Ecuaciones de Máxwell y ondas electromagnéticas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ecuaciones de Máxwell y ondas electromagnéticas"

Transcripción

1 Zero Order of Magnitude ZOoM)-PID Euaiones de Máxwell y ondas eletromagnétias 1. Estímese la intensidad y la potenia total de un láser neesario para elevar una pequeña esfera de plástio de 15 µm de diámetro ontra la fuerza de la gravedad. Háganse todas las suposiiones que se onsideren razonables. Supóngase que el plástio tiene aproximadamente la misma densidad que el agua. Para que la esfera esté en equilibrio, la fuerza ejerida por el láser tiene que ser igual al peso. La fuerza que ejere el láser F l sobre un área A está relaionada on la presión de radiaión P r según la expresión: file:///x:/pids/zero%20order%20of%20magnitude/pre-evaluacion/tiplermos... F l = P r A = 1 4 P rπd 2 = mg donde se ha tenido en uenta que el láser realiza fuerza a través del área inferior de la esfera, que es igual al área de un írulo de diámetro d, y la ondiión de equilibrio dinámio. La presión de radiaión es el oiente entre la intensidad del haz y la veloidad de la luz, por lo que: P r = I Sustituyendo se tiene: 1 I 4 πd2 = mg I = 4mg πd 2 La masa de la esfera será su volumen por su densidad: m = ρv = ρ 4 3 πr3 = ρ 1 6 πd3 Sustituyendo se obtiene la expresión para la intensidad I: Sustituyendo valores tiene: I = 4mg πd 2 = 4ρ 1 6 πd3 g πd 2 = 2 3 ρdg I = kg/m 3 ) 15 µm) 9,81 m/s 2) ) = 2, W/m 2 Una vez onoida la intensidad, la potenia P se obtiene multipliando ésta por el área: P = I 1 4 πd2 P = 1 4 π 15 µm)2 2,94 10 W/m 2) = 5,20 mw 1

2 Zero Order of Magnitude ZOoM)-PID Algunos esritores de ienia fiión han utilizado velas solares para propulsar naves interestelares. Imagínese una vela gigantesa oloada sobre una nave interestelar sujeta a la presión de radiaión. a) Muéstrese que la aeleraión vienen dada por PsA s A 4πr 2 m donde A es el área de la vela, r la distania al sol, m la masa total de la nave, la veloidad de la luz y P s es la potenia total emitida por el Sol, y que toma un valor 3, W. b) Muéstrese que la veloidad de la nave a una distania r del Sol sigue una expresión: v 2 = v 2 Ps P s A 0 + 2πm ) 1 1 ) r 0 r file:///x:/pids/zero%20order%20of%20magnitude/pre-evaluacion/tiplermos... donde v 0 es la veloidad iniial de la nave a una distania r 0. ) Compárese las aeleraiones relativas debidas a la presión de radiaión y a la fuerza gravitaional. Úsese valores razonables para A y m. Funionaría un sistema similar? a) Para alular la aeleraión hay que tener en uenta que sobre la nave atuarán la fuerza debida a la radiaión F r y la fuerza de la gravedad ejerida por el Sol F g. De esta forma, la aeleraión queda: F r F g m La fuerza que sobre la nave debida a la presión de radiaión P r es: F r = P r A donde diha presión se puede obtener omo la intensidad de la radiaión dividida por la veloidad de la luz P r = I. Sustituyendo esta expresión se obtiene la fuerza debida a la radiaión: F r = IA La intensidad a una determina distania r es igual a la potenia total emitida P s dividida por el área del frente de onda, es deir, I = Ps, on lo que la fuerza debida a la radiaión 4πr 2 queda: P s A 4πr 2 = 4πr 2 F r = Por otra parte, la fuerza de la gravedad del Sol es: F g = G M sm r 2 Sustituyendo la expresión de las dos fuerzas en la de la aeleraión, se tiene: G Msm 4πr 2 r 2 m = GM 4π sm mr 2 Para áreas muy grandes, la omponente de la gravedad en la aeleraión se puede despreiar, on lo que queda una aeleraión: 4πmr 2 2

3 Zero Order of Magnitude ZOoM)-PID b) En el anterior apartado se ha obtenido la aeleraión en funión de la distania al sol, on lo que se puede obtener la veloidad en funión de la distania al sol: dv dt = 4πmr 2 dv v dt v = dv dt v dr dt = dv dr v = 4πmr 2 vdv = dr 4πmr 2 Integrando la anterior igualdad entre un punto iniial y un punto genério se tiene: v r P s Adr vdv = v2 v 0 4πmr 2 2 v2 0 2 = P sa 1 1 ) v 2 = v0 2 = P sa 1 1 ) 4πm r 0 r 2πm r 0 r r 0 file:///x:/pids/zero%20order%20of%20magnitude/pre-evaluacion/tiplermos... ) El oiente entre las aeleraiones se puede obtener a partir de a fórmula anterior onseguida para la aeleraión, previamente a despreiar la omponente gravitatoria: a g = GM sm P a sa r 4π = 4πGM sm P s A En funión de A y m, el oiente queda: = 4π m/s) 6, Nm 2 /kg 2) 2, kg) m 3, W A a g = 1, m 2 /kg ) m a r A Para que la aeleraión debida a la fuerza gravitatoria se pueda despreiar, hae falta que la relaión entre la masa de la nave y el área de la vela sea bastante menor de 10 3 kg/m 2. Esto implia que la nave tiene que se extremadamente pequeña y las velas extremadamente grandes para ese peso, lo que hae que un sistema de este tipo sea muy difíil de onstruir. 3. La intensidad de luz solar que inide sobre la parte superior de la atmósfera llamada onstante solar) es de 1,37 kw/m 2. a) Enuéntrese el E rms y el B rms debido al Sol en la parte superior de la atmósfera. b) Enuéntrese la potenia media que emite el Sol. ) Enuéntrese la intensidad y la potenia de radiaión en la superfiie del Sol. a) La intensidad se relaiona on E rms y B rms mediante la expresión: I = E rmsb rms µ 0 mientras que se umple que E rms = B rms, por lo que la intensidad se puede expresar en funión úniamente de E rms omo: I = E2 rms µ 0 E rms = µ 0 I E rms = ) 4π 10 7 N/A 2) 1,37 kw/m 2) = 719 V/m Y el ampo magnétio queda: B rms = E rms / = 719 V/m 3 = 2,40 µt

4 Zero Order of Magnitude ZOoM)-PID b) La potenia media P m en términos de la onstante solar resulta ser: P m = 4πR 2 I donde R es la distania tierra sol. Por tanto: P m = 4π 1, m ) 2 1,37 kw/m 2 ) = 3, W file:///x:/pids/zero%20order%20of%20magnitude/pre-evaluacion/tiplermos... ) La intensidad en la superfiie del Sol I s, en términos de la potenia media que emite el Sol y su radio R s resulta ser: I s = P m 4πR 2 s = 3, W 4π 6, m) 2 = 6, W/m 2 Por último, la presión de radiaión en la superfiie del Sol P s se obtiene omo: P s = I s = 6, W/m 2 = 0,212 Pa 4. Estímese la fuerza que la presión de radiaión del Sol ejerida sobre la Tierra, y ompárese on la fuerza de atraión gravitatoria del Sol. La intensidad de la luz solar en la órbita terrestre es de 1,37 kw/m 2 Si se onoe la presión de radiaión, la fuerza ejerida se obtiene multipliando por el área donde se ejere. La presión de radiaión se obtiene a partir de la intensidad omo: P r = I Por lo que la fuerza que ejere la presión de la radiaión sobre la tierra será: F r = P r A = IπR2 T donde R T es el radio de la Tierra. F r = π 1,37 kw/m 2) 6370 km) 2 = 5, N La fuerza gravitatoria es: F g = GM SM T RT 2 S donde R T S es la distania de la Tierra al Sol. Sustituyendo valores: F g = 6, Nm 2 /kg 2) 1, kg) 5, kg) 1, m) 2 = 3, N El oiente entre las dos fuerzas queda: F r = 5, N F g 3, N = 1, La fuerza gravitatoria es atore órdenes de magnitud superior a la fuerza de la presión de radiaión. 4

5 Zero Order of Magnitude ZOoM)-PID Repítase el problema 4 para el planeta Marte. En qué planeta es mayor la relaión entre la fuerza de la presión de radiaión y la fuerza gravitatoria? Por qué? Si se onoe la presión de radiaión, la fuerza ejerida se obtiene multipliando por el área donde se ejere. La presión de radiaión se obtiene a partir de la intensidad de la radiaión solar sobre Marte omo: P r = I M Por lo que la fuerza que ejere la presión de la radiaión sobre Marte será: F r = P r A M = I MπR 2 M file:///x:/pids/zero%20order%20of%20magnitude/pre-evaluacion/tiplermos... donde R M es el radio de Marte. La intensidad de la radiaión solar sobre Marte se puede obtener a partir de la intensidad sobre la Tierra I T y de los radios de las órbitas de Marte y la Tierra, r M y r T, omo: ) 2 ) 2 I M rt rt = I M = I T I T r M r M Teniendo esto en uenta, la fuerza ejerida por la presión de radiaión queda: F r = I T πr 2 M ) 2 rt r M F r = π 1,37 kw/m 2) 3395 km) 2 1, m) r T 2, m) La fuerza gravitatoria que el Sol ejere sobre Martes es: F g = GM SM M R 2 MS = GM S0,11M T ) R 2 MS ) 2 = 7, N donde R MS es la distania de Marte al Sol y M M la masa del planeta, y donde se ha utilizado que la masa de Marte es 0,11 la masa de la Tierra M T. Sustituyendo valores: F g = 6, Nm 2 /kg 2) 1, kg) 0,11) 5, kg) 2, m) 2 = 1, N El oiente entre las dos fuerzas queda: F r = 7, N F g 1, N = 4, El oiente entre fuerza de radiaión y gravitatoria es mayor para Marte que para la Tierra. Esto se debe a que el oiente no depende de la distania del planeta al Sol, ya que ambas fuerzas depende de esta distania omo r 2, mientras que sí existe dependenia on el radio del planeta R. En onreto, la fuerza de radiaión depende omo R 2, mientras que la fuerza gravitatoria omo R 3. Si se supone una densidad similar para la Tierra y Marte, el oiente depende omo R 2 /R 3 = R 1, por lo que será mayor para Marte al tener menor radio. 5

6 Zero Order of Magnitude ZOoM)-PID En el nuevo ampo del enfriamiento por láser, las fuerzas asoiadas a la presión de radiaión son usadas para frenar veloidades térmias de átomos desde ientos de metros por segundo, en temperaturas ambiente, a poos metros por segundo o inluso más lento. Un átomo aislado absorberá radiaión sólo a unas freuenias espeífias de radiaión, llamadas freuenias de resonania. Si la freuenia del haz láser es la misma que la freuenia de resonania del átomo, entones la radiaión se absorbe mediante un proeso llamado absorión resonante. La seión efiaz efetiva del átomo resonante la superfiie que el átomo presenta a la la radiaión) es aproximadamente igual a λ 2, donde λ es la longitud de onda del haz láser. a) Estimar la aeleraión de un átomo de rubidio masa atómia de 85 g/mol) en un haz láser uya longitud de onda sea de 780ñm y su intensidad 10 W/m 2. b) Cuánto tiempo tardará un haz de este tipo para frenar un átomo de rubidio de un gas a temperatura ambiente 300 K) hasta una veloidad erana a ero? a) Se puede utilizar la segunda ley de Newton para obtener la aeleraión a partir de la fuerza ejerida por la presión de radiaión del haz láser, que es igual a la presión de radiaión por la seión efiaz efetiva del átomo A. La presión de radiaión se puede obtener omo la intensidad del haz partido por la veloidad de la luz, on lo que la fuerza que ejere la radiaión queda: file:///x:/pids/zero%20order%20of%20magnitude/pre-evaluacion/tiplermos... Apliando la segunda ley de Newton: F r = P r A = IA = Iλ2 m Iλ2 Iλ2 m 10 W/m 2 ) 780 nm) 2 ) 85 g 1 mol 3 10 mol 6, partíulas 8 m/s) = 1, m/s 2 b) Para estimar el tiempo neesario, se utiliza la relaión entre la aeleraión y la variaión de veloidad, on lo que se tiene: t = v f v 0 a Como se supone que la veloidad final es aproximadamente nula, se tiene que el tiempo empleado es aproximadamente: t = v 0 a Consindérese la veloidad iniial omo la veloidad uadrátia media v rms de los átomos de un gas a una determinada temperatura, que resulta ser: 3kT v rms = m Sustituyendo en la expresión del tiempo se tiene: t = 1 3kT a m 6

7 Zero Order of Magnitude ZOoM)-PID Se sustituyen valores y se tiene: 1 t = 1, m/s 2 3 1, J/K) 300 K) ) = 2,06 ms 85 g mol 1 mol 6, partíulas file:///x:/pids/zero%20order%20of%20magnitude/pre-evaluacion/tiplermos... 7

Radiación electromagnética

Radiación electromagnética C A P Í T U L O Radiaión eletromagnétia.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. El ampo elétrio de una onda eletromagnétia plana en el vaío viene dado, en unidades del sistema internaional (SI),

Más detalles

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2 El aluno elegirá una sola de las opiones de probleas, así oo uatro de las ino uestiones propuestas. No deben resolerse probleas de opiones diferentes, ni tapoo ás de uatro uestiones. Cada problea se alifiará

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

Hidráulica de canales

Hidráulica de canales Laboratorio de Hidráulia Ing. David Hernández Huéramo Manual de prátias Hidráulia de anales o semestre Autores: Guillermo Benjamín Pérez Morales Jesús Alberto Rodríguez Castro Jesús Martín Caballero Ulaje

Más detalles

Mm R 2 v= mv 2 R 24 5,98 10

Mm R 2 v= mv 2 R 24 5,98 10 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610

Más detalles

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10 0. La fusión nulear en el Sol produe Helio a partir de Hidrógeno según la reaión: 4 protones + 2 eletrones núleo He + 2 neutrinos + nergía Cuánta energía se libera en la reaión (en MeV)? Datos: Masas:

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional. Índice Introducción Capítulo 1: físicas, unidades y análisis dimensional. Introducción Capítulo 1:. Índice Leyes Físicas y cantidades físicas. Sistemas de unidades Análisis dimensional. La medida física.

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Teoría de la Comunicación para Redes Móviles

Teoría de la Comunicación para Redes Móviles Teoría de la Comuniaión para Redes Introduión y oneptos básios 2/2 9/12/07 1 Introduión Introduión Coneptos básios Unidades logarítmias Ganania de una antena Anho de banda Señales paso banda Ruidos 2 Unidades

Más detalles

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

Tema 1: Introducción a las radiaciones

Tema 1: Introducción a las radiaciones Tema 1: Introduión a las radiaiones 1. Introduión La radiatividad es un fenómeno natural que nos rodea. Está presente en las roas, en la atmósfera y en los seres vivos. Un fondo de radiatividad proveniente

Más detalles

Balance Global de Energía

Balance Global de Energía Balance Global de Energía Balance de energía 1a Ley de la Termodinámica El balance básico global se establece entre la energía proveniente del sol y la energía regresada al espacio por emisión de la radiación

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO Desarrollar una de las dos opciones propuestas. Cada problema puntúa 3 (1,5 cada apartado) y cada cuestión teórica o práctica 1. OPCIÓN 1 Un cilindro macizo y homogéneo de 3 kg de masa y 0,1 m de radio

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

2.1. CONSTANTE DE EQUILIBRIO. LEY DE ACCIÓN DE MASAS. Si tenemos un proceso químico expresado de forma general como: c C (g) + d D (g)

2.1. CONSTANTE DE EQUILIBRIO. LEY DE ACCIÓN DE MASAS. Si tenemos un proceso químico expresado de forma general como: c C (g) + d D (g) Las reaiones químias se pueden dividir en reversibles e irreversibles, según puedan transurrir en los dos sentidos o en uno sólo. En las reaiones reversibles tanto las sustanias reaionantes omo los produtos

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.5 Viscosidad Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 3, Oión B Junio, Ejeriio 6, Oión B Reserva 1, Ejeriio 5, Oión B Reserva, Ejeriio 3, Oión A Reserva 3, Ejeriio

Más detalles

Módulo 4: Sonido. Origen del sonido. El sonido es una onda producida por las vibraciones de la materia. Diapasón. tambor. Cuerda de guitarra

Módulo 4: Sonido. Origen del sonido. El sonido es una onda producida por las vibraciones de la materia. Diapasón. tambor. Cuerda de guitarra Módulo 4: Sonido 1 Origen del sonido El sonido es una onda producida por las vibraciones de la materia tambor Cuerda de guitarra Diapasón 2 1 Ondas en tres dimensiones Ondas bidimensionales sobre la superficie

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

TEMA 10: EQUILIBRIO QUÍMICO

TEMA 10: EQUILIBRIO QUÍMICO TEMA : EQUILIBRIO QUÍMICO. Conepto de equilibrio químio: reaiones reversibles. Existen reaiones, denominadas irreversibles, que se araterizan por transurrir disminuyendo progresivamente la antidad de sustanias

Más detalles

Prueba de acceso a la Universidad Bachillerato Logse (Junio 2005) Prueba de Física

Prueba de acceso a la Universidad Bachillerato Logse (Junio 2005) Prueba de Física Prueba de acceso a la Universidad Bachillerato Logse (Junio 2005) Prueba de Física 1 Cuestiones C1. Se quiere medir g a partir del período de oscilación de un péndulo formado por una esfera de cierta masa

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO

LINEAS DE TRANSMISIÓN: ANÁLISIS CIRCUITAL Y TRANSITORIO 1 Tema 8 íneas de Transmisión: análisis iruital y transitorio Eletromagnetismo TEMA 8: INEAS DE TRANSMISIÓN: ANÁISIS CIRCUITA Y TRANSITORIO Miguel Angel Solano Vérez Eletromagnetismo Tema 8 íneas de transmisión:

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

física física conceptual aplicada MétodoIDEA La gravedad Entre la y la 1º de bachillerato Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA La gravedad Entre la y la 1º de bachillerato Félix A. Gutiérrez Múzquiz Entre la y la física física conceptual aplicada MétodoIDEA La gravedad 1º de bachillerato Félix A. Gutiérrez Múzquiz Contenidos 1. LA LEY DE LA GRAVITACIÓ DE EWTO 2. I TE SIDAD DEL CAMPO GRAVITATORIO 3.

Más detalles

Prof. Jorge Rojo Carrascosa

Prof. Jorge Rojo Carrascosa Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Martes, 8 de marzo de 2011 Nombre y Apellidos JRC 1 Un submarino se encuentra a una profundidad de 400 metros. Cuál

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

Segundo Principio de la Termodinámica

Segundo Principio de la Termodinámica ermodinámia. ema 4 Segundo Prinipio de la ermodinámia. Segundo Prinipio de la ermodinámia Enuniado de Kelvin-Plank en 85: No es posible onstruir una máuina térmia de funionamiento ílio ue permita extraer

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 5, Opión B Reserva 1, Ejeriio 6, Opión A Reserva, Ejeriio 3, Opión B Reserva, Ejeriio 6, Opión B Reserva

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

Física y Química 4º ESO: guía interactiva para la resolución de ejercicios

Física y Química 4º ESO: guía interactiva para la resolución de ejercicios FUERZAS Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 (a) Cuál es la fuerza gravitatoria o peso de una

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

Es muy común que ocurra una confusión entre estos conceptos, entonces, para no cometer este error, vea la diferencia:

Es muy común que ocurra una confusión entre estos conceptos, entonces, para no cometer este error, vea la diferencia: Magnitudes y Unidades Cuando empezamos a hablar sobre el SI, luego dijimos que su objetivo principal el de estandarizar las mediciones y que para eso, están definidos en el, apenas una unidad para cada

Más detalles

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior.

EXAMEN DE FÍSICA SELECTIVIDAD 2014-2015 JUNIO OPCIÓN A. a) La velocidad orbital de la luna exterior y el radio de la órbita de la luna interior. EXAMEN DE FÍSICA SELECTIVIDAD 04-05 JUNIO OPCIÓN A Problema. Dos lunas que orbitan alrededor de un planeta desconocido, describen órbitas circulares concéntricas con el planeta y tienen periodos orbitales

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS 1 PRACTICA # 1 PROPIEDADE FIICA DE LO FLUIDO 1.1 DENIDAD Es una propiedad intensiva que se define como la masa (m) por unidad de volumen (V), y es denotada con la letra "ρ", donde: masa de la sustancia

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración.

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración. Las magnitudes físicas Las magnitudes fundamentales Magnitudes Derivadas son: longitud, la masa y el tiempo, velocidad, área, volumen, temperatura, etc. son aquellas que para anunciarse no dependen de

Más detalles

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica PRÁCTICA 1 PRESIÓN Laboratorio de Termodinámica M del Carmen Maldonado Susano Enero 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular carece de forma propia y adopta

Más detalles

FUNDAMENTOS DE ENERGÍA SOLAR

FUNDAMENTOS DE ENERGÍA SOLAR FUNDAMENTOS DE ENERGÍA SOLAR Dr. Ricardo Guerrero Lemus 1 DUALIDAD ONDA/PARTÍCULA DE LA LUZ: A partir de finales del siglo XVII empezó a prevalecer el punto de vista mecánico de Newton por el que la luz

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles

Se le presentará a los alumnos el siguiente juego. Se llevaran cuatro fichas como estas.

Se le presentará a los alumnos el siguiente juego. Se llevaran cuatro fichas como estas. Aión Nº4 y 5: Funión arítmia. Definiión. Logaritmo de un número. Logaritmo deimal y aritmo natural. Núleo temátio: Funión exponenial y arítmia. Feha: Junio 0 Espaio de apaitaión. CIE. Doente: De Virgilio,

Más detalles

Dispositivos y Medios de Transmisión Ópticos

Dispositivos y Medios de Transmisión Ópticos Dispositivos y Medios de Transmisión Ópticos Módulo 2. Propagación en Fibras Ópticas. EJERCICIOS Autor: Isabel Pérez/José Manuel Sánchez /Carmen Vázquez Revisado: Pedro Contreras Grupo de Displays y Aplicaciones

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo PRÁCTICA 3 PRESIÓN Laboratorio de Principios de Termodinámica y Electromagnetismo M del Carmen Maldonado Susano 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular

Más detalles

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad

El lanzamiento y puesta en órbita del satélite Sputnik I marcó, en. El GPS y la teoría de la relatividad T El GPS y la teoría de la atividad Eduardo Huerta(*), arlos Galles(**), Andrés Greo(**) y Aldo Mangiaterra(*) (*) DEPARTAMENTO DE GEOTOPOARTOGRAFÍA (**) DEPARTAMENTO DE FÍSIA FAULTAD DE IENIAS EXATAS,

Más detalles

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 2. TRABAJO. UNIDADES Y EQUIVALENCIAS...2 3. FORMAS DE ENERGÍA...3 A) Energía. Unidades y equivalencias...3 B) Formas

Más detalles

Espectro de emisión en la desintegración del 137

Espectro de emisión en la desintegración del 137 Espetro de emisión en la desintegraión del 55 Cs Grupo 2 Franhino Viñas, S. A. Hernández Maiztegui, F. f ranhsebs@yahoo.om.ar f ranx22182@hotmail.om Muglia, J. Panelo, M. Salazar Landea, I. juan muglia@yahoo.om.ar

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 3, Opión A Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión B Reserva 1, Ejeriio 6, Opión B Reserva,

Más detalles

ÁCIDO BASE QCA 09 ANDALUCÍA

ÁCIDO BASE QCA 09 ANDALUCÍA ÁCIDO BASE QCA 9 ANDALUCÍA.- El ph de L de disoluión auosa de hidróxido de litio es. Calule: a) Los gramos de hidróxido que se han utilizado para prepararla. b) El volumen de agua que hay que añadir a

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

Magnitudes. Unidades. FÍSICA Y QUÍMICA 3 E.S.O. Tema 2. Lourdes Álvarez Cid

Magnitudes. Unidades. FÍSICA Y QUÍMICA 3 E.S.O. Tema 2. Lourdes Álvarez Cid Magnitudes Unidades FÍSICA Y QUÍMICA 3 E.S.O. Tema 2 8 Magnitudes Físicas y Unidades MAGNITUD FÍSICA Es toda propiedad de un objeto susceptible de ser medida por un observador o un aparato de medida y,

Más detalles

SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C

SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C MSc. Ing. Pedro Bertín Flores Larico UNSA-cer-ee-unas XXII Simposio Peruano de Energía Solar, 2015 Arequipa TIPOS DE

Más detalles

CA LCULO. Hoja 15. Sistemas masa-resorte

CA LCULO. Hoja 15. Sistemas masa-resorte Dpo Maema ia Apliada ETSAM Ca lulo CA LCULO Hoja 5 Sisemas masa-resore Consideremos un resore de longiud l suspendido verialmene de un sopore rı gido Si olgamos de e l una masa m, el resore se alargara

Más detalles

EQUILIBRIO QUÍMICO QCA 04 ANDALUCÍA

EQUILIBRIO QUÍMICO QCA 04 ANDALUCÍA 1.- Considérese el siguiente sistema en equilibrio: SO 3 (g) SO (g) + 1/ O (g) H > 0 Justifique la veraidad o falsedad de las siguientes afirmaiones: a) Al aumentar la onentraión de oxígeno, el equilibrio

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG UCLM)

Ejercicios de Interacción Gravitatoria (PAEG UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms 2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS ESTRUCTURA DE LA MATERIA Grupo D CURSO 20011 2012 EL NÚCLEO ATÓMICO DE QUÉ ESTÁN HECHAS LAS COSAS? MATERIA ~ 10-9 m Átomo FÍSICA MATERIALES ÁTOMO ~ 10-10 m NÚCLEO ~ 10-14 mnucleón < 10-15 m Electrón Protón

Más detalles

PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL

PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL 1. La distancia entre los centros de dos esferas es 3 m. La fuerza entre ellas es.75 x10-1 N. Cuál es la masa de cada esfera, si la masa de una

Más detalles

SISTEMA DE REFERENCIA Punto, o conjunto de puntos, respecto al cual describimos el movimiento de un cuerpo.

SISTEMA DE REFERENCIA Punto, o conjunto de puntos, respecto al cual describimos el movimiento de un cuerpo. Físia relatiista. Meánia uántia Página de 4 FÍSICA º BACHILLERATO ELEMENTOS DE FÍSICA RELATIVISTA SISTEMA DE REFERENCIA Punto, o onjunto de puntos, respeto al ual desribimos el moimiento de un uerpo. ONDAS

Más detalles

Capítulo 14. El sonido

Capítulo 14. El sonido Capítulo 14 El sonido 1 Ondas sonoras Las ondas sonoras consisten en el movimiento oscilatorio longitudinal de las partículas de un medio. Su velocidad de transmisión es: v = B ρ en donde ρ es la densidad

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

LAS HERRAMIENTAS DE LA FÍSICA. Ing. Caribay Godoy Rangel

LAS HERRAMIENTAS DE LA FÍSICA. Ing. Caribay Godoy Rangel LAS HERRAMIENTAS DE LA FÍSICA SISTEMA INTERNACIONAL DE UNIDADES (SI) UNIVERSABILIDAD MEDICIÓN ACCESIBILIDAD INVARIANCIA SISTEMA INTERNACIONAL DE Metro (m) UNIDADES (SI) 1889: Diezmillonésima parte de la

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Análisis del lugar geométrico de las raíces

Análisis del lugar geométrico de las raíces Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania

Más detalles

Lugar geométrico de las raíces

Lugar geométrico de las raíces Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si

Más detalles

Energías Gravitatorias

Energías Gravitatorias > ENERGÍA POTENCIAL GRAVITATORIA A) CONCEPTO DE ENERGÍA POTENCIAL GRAVITATORIA La energía potencial gravitatoria (Ep), es la energía debida a la posición de una masa (m) en un campo. La energía potencial

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler: Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando

Más detalles

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores ANÁLISIS DE LOS INERAMBIADORES DE ALOR Mg. Amanio R. Rojas Flores En la prátia los interambiadores de alor son de uso omún y un ingeniero se enuentra a menudo en la posiión de: seleionar un interambiador

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

Conductividad en presencia de campo eléctrico

Conductividad en presencia de campo eléctrico 6. Fenómenos de transporte Fenómenos de transporte Conductividad térmicat Viscosidad Difusión n sedimentación Conductividad en presencia de campo eléctrico UAM 01-13. Química Física. Transporte CT V 1

Más detalles

SESIÓN DE APRENDIZAJE

SESIÓN DE APRENDIZAJE INSTITUCIÓN EDUCATIVA INMACULADA DE LA MERCED SESIÓN DE APRENDIZAJE APRENDIZAJE ESPERADO Determina la regla de orrespondenia de una funión Representa e Identifia funiones Resuelve operaiones on funiones

Más detalles

Identificando las variables en una fórmula dada

Identificando las variables en una fórmula dada Bitácora del Estudiante Identificando las variables en una fórmula dada Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El depósito de agua de Valle Coney está construido como

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANTABRIA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas CUESTIONES ( puntos cada una) A. Se considera

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

- RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre.

- RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre. - RADIACIÓN SOLAR. Leyes. Variabilidad. Balance de la radiación solar entre la que llega y sale de la superficie terrestre. La radiación solar es el conjunto de radiaciones electromagnéticas emitidas por

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres Inertidumres Es posile otener el valor real (exato) de una magnitud a través de mediiones? Aunque pareza sorprende, la respuesta a esta pregunta es NO. El proeso de mediión involura neesariamente el uso

Más detalles

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1 Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación

Más detalles