calule el área la superfiie. iv. Calule F d, para F(x, y, x) = x, x + y, x, on la orientaión determinada por la normal exterior. (1 puntos). Considere la región del plano limitada por las urvas xy = 1, xy = 4, y las retas x = 1 y x =. ea T : R R la transformaión T (u, v) = (v, u/v). i. ibuje la región en el plano x-y y la región o en el plano u-v tal que T ( o ) =. ii. Use lo anterior para alular la integral x y da.. Halle la omponente z del entro de masa un hemisferio sólido homogéneo (de densidad onstante) y de radio en R, definido por x + y + z 4 y z. 4. Responda falso o verdadero, justifiando matemátiamente su respuesta: i. El área de la valla dada por las euaiones x = y y z = e x, para x 1, es igual a e. ii. i F = 1, z, y y es el amino que va en linea reta de (,, ) a (1,, ) y luego en linea reta de (1,, ) a (1, 1, ), entones F d s = 1. epartamento de Matemátias Universidad de los Andes

2 egundo Examen Parial Cálulo etorial Abril de 16 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono elular. Toda respuesta debe estar justifiada matemátiamente. Tiempo máximo 1 hora y 5 minutos. Nombre: Código: 1. Considere la superfiie dada por x = r sen θ, y = r os θ, z = r, para r y θ π. i. Enuentre la reta normal a la superfiie en el punto (, 1, 1). ii. Enuentre el plano tangente a la superfiie en el punto (, 1, 1). iii. Calule el área la superfiie. iv. Calule F d, para F(x, y, x) = y, x, z, on la orientaión determinada por la normal exterior. (1 puntos). Considere la región del plano limitada por las urvas xy = 1, xy =, y las retas x = y x = 4. ea T : R R la transformaión T (u, v) = (v, u/v). i. ibuje la región en el plano x-y y la región o en el plano u-v tal que T ( o ) =. ii. Use lo anterior para alular la integral x y da.. Halle la omponente z del entro de masa de un hemisferio sólido homogéneo (de densidad onstante) y de radio 4 en R, definido por x + y + z 16 y z. 4. Responda falso o verdadero, justifiando matemátiamente su respuesta: i. El área de la valla dada por las euaiones x = y y z = sen x, para x π, es igual a π. ii. i F = 1, z, y y es el amino que va en linea reta de (,, ) a (1,, ) y luego en linea reta de (1,, ) a (1, 1, ), entones F d s =. epartamento de Matemátias Universidad de los Andes

3 Parial II Cálulo etorial oluión 1. Tema A. i. Para enontrar la euaión vetorial de la reta normal a la superfiie dada por x = r os θ, y = r sen θ y z = r, en el punto (1,, 1), debemos alular un vetor normal a la superfiie en ese punto, es deir uando r = 1 y θ =. Para ello alulamos el produto ruz de los vetores T r = os θ, sen θ, 1 y T θ = r sen θ, r os θ,, obteniendo n(r, θ) = r os θ, r sen θ, r. Así, n(1, ) = 1,, 1, luego la euaión de la reta es x = 1,, 1 + t 1,, 1. ii. La euaión del plano tangente a la superfiie en el punto (1,, 1), según lo heho anteriormente, está dada por n ( x x o ) =, es deir luego x = z. iii. El área la superfiie es A() = 1,, 1 x 1, y, z 1 =, ( r y θ π). Entones, A() = r drdθ = iv. Finalmente, F d = F(Φ(r, θ)) T θ T r drdθ = T r T θ drdθ, donde es el dominio de la parametrizaión rdrdθ = A() = 4 π. π r (1 + sen θ os θ os θ)drdθ = 16π. i. Para enontrar la euaión vetorial de la reta normal a la superfiie dada por x = r sen θ, y = r os θ y z = r, en el punto (, 1, 1), debemos alular un vetor normal a la superfiie en ese punto, es deir uando r = 1 y θ =. Para ello alulamos el produto ruz de los vetores T r = sen θ, os θ, r y T θ = r os θ, r sen θ,, obteniendo n(r, θ) = r sen θ, r os θ, r. Así, n(1, ) =,, 1, luego la euaión de la reta es x =, 1, 1 + t,, 1. ii. La euaión del plano tangente a la superfiie en el punto (1,, 1), según lo heho anteriormente, está dada por n ( x x o ) =, es deir luego y z = 1.,, 1 x, y 1, z 1 =,

4 iii. El área la superfiie es A() = ( r y θ π). Entones, A() = T r T θ drdθ, donde es el dominio de la parametrizaión r 4r + 1drdθ = π r 4r + 1dr = π ( ) iv. Finalmente, F d = F(Φ(r, θ)) T r T θ drdθ = π r drdθ = 8π.. Tema A. i. ea la región del plano limitada por las urvas xy = 1, xy = 4, y las retas x = 1 y x = y T : R R la transformaión T (u, v) = (v, u/v) = (x, y). La región en el plano x-y y la región o en el plano u-v tal que T ( o ) = son las mostradas en la siguiente gráfia: ii. El Jaobiano de la transformaión x = v, y = u (x,y) v es (u,v) = 1 v, así que 4 x y da = uv du dv = uv du dv = 45 o 1 4. i. ea la región del plano limitada por las urvas xy = 1, xy =, y las retas x = y x = 4 y T : R R la transformaión T (u, v) = (v, u/v) = (x, y). La región en el plano x-y y la región o en el plano u-v tal que T ( o ) = son las mostradas en la siguiente gráfia: 1 ii. El Jaobiano de la transformaión x = v, y = u (x,y) v es (u,v) = 1 v, así que 4 x y da = uv du dv = uv du dv = 9. o 1

5 . Tema A. La omponente z del entro de masa un hemisferio sólido homogéneo, de densidad onstante k y de radio en R, definido por x + y + z 4 y z, se alula omo z = k z d, donde M M = 16 πk es la masa del sólido. Como π π π k z d = k z d = k ρ os φ senφ dρdθdφ = πk ρ os φ senφ dρdφ = 4kπ, tenemos que z = 4. La omponente z del entro de masa un hemisferio sólido homogéneo, de densidad onstante k y de radio en R, definido por x + y + z 16 y z, se alula omo z = k z d, donde M M = 18 πk es la masa del sólido. Como k z d = k tenemos que z =. z d = k π π 4 ρ os φ senφ dρdθdφ = πk π 4 ρ os φ senφ dρdφ = k 18 π, 4. Tema A. i. Falso. El área de la valla dada por las euaiones x = y y z = e x, para x 1, se alula on la integral de linea A = z ds, done es el amino plano dado por la euaión x = y para x 1, que podemos parametrizar on σ(t) = t, t, donde t [, 1]. Entones 1 A = z ds = e t σ (t) dt = 1 e t dt = (e 1). ii. erdadero. Como el ampo F = 1, z, y es el gradiente de la funión f(x, y, z) = x + yz, la integral de linea solo depende de los puntos extremos: (,, ) y (1, 1, ). En efeto F d s = f(1, 1, ) f(,, ) = 1. i. erdadero. El área de la valla dada por las euaiones x = y y z = sen x, para x π, se alula on la integral de linea A = z ds, done es el amino plano dado por la euaión x = y para x π, que podemos parametrizar on σ(t) = t, t, donde t [, π]. Entones 1 A = z ds = sen t σ (t) dt = 1 π sen tdt =. ii. Falso. Como el ampo F = 1, z, y es el gradiente de la funión f(x, y, z) = x + yz, la integral de linea solo depende de los puntos extremos: (,, ) y (1, 1, ). En efeto F d s = f(1, 1, ) f(,, ) = 1.

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017 Examen Final Tema A Cálulo Vetorial Mayo 3 de 17 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral xamen final de Cálulo Integral 6 de septiembre de 1 (Soluiones) Cuestiones C 1 Apliando el teorema 1.15 y definiión 1. de los apuntes se onluye inmediatamente que el valor de la integral oinide on la longitud

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálulo diferenial e integral 4 Guía 3 Los ejeriios marados on una E deberán entregarse por equipos el día 15 de abril al iniio de lase! 1. Sean : [a, b] R n una urva de lase C 1 y on (t) 0 para todo t

Más detalles

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5

Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Cálculo Vectorial Tarea 5 Integrales Múltiples álulo Vetorial Tarea 5 1. Evalúe las siguientes integrales: 1.1 0 1 4 ( 1 8 dd 1. 1 0 sin 1. 0 0 (Res. 57 ( 1 dd (Res. 0/ (1 os (Res. dd 1 1 1.4 os( sen( 0 (Res. dd 7 9. Utilie una

Más detalles

RESPUESTAS A LOS EJERCICIOS

RESPUESTAS A LOS EJERCICIOS RESPUESTAS A LOS EJERCICIOS UNIDAD. DERIVADAS DE FUNCIONES TRASCENDENTES os sen. v ( ) Ejeriios 7. t'( ) os (w ) (6sen w + (w )os w)). s'( w) senw os. ' sen. h'( t) sent 6. f '( ) sen os Ejeriios ost +.

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan FÍSICA TEÓRICA 1 2do. Cuatrimestre 2015 Fresnel relativista Guía 6, problema 3 Se trata de enontrar las ondas reflejadas y transmitidas en el sistema del laboratorio uando una onda plana inide sobre la

Más detalles

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1.

1. Use el Teorema de Green para calcular el área de la región del. plano xy que satisface las desigualdades y x, x y, 8xy 1. CÁLCULO VECTORIAL (54) SEGUNO PARCIAL (%) 9//9 EPARTAMENTO E APLICAA Use el Teorema de Green para calcular el área de la región del plano xy que satisface las desigualdades y x, x y, 8xy Halle el área

Más detalles

OPCIÓN A. Problema A.1. Obtener razonadamente: a) dx. (3 puntos).

OPCIÓN A. Problema A.1. Obtener razonadamente: a) dx. (3 puntos). OPCIÓN A Problema A.. Obtener razonadamente: a) d ( puntos). b) d 5 8 (4 puntos). El numerador es de grado superior al denominador. Hay que realizar la división: 5 8 d d d, 5 8 ) d ( puntos). Integral

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Teoria y Cuestiones. [a n cos (nx)+b n sin (nx)]

Teoria y Cuestiones. [a n cos (nx)+b n sin (nx)] Ingeniero Industrial Asignatura: Transformadas Integrales y Euaiones en Derivadas Pariales Convoatoria de Febrero del 2004 Teoria y Cuestiones 1. Consideremos la funión ½ 0 si

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann.

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann. .7. Integral de superfície de campos vectoriales. Otra de las aplicaciones importantes de la integral de superficies, es cuando se integra un campo vectorial sobre ella. El significado que adquiere este

Más detalles

Universidad Técnica Federico Santamaría

Universidad Técnica Federico Santamaría Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales. Complejos en R n En esta seión definiremos los objetos más simples en R n : los ubos, y los omplejos que forman. Es en estos objetos donde, más adelantes,

Más detalles

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es:

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es: Halla el lugar geométrio de los puntos P(, ) tales que el produto de las pendientes de las retas trazadas desde P a los puntos: A (, 1) B (, 1) sea igual a 1. Qué figura obtienes? Represéntala. Si P es

Más detalles

GUÍA DE ESTUDIO Exámenes a Título de Suficiencia 2013/2

GUÍA DE ESTUDIO Exámenes a Título de Suficiencia 2013/2 Eámenes a Título de Sufiienia 0/ PLAN DE ESTUDIOS 008 009 JUNIIO, 0. Unidad de aprendiaje: SUBDIRECCIÓN ACADÉMICA 0, Año de la Lealtad Instituional Centenario del Ejérito Meiano 80 Aniversario de la Esuela

Más detalles

ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO.

ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO. ESTRUCTURA FINA DEL ÁTOMO DE HIDRÓGENO. Ciertas líneas del hidrógeno y de los alalinos mostraban perfiles on varias omponentes muy próximas entre sí, indiando un desdoblamiento de los niveles de energía

Más detalles

7.1. CAMPOS VECTORIALES EN DEFINICIONES

7.1. CAMPOS VECTORIALES EN DEFINICIONES 7 n 7.. AMPO VETOIALE EN 7.. 7.. DEFINIIONE 7.. 7.. POPIEDADE 7.. 7.4. AMPO VETOIALE 7.4. ONEVATIVO 7.5. INTEGALE DE LÍNEA 7.6. TEOEMA DE GEEN 7.7. INTEGAL DE LÍNEA PAA EL ÁEA DE UNA EGIÓN PLANA 7.8. INTEGALE

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauhy Fórmula integral de Cauhy. Si una funión f es analítia en una región que ontiene a urva simple errada y a su interior, entones para ada punto z 0 enerrado por, dz = 2πi f(z 0

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Disontinuidades en un Punto - Tiene ramas infinitas en un punto y 5 La reta 5 es una asíntota vertial - Presenta un salto en un punto, si y

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x.

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x. CÁLCULO III (05) Tema. Integrales dobles y triples y sus aplicaciones eptiembre 06. Dibuje la región de integración y calcule las integrales dobles siguientes: d. e. f. g. yda, donde es la región limitada

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

Lección 3.1. Antiderivadas y La Integral Indefinida. 02/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20

Lección 3.1. Antiderivadas y La Integral Indefinida. 02/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20 Leión. Antiderivadas y La Integral Indefinida 0/0/06 de 0 Atividades. Referenia del Teto: Seión. Antiderivadas y la Integral Indefinida, Ver ejemplos al 9 Ejeriios de Prátia: Impares Asignaión.: Seión.

Más detalles

11 La teoría de la relatividad

11 La teoría de la relatividad La teoría de la relatividad de Einstein Atividades del interior de la unidad. Desde una nave que se mueve a 50 000 km/s se emite un rayo de luz en la direión y sentido del movimiento. Calula la veloidad

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-0 Estruturas Disretas Prof. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C.

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C. 1. Considere los siguientes vectores a = (2,3,1), b = (4, 1,3). Calcule: a) a + b b) 2a + 3b c) 3a b d) a + b e) 3a 2b f) 2 a + b 2. Halle las longitudes de los lados del triángulo ABC y determine si son

Más detalles

Sistemas homogéneos multicomponentes 24 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5

Sistemas homogéneos multicomponentes 24 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5 Índie 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIETO Sistemas homogéneos multiomponentes 24 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5 subrayados y en negrita para voluntarios punto

Más detalles

SESIÓN DE APRENDIZAJE

SESIÓN DE APRENDIZAJE INSTITUCIÓN EDUCATIVA INMACULADA DE LA MERCED SESIÓN DE APRENDIZAJE APRENDIZAJE ESPERADO Determina la regla de orrespondenia de una funión Representa e Identifia funiones Resuelve operaiones on funiones

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

ALGUNAS INCONGRUENCIAS CONCEPTUALES SOBRE LA NOCIÓN DE LINEALIDAD

ALGUNAS INCONGRUENCIAS CONCEPTUALES SOBRE LA NOCIÓN DE LINEALIDAD Categoría1.Análisisdeldisursomatemátioesolar ALGUNASINCONGRUENCIASCONCEPTUALESSOBRELANOCIÓNDELINEALIDAD CarlosRondero,AnnaTaraseno,JuanAlbertoAosta UniversidadAutónomadeEstadodeHidalgo.(Méxio) Méxio aostah@uaeh.reduaeh.mx,rondero@uaeh.reduaeh.mx,anataras@uaeh.edu.mx

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Teorema de Cambio de Variables para Integrales Dobles

Teorema de Cambio de Variables para Integrales Dobles Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:

Más detalles

CÁLCULO III. Pablo Torres. Parte 4: Integrales curvilíneas. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Parte 4: Integrales curvilíneas. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario ÁLULO III Pablo Torres Facultad de iencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Parte 4: Integrales curvilíneas URVAS Una trayectoria o camino en R n es una función α : [a,b]

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos)

r r 3 producido por una carga Q localizada en el origen, con ε constante. a. Demuestre que (3 puntos) U..V. F.I.U..V. ÁLULO VETORIAL (54) PRIMER PARIAL (3%) 5/1/9 MATEMÁTIA APLIADA Pof. 1. Sean el campo posición (x,, z) = (x,, z) el campo eléctico E = ε Q poducido po una caga Q localizada en el oigen,

Más detalles

DETERMINACIÓN DE LAS CORRIENTES DE INSERCIÓN EN SISTEMAS DE DISTRIBUCIÓN DE n TRANSFORMADORES.

DETERMINACIÓN DE LAS CORRIENTES DE INSERCIÓN EN SISTEMAS DE DISTRIBUCIÓN DE n TRANSFORMADORES. ng. Horaio Salvañá HS ngeniería - www.hsingenieria.om.ar DETERMNACÓN DE LAS CORRENTES DE NSERCÓN EN SSTEMAS DE DSTRBUCÓN DE n TRANSFORMADORES. Autor: ng. Horaio Salvañá Objetivo: El objeto de este trabajo

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

Integral de Superfície sobre funciones escalares

Integral de Superfície sobre funciones escalares Integral de uperfície sobre funciones escalares Consideremos el problema del cálculo de la masa total de una lámina, cuya forma es la de una superfície simple. upongamos que la lámina es muy delgada y

Más detalles

Capítulo 2 Orígenes de la teoría cuántica

Capítulo 2 Orígenes de la teoría cuántica Capítulo Orígenes de la teoría uántia.1 Radiaión de uerpo negro La teoría uántia se originó entre 1900 05: 1900: Plank explia la radiaión térmia en términos de la disretizaión de la energía. 1905: Einstein

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3 CÁLCULO III (05) 0/06/09 a Estudie la curva de ecuación vectorial t t r(t) =,, + t + t tomando en cuenta: dominio, cortes con los ejes, signo, simetrías, asíntotas, puntos asintóticos, tangentes, puntos

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

La puntuación depende del modo de resolución.

La puntuación depende del modo de resolución. Grupo B 16/17 Ampliación de Cálculo En todos los casos, se pide contestar razonadamente La puntuación depende del modo de resolución Ejercicio 1 (15 puntos por apartado) Una semiesfera sólida de densidad

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

Por qué k µ es un cuadrivector?

Por qué k µ es un cuadrivector? Por qué k µ es un uadrivetor? odemos deir algo aera de por qué la freuenia y el vetor número P de onda forman un uadrivetor. La respuesta orta es: onda plana en un sistema, onda plana en todos. La idea

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Atividades iniiales. Expresa en notaión matriial y resuelve por el método de Gauss los sistemas de euaiones siguientes: Las resoluión de los sistemas puede expresarse de la forma

Más detalles

Examen Final Cálculo Vectorial Mayo 17 de Responda falso o verdadero, justificando matemáticamente su respuesta:

Examen Final Cálculo Vectorial Mayo 17 de Responda falso o verdadero, justificando matemáticamente su respuesta: Eamen Final Cálculo Vectorial Mayo 7 de 6 Este es un eamen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar su teléfono celular.

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

5 Integral doble de Riemann

5 Integral doble de Riemann Miguel eyes, Dpto. de Mtemáti Aplid, FI-UPM 1 5 Integrl doble de iemnn 5.1 Definiión Llmremos retángulo errdo de 2 l produto de dos intervlos errdos y otdos de, es deir = [, b] [, d] = { (x, y) 2 : x b,

Más detalles

Ecuaciones de Máxwell y ondas electromagnéticas

Ecuaciones de Máxwell y ondas electromagnéticas Zero Order of Magnitude ZOoM)-PID 13-28 Euaiones de Máxwell y ondas eletromagnétias 1. Estímese la intensidad y la potenia total de un láser neesario para elevar una pequeña esfera de plástio de 15 µm

Más detalles

z + 1 = x + y situada debajo del plano

z + 1 = x + y situada debajo del plano CÁLCULO INTERMEIO APLICAO (64) EGUNO PARCIAL (%) 6/1/9 EPARTAMENTO E APLICAA JOÉ LUI QUINTERO 1. ea la poción de la esfea de ecuación del cono de ecuación supeficie. + y + z = a contenida dento + y = z,

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002.

FACULTAD DE CIENCIAS DEL MAR. FUNDAMENTOS MATEMÁTICOS II. Convocatoria Extraordinaria de Diciembre de 2002. FAULTAD DE IENIAS DEL MAR. FUNDAMENTOS MATEMÁTIOS II. onvocatoria Extraordinaria de Diciembre de. xydx x y dy a lo largo de la elipse.- alcular + ( ) contrario al de las agujas del reloj. x y + = recorrida

Más detalles

2.4 Transformaciones de funciones

2.4 Transformaciones de funciones 8 CAPÍTULO Funiones.4 Transformaiones de funiones En esta seión se estudia ómo iertas transformaiones de una funión afetan su gráfia. Esto proporiona una mejor omprensión de ómo grafiar Las transformaiones

Más detalles

CAMPO Y POTENCIAL ELECTROSTÁTICOS

CAMPO Y POTENCIAL ELECTROSTÁTICOS 1 Un eletrón de arga e y masa m se lanza orizontalmente en el punto O on una veloidad v a lo largo de la direión equidistante de las plaas de un ondensador plano entre las que existe el vaío. La longitud

Más detalles

Integración de formas diferenciales

Integración de formas diferenciales Capítulo 9 Integraión de formas difereniales 1. Complejos en R n En este apítulo iniiamos el estudio de la integraión de formas difereniales sobre omplejos en R n. Un omplejo es una ombinaión de ubos en

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS Examen de febrero EJECICIO ( h. 3 min.) 13 de junio de 9 1. En E 3 se considera el plano de ecuación x y z = 5. Se pide: a) Ecuaciones de la proyección ortogonal sobre dicho plano.

Más detalles

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

PRACTICO A.M. II 2014

PRACTICO A.M. II 2014 PRATIO 4- - A.M. II 014 INTEGRALES DE LINEA INTEGRAL DE LINEA DE AMPOS ESALARES 1. alcule las siguientes integrales de línea a) f ds donde es el arco de parábola x 4 desde (-, -1) hasta (5, ), f está dada

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas:

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas: ANÁLISIS I MATEMÁTICA ANÁLISIS (Computación) Práctica 7 I. epaso: integración en una variable. Calcular: sen x. b) π sen x. c) El área entre las curvas y = sen x, y =, x =, x = π.. Calcular: x sen x. b)

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2007 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 6 de Junio de 7 Primera parte Ejercicio. Determinar los puntos de máxima y mínima pendiente de la gráfica de la función y = +x, x. Solución.

Más detalles

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e.

Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la dirección y magnitud de la corriente en el alambre horizontal entre a y e. 0.1. Ciruito. Si R=1.00 [kω] y ε=250 [V] en la figura 1, determine la direión y magnitud de la orriente en el alambre horizontal entre a y e. b R 2R d ε 4R 3R 2ε a e Soluión: Dibujemos las orrientes Figura

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio

Más detalles

SOLUCIONES FÍSICA JUNIO 10 OPCIÓN A

SOLUCIONES FÍSICA JUNIO 10 OPCIÓN A SOLUCIONES FÍSIC JUNIO 10 OCIÓN 1.- a) Veloidad de esape es la mínima que debe omuniarse a un uerpo, situado en la superfiie de un planeta de masa m p y radio r p, para que salga del ampo gravitatorio.

Más detalles

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n =

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n = Singularidades Hay muhas funiones que son analítias en una región on exepión de algunos puntos aislados donde no están definidas. Por ejemplo, /z es analítia en C {0} y os(z) es analítia en C {0, ±π, ±π,

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000 ÁLULO Primer curso de ngeniero de elecomunicación egundo Examen Parcial. de Junio de Ejercicio. Hallar los extremos absolutos de la función f (x, y, z) =x + y + z, en el conjunto A = (x, y, z) R 3 : x

Más detalles

El Teorema de Cauchy

El Teorema de Cauchy El Teorema de Cauhy Deimos que una urva es errada si termina en el mismo punto donde empieza. Deimos que una urva es simple si no tiene autointerseiones. Uno de los primeros teoremas de topología del plano,

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES INTEGALES MÚLTIPLES Introducción: Si f es una función definida sobre una región, la integral doble se puede interpretar como el volumen del sólido limitado superiormente por la superficie z = f(,, inferiormente

Más detalles

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González Investigador independiente e-mail: weneslaoseguragonzalez@yahooes web: http://weneslaoseguragonwixom/weneslao-segura

Más detalles

2. Teoría BCS. Física de los pares de Cooper

2. Teoría BCS. Física de los pares de Cooper . eoría CS. Físia de los pares de Cooper La primera teoría mirosópia de la superondutividad fue planteada en 957 por John ardeen, Leon Neil Cooper y Robert Shrieffer. La idea fundamental es tratar el problema

Más detalles

PAU Movimiento Vibratorio Ejercicios resueltos

PAU Movimiento Vibratorio Ejercicios resueltos PU Moviiento Vibratorio jeriios resueltos 99-009 PU CyL S995 ley Hooke alitud y freuenia Colgado de un soorte hay un resorte de onste = 0 N/ del que uelga una asa de kg. n estas irunsias y en equilibrio,

Más detalles

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx =

Hoja de Prácticas tema 4: Integrales múltiples. (xy +x 2 +y 2 )dydx = Cálculo II EPS (Grado TICS) Curso - Hoja de Prácticas tema 4: Integrales múltiples. Calcular ( + + )da en la región = {(,) R :, }. ( + + )da = ( + + )dd = ( + + = = d 5 = + + 9 d = 49. . Calcular cos()dd

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González Investigador independiente e-mail: weneslaoseguragonzalez@yahooes web: http://weneslaoseguragonwixom/weneslao-segura

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES.

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. Cuando tenemos el problema de alular la primitiva de una funion raional P (x) an x n + a n x n + + a x + a 0 b m x m + b m x

Más detalles