Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pre saberes: Despeje de ecuaciones. Concepto de línea recta."

Transcripción

1 Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:. Deterina la istancia el punto eio entre os puntos en el plano cartesiano. (Página 5 5).. Calcular e interpretar la peniente e una recta (p. 67).. Representar gráficaente rectas aos un punto la peniente (p. 70).. Deterinar la ecuación e una recta vertical horizontal(p. 70).5 Usar la fora punto-peniente e una recta para eterinar la ecuación general e una recta ao un punto la peniente (p. 7)..6 Deterinar la ecuación e una recta aos os puntos (p. 7)..7 Escribir la ecuación e una recta en la fora peniente-orenaa (p. 7)..8 Ientificar la peniente e intersección con el eje e una recta a partir e su ecuación (p. 7)..9 Representar gráficaente rectas escritas en la fora general usano intersecciones. (p. 7)..0 Deterinar ecuaciones e rectas paralelas (p. 75). Deterinar ecuaciones e rectas perpeniculares (p. 76)) Objetivo #.Deterinar la istancia el punto eio entre os puntos en el plano cartesiano:..distancia entre os puntos La istancia entre os puntos P = (X Y ) P = (X Y ) que se enota por (P₁P₂) es igual a:

2 Ejeplo # : Deterina la istancia entre los puntos (-5) (). Usano la fórula e istancia e la ecuación () la istancia es Punto eio e un segento e recta TEOREMA: El punto eio M = () el segento e recta e P₁= (₁ ₁) a P₂ = (₂ ₂) es igual a: Ejeplo # : Encuentra el punto eio el segento e F = (-55) a P = (). Haz una gráfica e los puntos P₁ P₂ e su punto eio. Aplicano la fórula e punto eio toaos X₁ = -5 Y₁ = 5 X₂ = Y₂ =. Entonces las coorenaas (X Y ) el punto eio M son: M M M M Objetivo #.: Calcular e interpretar la peniente e una recta (p. 67). Sean P = ( ) Q =( ) os puntos istintos. Si la peniente e la línea no vertical L que contiene a P Q se efine por la fórula: =

3 Si = L es una línea vertical la peniente e L no está efinia (a que esto resulta en un ivisión entre 0). Si la recta es paralela al eje = lo que iplica que la iferencia e las isas es cero por lo tanto la peniente es cero. La peniente e una recta no vertical L ie el cabio en cuano cabia e a. Esto se llaa razón e cabio proeio e respecto a. Ejeplo #: Calcule la peniente e la recta L eterinaa por los puntos (-6) (58). 8 6 = 6 ( ) = 0 = 5 La peniente es una razón e es a por lo cual la interpretación e este valor inica que caa cabio e cinco uniaes en varía una unia. Objetivo #.: Representar gráficaente rectas aos un punto la peniente (p. 70) Ejeplo #: Grafique la recta que contiene el punto () cua peniente es ¾ Solución: Paso #: Coo conoceos que =/. Por lo tanto Δ= Δ= Paso #: Localizaos el punto () en el plano.

4 Paso #: A partir e este punto contaos uniaes horizontales a la erecha uniaes verticales a que tanto Δ coo Δ son positivos. Paso #: Localizaos el seguno punto según la peniente trazaos la recta Objetivo #. Deterinar la ecuación e una recta vertical horizontal (p. 70) Una vez analizaa la peniente e una recta se pueen erivar las ecuaciones e las rectas. Eisten varias foras e epresar la ecuación e una recta... Ecuación e una recta vertical Una recta vertical está aa por una ecuación e la fora: = a Done la a es la intercepción en el eje Ejeplo #5 : Elabore la gráfica e la ecuación = - Coo la ecuación no tiene variable es una asíntota vertical lo que iplica que su peniente es infinita

5 .. Ecuación e una recta horizontal o asíntota horozontal Una recta vertical está aa por una ecuación e la fora: = a Done la a es la intercepción en el eje Ejeplo #5 : Elabore la gráfica e la ecuación = - Coo la ecuación no tiene variable es una asíntota horizontal lo que iplica que su peniente es cero. Objetivo #.5 Usar la fora punto-peniente e una recta para eterinar la ecuación general e una recta ao un punto la peniente (p. 7). Dao L una recta no vertical con peniente que contiene el punto ().según la figura. Para cualquier punto ( ) en L se tiene que = ( ) = ( ) Lo que se conoce coo fora punto-peniente e una recta. (-) Ejeplo # 6: Deterine la ecuación e una recta e peniente = que contiene un punto Solución: Reeplazaos el valor e la peniente el punto en la fora punto-peniente ( ) = ( ) ( ( )) = ( ) ( + ) = ( ) + = = 0

6 Objetivo #.6 Deterinar la ecuación e una recta aos os puntos (p. 7). Ejeplo # 5: Deterine la ecuación general e una recta que contiene los puntos (-) (56) Solución: Priero calculaos la peniente 6 = 5 = 8 = 8 Con uno e los puntos aplicaos la fora punto-peniente para obtener la ecuación general e la recta. ( ) = ( ) ( ( )) = 8 ( ) ( + ) = 8 + = 8 8 = 0 8 = 0 Objetivo #.7: Escribir la ecuación e una recta en la fora penienteorenaa (p. 7). Esta fora e escribir la ecuación es útil para conocer la peniente e intercepción en el eje igual a b. En este caso la peniente es el núero elante e la la intersección en el eje nos lo a el térino nuérico sieno el punto (0 b) la intersección; se usa la fora punto-peniente para obtener la siguiente ecuación: ( ) = ( ) ( b) = ( 0) b = = + b A esta fora se le conoce coo Fora peniente-orenaa Ejeplo #6: Escriba la ecuación e la fora peniente- orenaa para eterinar la peniente la intercepción igual a b e la recta cua ecuación es - = 8. Grafique la ecuación Despejaos la variable Y para epresar i ecuación e la fora peniente orenaa

7 La peniente =/ la intersección en el eje es b=- ó (0-) Calculaos la intercepción en igualano =0 0 teneos el punto e intercepción en (0) Objetivo #.8 Ientificar la peniente e intersección con el eje e una recta a partir e su ecuación (p. 7). Una vez que se espeja una ecuación general e un recta se epresa en la fora peniente orenaa. Se puee conocer el valor la peniente cuál es la intersección con el eje. Dao que el núero que tenga la elante correspone a la peniente el terino inepeniente o nuérico representa el punto e intersección en la orenaa cuano la abscisa es cero. Ejeplo # 7: Deterine el valor e la peniente e intersección en el eje e la ecuación --8=0 Solución: Despejaos la para epresar la ecuación e la fora peniente orenaa -=-+8 Y=- La peniente e la recta es = la intersección en el eje es igual a (0-) Dao que si =0 entonces =(0)-= - Objetivo #.9 Representar gráficaente rectas escritas en la fora general usano intersecciones. (p. 7).

8 Ejeplo # 8: Daa la ecuación e la recta -+=0 elabore su gráfico toano eterinano las intersecciones en los ejes. Solución: Epresaos la ecuación e la fora peniente-orenaa para eterinar la intersección en el eje. -+=0 Objetivos #.0 #. Deterinar ecuaciones e rectas paralelas perpeniculares (p. 75) (p. 76)) Rectas paralelas perpeniculares. Dos rectas son paralelas si sus penientes son iguales. Si L ll L Si L ll L Si os rectas son perpeniculares la peniente e una es inversa e la otra con signo contrario. Si la peniente e una recta es la inversa con signo contrario e la otra entonces estas rectas son perpeniculares. Si L L Si L L Ejeplo # 9 : Deterine la ecuación e la recta paralela a la recta +=6 que pasa por el punto (-5). Solución: Las rectas son paralelas iplica que sus penientes son iguales. Por lo tanto ebeos escribir la ecuación e la recta aa en la fora peniente-orenaa para eterinar la peniente La peniente =-/ su intercepción en el eje es (0) Por lo tanto la peniente e la recta que buscaos es =-/. Utilizano la fora punto- peniente obteneos la ecuación general e la recta buscaa. ( ) 5 5 ( ( )) ( ) 5 ( )

9 Ejeplo # 0 : Deterine la ecuación e la recta perpenicular a la recta -=6 que pasa por el punto (-). Solución: Coo las rectas son perpeniculares la peniente e una es la inversa e la otra con signo contrario. Escribios la ecuación aa e fora peniente orenaa para eterinar el valor e su peniente e intercepción en el eje Coo la peniente =-/ la peniente e la recta perpenicular es =. Con el punto la peniente la fora punto peniente eterinaos la ecuación perpenicular (- )=(- ) (-(-))=(-) Y+= =0 --8=0 Taller # : Página 55: Probleas 959 Página 78: Probleas

3.7 DEFINICIÓN DE UNA RECTA

3.7 DEFINICIÓN DE UNA RECTA Página 40 3.7 DEFINICIÓN DE UNA RECTA Existen os foras para ejar bien efinia a una recta, pero antes e señalarlas es inispensable coprener bien el significao e la frase quear bien efinio. Un objeto quea

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

Ecuación vectorial de la recta en el plano y su ecuación cartesiana

Ecuación vectorial de la recta en el plano y su ecuación cartesiana iceo Técnico Aolfo Matthei ierano la Eucación Técnico Profesional Docente: Cristian Casas. GUIA MATEMATICA Departamento e Matemática Curso: 4 Meio Fecha : Puntos : NOMBRE: Nota : Ecuación vectorial e la

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES.

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. º Bachillerato Mateáticas I Tea 6: Geoetría analítica.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. Un Sistea de referencia en el plano está forado por: Un punto O llaado Origen

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

Para medir la pendiente de una recta, o sea su inclinación, se mide cuánto subió verticalmente en qué distribución horizontal.

Para medir la pendiente de una recta, o sea su inclinación, se mide cuánto subió verticalmente en qué distribución horizontal. página 9 4.1 DEFINICIONES Y CONCEPTOS PRELIMINARES 1) abscisa (el latín, abscissa cortaa, que corta. Se refiere a que corta a la vertical): Es el valor nuérico e la coorenaa x en el plano cartesiano. )

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Tema 4 resolución de sistemas mediante Determinantes

Tema 4 resolución de sistemas mediante Determinantes Tea 4 resolución de sisteas ediante Deterinantes. Estudio del carácter de un sistea Teorea de Rouché Estudia la copatibilidad de los siguientes sisteas resuélvelos si tienen solución: 5 5 4 a b c t t a

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 21 RECTA. 1) abscisa (del latín, abscissa = cortada, que corta. Se refiere a que corta a la vertical): Es

INSTITUTO VALLADOLID PREPARATORIA Página 21 RECTA. 1) abscisa (del latín, abscissa = cortada, que corta. Se refiere a que corta a la vertical): Es INSTITUTO VALLADOLID PREPARATORIA Página LA RECTA. DEFINICIONES Y CONCEPTOS PRELIMINARES ) abscisa (el latín, abscissa cortaa, que corta. Se refiere a que corta a la vertical): Es el valor nuérico e la

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA 1 ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA AUTORES: Cra. Laura S. BRAVINO Mgter. Oscar A. MARGARIA Esp. Valentina CEBALLOS SALAS Departaento de Estadística y Mateática

Más detalles

FUERZA E INTERACCIÓN

FUERZA E INTERACCIÓN FUERZA E INTERACCIÓN Unia 13 CONTENIDOS. 1.- Evolución histórica el concepto e fuerza (concepciones pregalineanas)..- Naturaleza e las fuerzas.1. Carácter vectorial e la fuerza... Meia e las fuerzas..3.

Más detalles

CONCEPTOS BÁSICOS DE CONFIABILIDAD

CONCEPTOS BÁSICOS DE CONFIABILIDAD CAPÍTULO II CONCEPTOS BÁSICOS DE CONFIABILIDAD El iseño e sistemas, comprene los aspectos más amplios e la organización e equipo complejo, turnos e operación, turnos e mantenimiento y e las habiliaes necesarias

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

TALLER DE PREPARACIÓN PARA EL PRIMER PARCIAL

TALLER DE PREPARACIÓN PARA EL PRIMER PARCIAL TALLER DE PREPARACIÓN PARA EL PRIMER PARCIAL 1. Si 2. Si 3. 4. e. f. g. h. 5. Determine si la gráfica de la figura es la gráfica de una función 6. Use la gráfica de la función dada en la figura para encontrar

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

Lección 2.4. El Sistema de Coordenadas y La Ecuación de la Recta. 21/02/2017 Prof. José G. Rodríguez Ahumada. 1 de 24

Lección 2.4. El Sistema de Coordenadas y La Ecuación de la Recta. 21/02/2017 Prof. José G. Rodríguez Ahumada. 1 de 24 Lección.4 El Sistema de Coordenadas La Ecuación de la Recta /0/07 Prof. José G. Rodríguez Ahumada de 4 Referencia: Actividades.4 Seccíón. Sistema de Coordenadas Cartesianas. Ejercicios de Práctica: 5-8.

Más detalles

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si Tabién se dice que dos núeros x = x 0 e y = y 0, satisfacen a una ecuación de la fora f (x; y), si al sustituir estos núeros en la ecuación, en lugar de las variables x e y, el prier iebro se convierte

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita:

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita: José María Martíne Meiano La esfera La superficie esférica la esfera es el conjunto e puntos el espacio que equiistan e otro punto fijo, llamao centro Si el centro es el punto Oa, b, c el raio vale r,

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

Distancia entre dos puntos

Distancia entre dos puntos GAE-05_MAAL3_Distancia entre dos puntos Distancia entre dos puntos Por: Sandra Elvia Pérez Para deterinar una expresión que te ayude a calcular la distancia entre dos puntos cualesquiera, toa los siguientes

Más detalles

Apuntes de Circuitos Eléctricos II Análisis de la respuesta de CA en régimen permanente sinusoidal

Apuntes de Circuitos Eléctricos II Análisis de la respuesta de CA en régimen permanente sinusoidal 01 Apuntes e Circuitos Eléctricos II Análisis e la respuesta e CA en régien peranente sinusoial En este ocuento se presenta un análisis e rees siples usano el étoo fasorial Usuario UTP UTP 4/07/01 1 1

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

EJERCICI0S PARA ENTRENARSE. Hacemos la tabla de valores y después representamos la función.

EJERCICI0S PARA ENTRENARSE. Hacemos la tabla de valores y después representamos la función. Unidad Funciones LINEALES EJERCICI0S PARA ENTRENARSE Representa las siguientes funciones: Haceos la tabla de valores después representaos la función. a)) - + b)) c)) 7 Unidad Funciones LINEALES + d)) e))

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

VECTORES: RECTAS Y PLANOS

VECTORES: RECTAS Y PLANOS ECTORES: RECTAS Y LANOS Determinar la ecuación e la recta que pasa por los puntos (3, 1, 0) y (1, 1, 2). Solución: I.T.I. 93, I.T.T. 04 Sea un punto A genérico e la recta e coorenaas ( x, y, z), los vectores

Más detalles

Una recta queda geométricamente determinada, si se conocen un punto P1 (P1 r) y la dirección determinada por un vector a.

Una recta queda geométricamente determinada, si se conocen un punto P1 (P1 r) y la dirección determinada por un vector a. Álgebra Geometría nalítica Recta en E E - Plano Faculta Regional La Plata Recta en E (punte basao en LGEOMETRI el Ing. Lope, arlos) Lugar geométrico e los puntos tales que, tomaos os puntos cualesquiera

Más detalles

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x CURSO 22-23. Septiebre de 23. ) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: f() -e 2) Utilizando la definición, calcula las derivadas laterales de la función f()

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen

Más detalles

1, / 3, /

1, / 3, / 1. Teneos un rectánulo e e base y 1 e alto. En tres e sus cuatro esquinas se colocan 3 asas iuales e k caa una. Calcula razonaaente: a. El vector intensia e capo ravitatorio en la otra esquina. b. El potencial

Más detalles

INSTITUTO UNIVERSITARIO DE CALDAS GUÍA TALLER GEOMETRÍA ANALÍTICA. GRADO 11-4 DOCENTE: CRISTINA CANO.

INSTITUTO UNIVERSITARIO DE CALDAS GUÍA TALLER GEOMETRÍA ANALÍTICA. GRADO 11-4 DOCENTE: CRISTINA CANO. Distancia entre dos puntos del plano INSTITUTO UNIVERSITARIO DE CALDAS Dados dos puntos cualesquiera A(1,y1), B(,y), definimos la distancia entre ellos, d(a,b), como la longitud del segmento que los separa.

Más detalles

Difracción producida por un cabello Fundamento

Difracción producida por un cabello Fundamento Difracción proucia por un cabello Funamento Cuano la luz láser se hace inciir sobre un cabello humano, la imagen e ifracción que se obtiene es similar a la que prouce una oble renija (fig.1). Existe una

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA 1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Grafique, clasifique determinando el dominio y el rango de las siguientes funciones x. 10. x x 3

Grafique, clasifique determinando el dominio y el rango de las siguientes funciones x. 10. x x 3 Grafique, clasifique determinando el dominio y el rango de las siguientes funciones... f ( ) f ( ) f ( ) 3. 3 f ( ) 4. 3 f ( ) 3 5. f ( ) 6. 4 f ( ) 7. 5 3 8. 3 f ( ) ( ) f ( ) 9. 6.. 3. f ( ) f ( ) f

Más detalles

A y B

A y B TIVIDDES DE MTRIES. º HILLERTO Hallar el rango e la matriz: 7 8 7 9 8 Se observa que el menor e oren formao por la primera y tercera filas y columnas no es nulo sino igual a 8, veamos: 8 Luego rg () es

Más detalles

Apoyo. Dominio y rango de una recta horizontal, y recta vertical que no es una función. es una constante.

Apoyo. Dominio y rango de una recta horizontal, y recta vertical que no es una función. es una constante. Línea Recta I. Línea recta. Apoo. Dominio rango de una recta horizontal, recta vertical que no es una función. Forma estándar de la ecuación de una recta m b Donde: Variable dependiente (eje de las ordenadas)

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral)

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral) Pruebas de Acceso a nseñanas Universitarias Oficiales de Grado. Bachillerato L. O.. Materia: MATMÁTICA II Instrucciones: l aluno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

1. Introducción: aproximación de un vector

1. Introducción: aproximación de un vector .6 Ajuste lineal por ínios cuadrados (6_AL_T_v9;005.w0.4; C & / C) 0. Notación (, ) producto interno de vectores A atriz de diseño (rectangular; n); contiene por colunas los vectores de las funciones del

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

Superficie dada en forma explícita.

Superficie dada en forma explícita. Prof. Anrea Capillo Análisis Mateático II Interales e superficie Recoreos la efinición e área e una superficie alabeaa. 3 ea la superficie sieno siple reular iaen e la función f : R R cuplieno la función

Más detalles

Clase Temas

Clase Temas Econoía política Jorge M. Streb Clase 7 9.7. Teas I. Krishna y Morgan sobre cheap talk (sanata II. La condición de single crossing (un solo cruce de Spence y Mirrlees III. Trabajo práctico : discusión

Más detalles

Concepto de sección eficaz

Concepto de sección eficaz Departaento e Física Concepto e sección eficaz El núcleo y sus raiaciones Clase 9 Curso 0 Página. La sección eficaz. La colisión o interacción entre os partículas es generalente escripta en térinos e sección

Más detalles

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday.

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday. 1. Qué es capacitancia? Se efine como la razón entre la magnitu e la carga e cualquiera e los conuctores y la magnitu e la iferencia e potencial entre ellos. La capacitancia siempre es una cantia positiva

Más detalles

Soluciones al examen de Estadística Aplicada a las Ciencias Sociales Junio ª Semana

Soluciones al examen de Estadística Aplicada a las Ciencias Sociales Junio ª Semana Soluciones al eamen e Estaística Aplicaa a las Ciencias Sociales Junio 009 ª Semana Ejercicio. Una agente e iguala está interesaa en conocer las iferencias salariales en España entre hombres y mujeres

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

x, la curva tiene una tangente en P ( )

x, la curva tiene una tangente en P ( ) MATEMÁTICAS BÁSICAS APLICACIONES DE LA DERIVADA A través el uso el concepto e erivaa se logra conocer algunas propieaes relevantes e las unciones. El estuio e estas características acilita la representación

Más detalles

6º Economía Matemática III Escrito 1) 2) 3) 6º Economía Escrito Matemática III

6º Economía Matemática III Escrito 1) 2) 3) 6º Economía Escrito Matemática III 6º Econoía Mateática III 1. Halla la ecuación de la circunferencia de centro ( 3, ) C tangente a la recta de ecuación 3 x + y = 7.. Halla la ecuación de la recta tangente a la circunferencia de ecuación

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eáenes de Mateáticas de Selectividad ndalucía resueltos http://qui-i.co/ Eaen de Selectividad Mateáticas JUNIO 8 - ndalucía OPCIÓN.- [,5 puntos] Halla los coeficientes a, b y c sabiendo que la función

Más detalles

ELECTRICIDAD 6. Campo eléctrico 1

ELECTRICIDAD 6. Campo eléctrico 1 LCTRICIDAD 6. Campo eléctrico 0*. n 838, Faraay, a través e los experimentos realizaos con los campos magnéticos y visualizar como se orientaba el polvillo e hierro en tales campos, sugirió una forma e

Más detalles

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3 . [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido.

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido. EY DE STOES Una esfera de radio r y densidad ρ parte del reposo en el seno de un fluido de densidad ρ f < ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias

Más detalles

SESIÓN 7. Biprisma de Fresnel.

SESIÓN 7. Biprisma de Fresnel. SESÓN 7. Biprisa e Fresnel. TRABAJO PREVO. Conceptos funaentales. Cuestiones. Conceptos funaentales nterferencia óptica: Cuano os haces e luz se cruzan pueen interferir, lo que afecta a la istribución

Más detalles

EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS

EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS. Septiembre( 00 / OPCIÓN B / EJERCICIO ) (puntuación máima puntos) Se considera

Más detalles

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano).

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). GEOMETRÍA ANALÍTICA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). LA RECTA.- La recta es un conjunto infinito de puntos alineados en

Más detalles

f(x,y) = e x+y cos(xy)

f(x,y) = e x+y cos(xy) Universia e los Anes Departamento e Matemáticas MATE1207 Cálculo Vectorial Tarea 1 Iniviual Entregue en clase a su profesor e la MAGISTRAL la semana 6 (Lu. 3 Sep. Vi. 7 Sep.) 1. Consiere la función f efinia

Más detalles

Instituto de Matemática y Física 1 Universidad de Talca

Instituto de Matemática y Física 1 Universidad de Talca Instituto de Matemática y Física 1 Universidad de Talca 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Fuerzas de fricción (o de rozamiento)

Fuerzas de fricción (o de rozamiento) Fuerzas de fricción (o de rozaiento) Si un cuerpo se ueve sobre una superficie áspera o rugosa, encontrará adeás de la resistencia del aire, otra fuerza de resistencia debida a la rugosidad de la superficie.

Más detalles

DERIVADAS DERIVACIÓN DE FUNCIONES

DERIVADAS DERIVACIÓN DE FUNCIONES DERIVADAS DERIVACIÓN DE FUNCIONES Introucción: Después e haber aquirio los conocimientos e los temas anteriores e funciones límites se requiere establecer un proceimiento más eficiente que nos permita

Más detalles

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO 1 4.04 01 a) El campo eléctrico asociao a la función potencial V = xy+3x 3 z+2x 2, en elpunto (1,1,2). b) El trabajo realizao para llevar una unia e carga positiva, a velocia cosntante, ese el punto (1,2,0)

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas)

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas) .6.. Ecuación característica (raíces reales distintas, raíces reales iguales, raíces coplejas conjugadas).6.. Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces coplejas

Más detalles

MATEMÁTICA DE JORGE JUAN

MATEMÁTICA DE JORGE JUAN LA FIGUA DE LA TIEA MATEMÁTICA DE JOGE JUAN POFESO DIEGO GACÍA CASTAÑO LA ASAMBLEA AMISTOSA LITEAIA La Figura e la Tierra E,; ED ECUADO DB SEMIEJE DE LA TIEA ; GI ; FH Ecuaciones e la elipse : cosφ; senφ

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre Potenciación de polinomios Para resolver la potencia de un monomio se deben aplicar las propiedades de la potenciación. n n n ab a b a) 6 x x 9x b) x x 8x c) Cuadrado de un binomio El cuadrado de un binomio

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

Capítulo 30: Campos magnéticos y momento de torsión. Paul E. Tippens

Capítulo 30: Campos magnéticos y momento de torsión. Paul E. Tippens Capítulo 30: Campos magnéticos y momento e torsión Paul E. Tippens 017 Fuerza sobre una carga en movimient Recuere que el campo magnético en teslas (T) se efinió en términos e la fuerza sobre una carga

Más detalles

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim FORMULARIO V1.00 - Introucción a la Física Licenciatura en Física 1 Operaor Derivaa 1.1 De nición formal f (z 0 ) lim lim z 0!z z z 0 4z!0 f (z + 4z) 4z (1) 1. Derivaas e algunas funciones elementales

Más detalles

ACTIVIDADES COMPLEMENTARIAS

ACTIVIDADES COMPLEMENTARIAS ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Indica qué tipo de oviiento realizan los siguientes objetos en función de la trayectoria que describen: a) Una canica desplazándose por el interior de

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

Trabajo Práctico N 3

Trabajo Práctico N 3 Departamento e Geología Trabajo Práctico N 3 Técnicas geométricas auxiliares Objetivos: - Métoos gráficos para la obtención e orientaciones. Determinación gráfica el rumbo y buzamiento a partir e os atos

Más detalles

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Segunda parte: Modos de vibración

Segunda parte: Modos de vibración Segunda parte: odos de vibración Objetivo: Estudiar el oviiento general de un sistea oscilatorio de varios grados de libertad étodo: Deterinar los odos de vibración del sistea. El oviiento general será

Más detalles

Distancia Focal de una Lente Delgada

Distancia Focal de una Lente Delgada Distancia Focal e una Lente Delgaa Objetivo: Análisis e iversas lentes elgaas. Equipamiento Teoría Banco Optico Lente convexa Lente concava Fuente e luz (Ampolleta) Fuente e poer para la ampolleta Pantalla

Más detalles

= C V. de producir x artículos (en pesos) será mx. Además, si llamamos b a C F

= C V. de producir x artículos (en pesos) será mx. Además, si llamamos b a C F Matemáticas 8 Bimestre: IV Número de clase: Clase Esta clase tiene video Tema: Función lineal. Formas de la ecuación de la recta Actividad 9 Lea la siguiente información: Modelo de costo lineal Cuando

Más detalles