Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves,"

Transcripción

1 Explicación e la velocia e rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, yulalebran9@gmail.com) A continuación se presenta una emostración e la velocia e rotación en galaxias espirales, que puee coinciir en la forma observaa en contraste con la interpretación Kepleriana. Para tal emostración se utiliza la ecuación e Euler-Lagrange o el Lagragiano, aplicaa a una órbita e un objeto puntual e masa m que se moverá alreeor el centro galáctico e masa M separao una istancia inámica r. Veamos la siguiente fig. e la galaxia: Análisis el Lagragiano: Fig. ) El Lagragiano el objeto m viene ao por (sin usar relativia): L = Ec Ep = Energía cinética Energía Potencial ec. L = mv + GM r mr Sieno el cuarao e la velocia e rotación: v = r + r θ Entonces el Lagragiano es: ec. ec. 3

2 L = m(r + r θ ) + GM r m ec. 4 ) Aplicano la ecuación e Euler-Lagrange respecto al ángulo e rotación, tenemos: Observamos que: L θ = 0 t ( L ) L θ θ = 0 ec. 5 L = mr θ θ Luego sustituyeno en la ec.5: t (mr θ ) L θ = 0 => t (mr θ ) 0 = 0 => t (mr θ ) = 0 Por lo tanto la cantia entro el paréntesis ebe ser una constante: De allí que poemos hacer: mr θ = l = constante θ = l mr ec. 6 3) Aplicano la ecuación e Euler-Lagrange respecto al raio e rotación, tenemos: Observamos que: L r = mrθ GMm r t ( L ) L r r = 0 ec. 7 L = mr => r t ( L ) = mr r Luego sustituyeno en la ec.7: mr mrθ + GMm r = 0

3 r rθ + GM = 0 ec. 8 r Ahora si sustituimos la ec.6 en la ec.8, entonces: r r l m r 4 + GM r = 0 r l m r 3 + GM = 0 ec. 9 r Si multiplicamos toa la ecuación ec.9 por r, tenremos: Se puee interpretar que: r r l GM m r + r = 0 ec. 0 r3 r (r t ) + t ( l m r ) t (GM r ) = 0 Sacano el operaor erivaa: (r t + l m r GM r ) = 0 Concluimos que entro el paréntesis ebe ser una constante, esa constante es una velocia al cuarao, que la representaremos como vc : Al espejar r : r + l m r GM r = vc r = (vc + GM r ) l m r ec. Al sustituir la ec. y la ec.6 en la ec.3, resulta: Recorano que: v = r + r θ ec. 3

4 v = vc + GM r Por la tanto quea emostrao que la velocia e rotación orbital, tiene a una velocia istinta e cero y viene aa por: v(r) = (vc + GM r ) ec. 4) Interpretación e la velocia e rotación orbital aa por la ec.. Para ello veamos la fig. e la galaxia, y observemos la siguiente gráfica fig.: Fig. a) En el rango e raio rε[0, a], para reconstruir la gráfica e la fig. y vieno la fig., entro el volumen Vol, como normalmente se hace, poemos aproximarnos a una ensia constante D, entro el raio a : D = M (4π/3)r 3 => M(r) = D. (4π 3 ) r3 con rε[0, a] Usano la misma ec. entro el raio a, y sustituyeno la M(r) anterior,

5 v(r) = (vc + GM(r) r ) => v(r) = (vc + G. D. ( 4π 3 ) r ) Al ver la gráfica fig., notamos que en el raio 0 la velocia v(0)=0, entonces: v(r = 0) = (vc + G. D. ( 4π 3 ). 0 ) = 0 Por lo tanto: v(0) = 0 = (vc + 0) => vc = 0 Vemos también que en el raio a, la velocia es v a entonces: v(r = a) = v a = (G. D. ( 4π 3 ). (v a ) a ) => G. D = ( 4π 3 ). a Por lo tanto eucimos que entro el raio a : En efinitiva en el rango e raio rε[0, a]: (v a ) v(r) = (. ( 4π. ( 4π 3 ). 3 ). r ) a v(r) = v a ( r a ) ec. 3 b) En el rango e raio rε[a, ], poemos ecir que la ensia ecrece y es inversamente proporcional al cubo el raio, ya que la masa M permanece constante. Igualmente observano la fig. y la gráfica fig., junto a la ec.. Notamos que el factor fε[0,] lo poemos fijar como una fracción e la velocia pico o v a, así se tenrá una velocia f. v a que se alcanzará a un raio n -veces a o r = n. a, con too ello presente, ahora poemos ecir que: v(r) = (vc + GM r ) ec.

6 v(r = a) = v a = (vc + GM a ) => vc = (v a GM a ) ec. 4 Al sustituir la constante vc en la ec., tenremos: v(r) = (v a + GM ( r a )) ec. 5 Ahora si tomamos el punto one el raio es r = n. a y la velocia es f. v a y sustituyénola en la ec.5, y espejano G.M, notamos que: GM = n. a. ( f ) n v a ec. 6

7 5) Interpretación kleperiana ec.8, la cual sabemos que parte e pensar que la velocia e rotación en rε[a, ], es: v(r) = (GM ( )) r para ella GM = a. va ec. 7 entonces: v(r) = v a ( a r ) ec. 8 Interpretación Kleperiana 6) Resumen comparativo e las ecuaciones eucias: La interpretación Lagragiana y kepleriana coincien en el rango rε[0, a] v(r) = v a ( r a ) ec. 3 Interpretación Lagragiana en el rango rε[a, ]: v(r) = (vc + GM r ) ec. vc = (v a GM a ) v(r) = (v a + GM ( r a )) ec. 4 ec. 5 GM = n. a. ( f ) n v a ec. 6 Sieno v(r = n. a) = f. v a Interpretación Kleperiana en el rango rε[a, ]: GM = a. v a v(r) = v a ( a r ) ec. 7 ec. 8

8 7) Uso e Excel para graficar, usano el resumen comparativo e las ecuaciones eucias, usano valores imaginarios o genéricos (se colocó apropósito una pequeña iferencia en los valores e la velocia Kepleriana, entro el raio rε[0, a] para aprecias los colores, pero sabemos que eberían ser iguales, ec.3): 8) Algunas gráficas tomaas e Internet con curvas reales e rotación e galaxias y comparaas con una interpretación teórica Kepleriana: 8) Como observamos la interpretación Kleperiana hace ecar a cero (0) la velocia a meia que el raio r aumenta. Mientras que la interpretación Lagragiana, previamente eucia, tiene a una asíntota horizontal e velocia istinta e cero. Esta interpretación Lagragiana es compatible con la observación real e las galaxias, por tal motivo, hay una coinciencia y en un primer momento vuelven a encontrase la teoría con la realia. 9) El factor fε[0,] genera una familia e curvas que van ese las que caen más abruptamente que la klepleriana, pasano por la klepleriana si f=0.5 hasta muy planas si f=0.99, por ello vemos muchas curvas en las galaxias.

9 0) Poemos observar que el factor fε[0,], también nos ice que al tener a cero(0) la masa e la galaxia M es más alta y la curva e rotación tiene más ecaimiento, mientras que si el factor tiene a uno(), la masa M es más baja y la curva e rotación es muy plana. Si vamos más allá, y colocamos el factor f por encima e uno() la masa M a negativa, y la curva tiene a subir, por encima e v a, es como si existiera un tipo e materia istinta a la que bariónica, tal vez materia oscura, pero con energía negativa. La ecuación no se ve restringia con el valor negativo e M, e encontrarse curvas así, la interpretación Lagragiana expuesta aquí, también coincie con ello, lo preice. Factor f=0.6 Factor f=0,95 Factor f=, Pic6f4550_yul

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

1, / 3, /

1, / 3, / 1. Teneos un rectánulo e e base y 1 e alto. En tres e sus cuatro esquinas se colocan 3 asas iuales e k caa una. Calcula razonaaente: a. El vector intensia e capo ravitatorio en la otra esquina. b. El potencial

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger Ecuación e Schröinger En cuanto a onas electromagnéticas, ya vimos que su comportamiento está regio por las ecuaciones e Maxwell. También hemos visto que a una partícula con masa se le puee asignar una

Más detalles

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017 EXAME EXTRAORDIARIO DE FÍSICA I. CUESTIOES 30/0/07.- a) Defina el momento angular e una partícula. Demostrar que si la partícula se mueve en un plano, la irección el momento angular permanece constante.

Más detalles

Nombre:...Curso:... CAMPO ELECTRICO

Nombre:...Curso:... CAMPO ELECTRICO Nombre:...Curso:... CAMPO ELECTRICO El concepto e campo es un importante meio para la escripción e algunos fenómenos físicos, un ejemplo e esto es el caso e la Tierra, ya que cualquier objeto e masa m

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO 1 4.04 01 a) El campo eléctrico asociao a la función potencial V = xy+3x 3 z+2x 2, en elpunto (1,1,2). b) El trabajo realizao para llevar una unia e carga positiva, a velocia cosntante, ese el punto (1,2,0)

Más detalles

Principio de incertidumbre de Heisenberg

Principio de incertidumbre de Heisenberg Principio e incertiumbre e Heisenberg n un átomo e irógeno, nos se pueen meir simultáneamente la cantia e movimiento mv y la posición e su electrón. a cantia e movimiento e una partícula se enomina momento,

Más detalles

A y B

A y B TIVIDDES DE MTRIES. º HILLERTO Hallar el rango e la matriz: 7 8 7 9 8 Se observa que el menor e oren formao por la primera y tercera filas y columnas no es nulo sino igual a 8, veamos: 8 Luego rg () es

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema). Eamen e Física-1, 1 Ingeniería Química Eamen final. Septiembre e 2013 Problemas Dos puntos por problema). Problema 1 Primer parcial): Un cuerpo e masa m = 0, 5kg se lanza hacia abajo meiante un muelle

Más detalles

Ayudantía 2. Ley de Coulomb 08 de Marzo de 2018 Ayudante: Matías Henríquez - Nm 2. e = [C] (1.3)

Ayudantía 2. Ley de Coulomb 08 de Marzo de 2018 Ayudante: Matías Henríquez - Nm 2. e = [C] (1.3) Pontificia Universia Católica e Chile Faculta e Física FIS533 - Electricia y Magnetismo // -28 Profesor: Giuseppe De Nittis - gienittis@uc.cl Ayuantía 2 Ley e Coulomb 8 e Marzo e 28 Ayuante: Matías Henríquez

Más detalles

Problemas de Campo Eléctrico. Boletín 1 Tema 1

Problemas de Campo Eléctrico. Boletín 1 Tema 1 1/17 Problemas e Campo Eléctrico Boletín 1 Tema 1 Fátima Masot Cone Ing. Inustrial 1/11 Problema 1 Dos partículas cargaas con cargas iguales y opuestas están separaas por una istancia. Sobre la recta que

Más detalles

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday.

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday. 1. Qué es capacitancia? Se efine como la razón entre la magnitu e la carga e cualquiera e los conuctores y la magnitu e la iferencia e potencial entre ellos. La capacitancia siempre es una cantia positiva

Más detalles

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa

Más detalles

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo Campo Eléctrico U 01. Dos partículas e masa 10 g se encuentran suspenias ese un mismo punto por os hilos e 30 cm e longitu. Se suministra a ambas partículas la misma carga, separánose e moo ue los hilos

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

PROBLEMA RESUELTO No 1

PROBLEMA RESUELTO No 1 PROBLM RSULTO No onsiere un conensaor e placas paralelas, caa una con un área e.m y separaas una istancia cm. este conensaor se le aplica una iferencia e potencial voltios hasta ue el conensaor se carga,

Más detalles

Matemticas V: Cálculo diferencial

Matemticas V: Cálculo diferencial Matemticas V: Cálculo iferencial Soluciones Tarea 8. Para caa una e las siguientes ecuaciones encuentra la ecuación e la recta tangente a la curva en el punto ao p. (a) x y + xy, p (, ). Suponemos que

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA /4/8 ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA /4/8 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

Más detalles

TITULO. Estudio analítico para hallar un modelo matemático que optimiza un perfil de ojiva balístico (región subsónica, sónica y supersónica)

TITULO. Estudio analítico para hallar un modelo matemático que optimiza un perfil de ojiva balístico (región subsónica, sónica y supersónica) TITULO Estuio analítico para hallar un moelo matemático que optimiza un perfil e ojiva balístico (región subsónica, sónica supersónica) Por Alfreo R Garasini RESUMEN Partieno e una función e isipación

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

I1-Astrobiología. April 21, 2016

I1-Astrobiología. April 21, 2016 I1-Astrobiología April 21, 2016 1. on respecto a las órbitas e cuerpos celestes (en general, en un sistema e os cuerpos), cuál e las siguientes afirmaciones es falsa? A) Las órbitas pueen ser cerraas o

Más detalles

Tema 5 Cosmología. Gravitación Universal

Tema 5 Cosmología. Gravitación Universal Tema 5 Cosmología Gravitación Universal Profesor.- Juan J. Sanmartín Roríguez Curso 01/013 Ley e la Gravitación Universal La gravea es una fuerza atractiva, y e acuero con la Tercera Ley e Newton, las

Más detalles

por lo que la expresión del momento de inercia es similar para el cubo y para la lámina, cambiando únicamente la masa.

por lo que la expresión del momento de inercia es similar para el cubo y para la lámina, cambiando únicamente la masa. PROBLEMAS Un cuo sólio e maera e laos e longitu a y masa M escansa sore una superficie horizontal El cuo está restringio a girar alreeor e un eje a) Determinar el momento e inercia el cuo respecto al eje

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

Problema 1 (4 puntos)

Problema 1 (4 puntos) Problema 1 (4 puntos) A principios e siglo XX, Robert Millikan esarrolló un métoo para eterminar la carga eléctrica e gotas e aceite. El montaje experimental que utilizó está representao en la figura.

Más detalles

ELECTRICIDAD 6. Campo eléctrico 1

ELECTRICIDAD 6. Campo eléctrico 1 LCTRICIDAD 6. Campo eléctrico 0*. n 838, Faraay, a través e los experimentos realizaos con los campos magnéticos y visualizar como se orientaba el polvillo e hierro en tales campos, sugirió una forma e

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSIA GENERAL II GUÍA 4 onensaores y Dieléctricos. Ojetivos e aprenizaje Esta guía es una herramienta ue uste ee usar para lograr los siguientes ojetivos: omprener el funcionamiento e un conensaor eléctrico.

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento e Física Aplicaa III Escuela Técnica Superior e Ingenieros Camino e los Descubrimientos s/n 4109 Sevilla Examen e Campos Electromagnéticos (1 a convocatoria). o e Inustriales. Febrero-011

Más detalles

Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Pre saberes: Despeje de ecuaciones. Concepto de línea recta. Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:.

Más detalles

Práctico 4: Funciones inversas

Práctico 4: Funciones inversas Práctico 4: Funciones inversas 1. Averiguar acerca e la inyectivia e las siguientes funciones en sus ominios naturales: 1.- y = ax + bx + c con a 6= 0.- y = x + ax + b con a>0.- y = x + ax + b con a

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

PROBLEMAS DE TEOREMA DE LA DIVERGENCIA

PROBLEMAS DE TEOREMA DE LA DIVERGENCIA PROBLMA D TORMA D LA DIVRGNCIA NUNCIADO DL TORMA ea una región simple sólia cua superficie frontera tiene una orientación positiva (hacia afuera). ea un campo vectorial cuas funciones componentes tienen

Más detalles

= 3, electrones F = K

= 3, electrones F = K 6 Campo eléctrico Activiaes el interior e la unia. Con frecuencia, cuano os cuerpos se frotan, auieren cargas iguales e signo opuesto. Explica ué sucee en el proceso. La fricción hace ue pasen electrones

Más detalles

mv 9, r 0,057 m 1, F F E q q v B E v B N C

mv 9, r 0,057 m 1, F F E q q v B E v B N C 1. Un electrón que se mueve a través e un tubo e rayos catóicos a 1 7 m/s, penetra perpenicularmente en un campo e 1-3 T que actúa sobre una zona e 4 cm a lo largo el tubo. Calcula: a) La esviación que

Más detalles

Preparación para los Tutoriales Herramientas Astronómicas

Preparación para los Tutoriales Herramientas Astronómicas Preparación para los Tutoriales Herramientas Astronómicas Proyecto Ventana Interactiva al Universo Departamento e Ingeniería Eléctrica, Universia e Chile c Primavera 2005 Resumen En el presente tutorial

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

http://www.matematicaaplicaa.co.cc jezasoft@gmail.com e MATEMÁTICA APLICADA TECNOLOGIA EN ELECTRÓNICA CÁLCULO TALLER DE DERIVADAS Manizales, 26 e Marzo e 20 Solucionar los siguientes problemas referenciaos

Más detalles

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena Escuela Técnica Superior e Ingeniería e Telecomunicación CAMOS ELECTOMAGNÉTICOS ráctica 3. La Teoría e Imágenes..-rofesores: ero Vera Castejón Alejanro Álvare Melcón Fernano Quesaa ereira 1 1. Introucción

Más detalles

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico.

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico. MMII_CV_c CÁLCULO VARIACIONAL: Introucción moelo básico. Guión Esta es una clase e introucción al Cálculo e Variaciones (CV). Por un lao, se establece su relación con otros campos e la Optimización en

Más detalles

CASTILLA LEÓN / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LEÓN / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CASTILLA LEÓN / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLETO OPCIÓN A Caa alumno elegirá obligatoriamente una e las os opciones que se proponen. La puntuación máxima es e 3 puntos para caa problema y e puntos

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Curso Introductorio a las Matemáticas Universitarias

Curso Introductorio a las Matemáticas Universitarias Curso Introuctorio a las Matemáticas Universitarias Tema 8: Derivación Víctor M. Almeia Lozano Jorge J. García Melián Licencia Creative Commons 2013 8. DERIVACIÓN En este tema veremos el concepto e erivaa

Más detalles

Funciones algebraicas.

Funciones algebraicas. UNIDAD 9: UTILICEMOS LAS FUNCIONES ALGEBRAICAS. Funciones algebraicas..1 Funciones polinomiales. Estudiaremos las funciones siguientes: constante, lineal, cuadrática y cúbica. Función constante. Las funciones

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS II

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS II º. LA PALANCA. En una palanca e primer género colocamos en uno e sus extremos una peso e 0 N. Si la palanca tiene una longitu e 3 m, calcular la istancia e la resistencia al fulcro para poerla equilibrar

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables MATEMÁTICAS II Valores etremos Curso - e unciones e varias variables EJERCICIOS ) Calcular el volumen e la caja rectangular más grane situaa en el primer octante con tres e sus caras en los planos coorenaos

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

Distancia Focal de una Lente Delgada

Distancia Focal de una Lente Delgada Distancia Focal e una Lente Delgaa Objetivo: Análisis e iversas lentes elgaas. Equipamiento Teoría Banco Optico Lente convexa Lente concava Fuente e luz (Ampolleta) Fuente e poer para la ampolleta Pantalla

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

6. MODELOS KT-KD DIARIOS, CÁCERES

6. MODELOS KT-KD DIARIOS, CÁCERES 6. MODELOS KT-KD DIARIOS, CÁCERES Una vez realizao el control e calia e los atos registraos en la estación e Cáceres se escartan, para el esarrollo el moelo e escomposición iaria, aquellos ías que no hayan

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

Fundamentos de la mecánica cuántica

Fundamentos de la mecánica cuántica Funamentos e la mecánica cuántica Antonio M. Márquez Departamento e Química Física Universia e Sevilla Curso 216-217 Problema 1 Las líneas observaas en el espectro e emisión el irógeno atómico vienen aas

Más detalles

FACULTAD DE INGENIERIA

FACULTAD DE INGENIERIA UNIVERSIDD NIONL DE SN JUN FULTD DE INGENIERI DEPRTMENTO DE FISI SIGNTUR : ESPEILIDD : Ing. IVIL GUI DE PROLEMS N 3 FULTD DE INGENIERI 2017 1 TRJO Y ENERGI-URSO 2017 UNIVERSIDD NIONL DE SN JUN FULTD DE

Más detalles

2.1. Derivada de una función en un punto

2.1. Derivada de una función en un punto Capítulo 2 Diferenciación 1 2.1. Derivaa e una función en un punto Ritmo (o razón, o tasa) e cambio e una función en un momento ao. Peniente e la recta tangente. Aproximación por la peniente e las rectas

Más detalles

() 25 de mayo de / 9

() 25 de mayo de / 9 DEFINICION. Una función es iferenciable en a si f (a) existe, y iremos que es iferenciable en un intervalo abierto si es iferenciable en caa uno e los puntos el intervalo. NOTA. Para las funciones que

Más detalles

7.- LÍMITES DE FUNCIONES. CONTINUIDAD.

7.- LÍMITES DE FUNCIONES. CONTINUIDAD. 7.- LÍMITES DE FUNCIONES. CONTINUIDAD. Para calcular límites de funciones podemos hacerlo de dos formas: Se escribe primero la función, una vez seleccionada, pinchamos el icono Cálculo / Límites. Aparece

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

TEMA 4 CAMPO MAGNÉTICO EN EL VACÍO

TEMA 4 CAMPO MAGNÉTICO EN EL VACÍO Física II TEMA 4.- CAMPO MAGNÉTICO EN EL VACÍO \ 1 TEMA 4 CAMPO MAGNÉTICO EN EL VACÍO 1.- Fenómenos magnéticos Aproximaamente ese el año 800 a.c. los griegos ya conocían el fenómeno el magnetismo a través

Más detalles

Teoria orbital general en un espacio-tiempo con simetria esferica.

Teoria orbital general en un espacio-tiempo con simetria esferica. Teoria orbital general en un espacio-tiempo con simetria esferica. por M. W. Evans y H. Eckardt Civil List y AlAS / UPITEC (www.aias.us, www.upitec.org, www.et3m.net, www.archive.org, www.webarchive.org.uk)

Más detalles

PÁGINA DE ALCIDES JOSÉ LASA NOTAS DE CLASE. MONETIZACIÓN DE LOS DÉFICIT Señoreaje e impuesto inflacionario

PÁGINA DE ALCIDES JOSÉ LASA NOTAS DE CLASE. MONETIZACIÓN DE LOS DÉFICIT Señoreaje e impuesto inflacionario PÁGINA DE ALCIDES JOSÉ LASA NOTAS DE CLASE MONETIZACIÓN DE LOS DÉFICIT Señoreaje e impuesto inflacionario Una moalia e financiamiento el éficit público es la emisión e inero (en el sentio usual que consiste

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

mv 9, r 0,057 m 1, F F E q q v B E v B N C

mv 9, r 0,057 m 1, F F E q q v B E v B N C . Un electrón que se mueve a través e un tubo e rayos catóicos a 7 m/s, penetra perpenicularmente en un campo e -3 T que actúa sobre una zona e 4 cm a lo largo el tubo. Calcula: a) La esviación que ha

Más detalles

FÍSICA FARMACIA. EXTRAORDINARIO JUNIO 2011

FÍSICA FARMACIA. EXTRAORDINARIO JUNIO 2011 FÍSICA FAMACIA. ETAODINAIO JUNIO 0 POBLEMA ( p). Un accientao reuiere ue se le apliue tracción en la pierna, lo cual se consigue meiante un sistema e poleas como el mostrao en la figura. (a) Dibujar el

Más detalles

ACTIVIDADES. q e. no cumpliría el principio de cuantización. En conclusión, tal carga aislada no es posible.

ACTIVIDADES. q e. no cumpliría el principio de cuantización. En conclusión, tal carga aislada no es posible. 3 Campo eléctrico ACTIVIDADS. Qué cantia e electrones es necesaria para obtener una carga total e, mc? l número e electrones necesarios es: N. q e (, 0 3 C ) (,6 0 9 C ) 7,5 05 9 s posible encontrar un

Más detalles

Movimientos planetarios complejos Movimientos retrogrados. Un poco de historia

Movimientos planetarios complejos Movimientos retrogrados. Un poco de historia Gravedad Movimientos planetarios complejos Movimientos retrogrados Un poco de historia Un poco de historia Ya en el 400 a.c. Eudoxo desarrolla un modelo para explicar el movimiento planetario, con esferas

Más detalles

COMPARACIÓN DEL MOVIMIENTO DE TROMPOS

COMPARACIÓN DEL MOVIMIENTO DE TROMPOS COMPARACÓN DEL MOVMENTO DE TROMPOS K. A. Meza-Martínez a L. A. Peralta-Martínez a A. Gaona-Oroñez a a Departamento e Ciencias Básicas Universia Autónoma Metropolitana - Azcapotzalco México DF atzin_kammak@hotmail.com

Más detalles

, de lo que d, como se expone en d. 62. De las gráficas dadas la que mejor corresponde con la interpretación de la ley de Coulomb:

, de lo que d, como se expone en d. 62. De las gráficas dadas la que mejor corresponde con la interpretación de la ley de Coulomb: ELECTRICIDAD 4. Ley e Coulomb 6. Aunque la balanza e torsión fue creaa por el geólogo inglés Michell, para conocer la intensia sísmica, fue mejoraa por su paisano Cavenish, para comprobar y completar la

Más detalles

J. Alpuente. rad 2. 2 iso. Sustituyendo valores, queda este módulo, expresado en unidades del sistema internacional, como. 30. prad = (V/m) d.

J. Alpuente. rad 2. 2 iso. Sustituyendo valores, queda este módulo, expresado en unidades del sistema internacional, como. 30. prad = (V/m) d. Ingeniería e Telecomunicación Proagación e Onas Antenas básicas 7 J. Aluente La UIT-R consiera que, atenieno rincialmente a las banas e frecuencia, han e utilizarse como enas e referencia las enominaas

Más detalles

Soluciones 1er parcial de Fisica II Comisión B2 - Jueves - Tema 2

Soluciones 1er parcial de Fisica II Comisión B2 - Jueves - Tema 2 Soluciones er parcial e Fisica II Comisión B2 - Jueves - Tema 2 e septiembre e 205. Ley e Coulomb.. Enunciao Dos placas paralelas conuctoras, separaas por una istancia = cm, se conectan a una fuente e

Más detalles

Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería

Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Grado en Ingeniería Aeroespacial Física I Segunda prueba de control, Enero 2016. Curso 2015/16 Nombre: DNI: Este test se recogerá

Más detalles

Ecuaciones de Lagrange. Ecuaciones de lagrange. Mecánica 2018

Ecuaciones de Lagrange. Ecuaciones de lagrange. Mecánica 2018 Ecuaciones e Lagrange En el capítulo anterior hemos obtenio el principio e Alembert y mostrao como éste puee ser usao para encontrar las ecuaciones e movimiento. Esta aproximación es conveniente cuano

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

III. Surgimiento de la Teoría Gravitacional de Nordström

III. Surgimiento de la Teoría Gravitacional de Nordström III. Surgimiento e la Teoría Gravitacional e Norström 3.1 Discusión sobre gravitación con relativia general y con gravitación escalar Uno e los estuios más importantes e Einstein fue la generalización

Más detalles

TEMA 9 Electrostática

TEMA 9 Electrostática Bases Físicas y Químicas el Meio Ambiente TMA 9 lectrostática Cargas eléctricas ntre os cuerpos hay siempre fuerzas atractivas ebio a sus respectivas masas y pueen existir otras fuerzas entre ellos si

Más detalles

b) El número de líneas de campo eléctrico atravesando el cubo es el mismo que el número de líneas de campo

b) El número de líneas de campo eléctrico atravesando el cubo es el mismo que el número de líneas de campo CUETIONE TEOREMA DE GAU G1.- Una carga eléctrica puntual está situaa entro e un cubo que a su vez está roeao por una esfera e mayor tamaño. Explicar razonaamente si las siguientes afirmaciones son ciertas

Más detalles

FUERZAS Y MOVIMIENTOS EN EL UNIVERSO

FUERZAS Y MOVIMIENTOS EN EL UNIVERSO EFUEZO FUEZAS Y OVIIEOS E EL UIVESO AIVIDADES DE EFUEZO 1 alculamos el peso e un cuerpo en la ierra multiplicano su masa (en ) por el factor 9,8 (/). uál es el peso e un cuerpo e 5? El peso e un cuerpo

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles