2.5 Derivación implícita

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2.5 Derivación implícita"

Transcripción

1 SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una ecuación implícita Cómo se poría utilizar una herramienta e graficación para representar? He aquí os proceimientos posibles: a) Despejar en la ecuación. Intercambiar los papeles e, ibujar la gráfica e las os ecuaciones resultantes. Las gráficas combinaas presentarán una rotación e 90 con respecto a la gráfica e la ecuación original. b) Configurar la herramienta e graficación en moo paramétrico representar las ecuaciones t t t t t t. A partir e cualquiera e estos métoos, se puee eciir si la gráfica tiene una recta tangente en el punto (0, )? Eplicar el razonamiento. Funciones eplícitas e implícitas Hasta este punto, la maoría e las funciones estuiaas en el teto se enunciaron e forma eplícita. Por ejemplo, en la ecuación 5 Forma eplícita. la variable está escrita eplícitamente como función e. Sin embargo, algunas funciones sólo se enuncian e manera implícita en una ecuación. Así, la función l está efinia implícitamente por la ecuación. Supongamos que se pie calcular la erivaa para esta ecuación. Poemos escribir como función eplícita e, luego erivar. Forma implícita Esta estrategia funciona siempre que se puea espejar como función e en la ecuación, e lo contrario, este métoo no es viable. Por ejemplo, cómo encontrar para la ecuación Forma eplícita Derivaa one resulta mu ifícil espejar como función eplícita e? En tales situaciones se ebe usar la llamaa erivación implícita. Para comprener esta técnica, es preciso tener en cuenta que la erivación se efectúa con respecto a. Esto quiere ecir que cuano se tenga que erivar términos que sólo contienen a, la erivación será la habitual. Sin embargo, cuano haa que erivar un término one aparezca, será necesario aplicar la regla e la caena, a que se está suponieno que está efinia implícitamente como función erivable e. EJEMPLO Derivación respecto e a) Las variables coincien: usar la regla simple e las potencias. Las variables coincien u n nu n u b) Las variables no coincien: usar la regla e la caena. Las variables no coincien c) Regla e la caena:. ) Regla el proucto. Regla e la caena. Simplificar.

2 CAPÍTULO Derivación Derivación implícita Estrategias para la erivación implícita. Derivar ambos laos e la ecuación respecto e.. Agrupar toos los términos en que aparezca en el lao izquiero e la ecuación pasar toos los emás a la erecha.. Factorizar el lao izquiero e la ecuación.. Despejar. Observar que en el ejemplo la erivación implícita puee proucir una epresión para en la que aparezcan a la vez. EJEMPLO Derivación implícita Encontrar ao que 5.. Derivar los os miembros e la ecuación respecto e Agrupar los términos con en la parte izquiera pasar toos los emás al lao erecho. (, ) (, ) (, 0) 5. Factorizar en la parte izquiera. 5. Despejar iviieno entre ( 5). 5 Puntos en la gráfica Peniente e la gráfica (, 0) (, ) 0 0 (, ) No efinia La ecuación implícita 5 tiene la erivaa 5 Figura.7 5 Para ver cómo usar la erivación implícita, consierar la gráfica e la figura.7. En ella se puee observar que no es una función e. A pesar e ello, la erivaa eterminaa en el ejemplo proporciona una fórmula para la peniente e la recta tangente en un punto e esta gráfica. Debajo e la gráfica se muestran las penientes en varios puntos e la gráfica. TECNOLOGÍA Con la maoría e las herramientas e graficación es fácil representar una ecuación que epresa e manera eplícita a en función e. Por el contrario, representar las gráficas asociaas a otras ecuaciones requiere cierto ingenio. Por ejemplo, tratar e representar la gráfica e la ecuación empleaa en el ejemplo configurano la herramienta e graficación en moo paramétrico, a fin e elaborar la gráfica e las representaciones paramétricas t t 5t, t t t 5t, t, para 5 t 5. Cómo se compara el resultao con la gráfica que se muestra en la figura.7?

3 SECCIÓN.5 Derivación implícita + = 0 (0, 0) En una ecuación que no tiene puntos solución, por ejemplo,, no tiene sentio espejar. Sin embargo, si una porción e una gráfica puee representarse meiante una función erivable, tenrá sentio como peniente en caa punto e esa porción. Recorar que una función no es erivable en a) los puntos con tangente vertical b) los puntos en los que la función no es continua. a) b) c) (, 0) (, 0) (, 0) Algunos segmentos e curva pueen representarse por meio e funciones erivables Figura.8 EJEMPLO Representación e una gráfica meiante funciones erivables Si es posible, representar como función erivable e. a) 0 b) c) a) La gráfica e esta ecuación se compone e un solo punto. Por tanto, no efine como función erivable e. Ver la figura.8a. b) La gráfica e esta ecuación es la circunferencia unia, centraa en (0, 0). La semicircunferencia superior está aa por la función erivable, < < la inferior por la función erivable, < <. En los puntos (, 0) (, 0), la peniente no está efinia. Ver la figura.8b. c) La mita superior e esta parábola está aa por la función erivable, < la inferior por la función erivable, <. En el punto (, 0) la peniente no está efinia. Ver la figura.8c. EJEMPLO Cálculo e la peniente e una gráfica implícita Calcular la peniente e la recta tangente a la gráfica e en el punto,. Ver la figura.9. Figura.9 (, ) Por tanto, en,, la peniente es Ecuación original. Derivar respecto e. Despejar términos con.. Evaluar cuano,. NOTA Para observar las ventajas e la erivación implícita, intentar rehacer el ejemplo manejano la función eplícita.

4 CAPÍTULO Derivación EJEMPLO 5 Cálculo e la peniente e una gráfica implícita Calcular la peniente e la gráfica e ( ) l00 en el punto (, ). (, ) ( ) 00 Lemniscata Figura.0 En el punto (, ), la peniente e la gráfica es como muestra la figura.0. Esta gráfica se enomina lemniscata. EJEMPLO Determinación e una función erivable, ( ) La erivaa es Figura. sen (, ) Encontrar implícitamente para la ecuación sen. A continuación, eterminar el maor intervalo e la forma a a en el que es una función erivable e (ver la figura.). sen cos cos El intervalo más grane cercano al origen en el que es erivable respecto e es. Para verlo, observar que cos es positivo en ese intervalo 0 en sus etremos. Si se restringe a ese intervalo, es posible escribir eplícitamente como función e. Para ello, usar cos sen, < < concluir que. Este ejemplo se estuia más aelante cuano se efinen las funciones trigonométricas inversas en la sección 5..

5 SECCIÓN.5 Derivación implícita 5 Al usar la erivación implícita, con frecuencia es posible simplificar la forma e la erivaa (como en el ejemplo ) utilizano e manera apropiaa la ecuación original. Se puee emplear una técnica semejante para encontrar simplificar las erivaas e oren superior obtenias e forma implícita. EJEMPLO 7 Cálculo implícito e la seguna erivaa The Granger Collection ISAAC BARROW (0-77) La gráfica e la figura. se conoce como la curva kappa ebio a su semejanza con la letra griega kappa,. La solución general para la recta tangente a esta curva fue escubierta por el matemático inglés Isaac Barrow. Newton fue su alumno con frecuencia intercambiaron corresponencia relacionaa con su trabajo en el entonces incipiente esarrollo el cálculo. Daa 5, encontrar. Evaluar la primera seguna erivaas en el punto (, ). Derivano ambos términos respecto e se obtiene 0. En, :. Derivano otra vez respecto e vemos que En, : 5 5. Regla el cociente. 5. La curva kappa Figura. (, ) ( ) EJEMPLO 8 Recta tangente a una gráfica Encontrar la recta tangente a la gráfica aa por ( ) en el punto ( ), como muestra la figura.. Reescribieno erivano implícitamente, resulta 0 0. En el punto (, ), la peniente es, la ecuación e la recta tangente en ese punto es.

6 CAPÍTULO Derivación.5 Ejercicios En los ejercicios a, encontrar por meio e la erivación implícita sen cos.. sen tan. 5. sen. cos sen sen cos cot sec. Bifolio:. Folio e Descartes: ( ) 0 Punto: (, ) Punto:, 8 En los ejercicios 7 a 0, a) encontrar os funciones eplícitas espejano en términos e, b) construir la gráfica e la ecuación clasificar las partes aas por las respectivas funciones eplícitas, c) erivar las funciones eplícitas ) encontrar emostrar que el resultao es equivalente al el apartao c) En los ejercicios a 8, encontrar por meio e la erivación implícita calcular la erivaa en el punto inicao , 0,, 9 9,, 5,, 7, 0, tan, 0, 0 cos,, Curvas famosas En los ejercicios 9 a, calcular la peniente e la recta tangente a la gráfica en el punto propuesto. 9. Bruja e Agnesi: 0. Cisoie: 8,,, ( ) 8 ( ) Punto: (, ) Punto: (, ) Curvas famosas En los ejercicios a 0, encontrar la ecuación e la recta tangente a la gráfica en el punto ao.. Parábola. Circunferencia Hipérbola rotaa. Elipse rotaa = 7 + = 0 (, ) 7. Cruciforme 8. Astroie 9 = 0 (, ) ( ) = ( 5) (, ) 8 ( ) + ( ) = (, ) / + / = 5 (8, ) (, )

7 SECCIÓN.5 Derivación implícita 7 9. Lemniscata 0. Curva kappa ( + ) = 00( ) (, ). a) Utilizar la erivación implícita para encontrar la ecuación e la recta tangente a la elipse en (, ). 8 b) Demostrar la ecuación e la recta tangente a la elipse a b en (, ) es a 0 b.. a) Utilizar la erivación implícita para encontrar la ecuación e la recta tangente a la hipérbola en (, ). 8 b) Demostrar que la ecuación e la recta tangente a la hipérbola a b en (, ) es a 0. b En los ejercicios, calcular e manera implícita encontrar el maor intervalo con la forma a a o 0 < a tal que sea una función erivable e. Epresar en función e.. tan. cos En los ejercicios 5 a 50, encontrar en términos e En los ejercicios 5 5 usar una herramienta e graficación para representar la ecuación. Encontrar la ecuación e la recta tangente en la gráfica obtenia en el punto la gráfica en la recta tangente. 5. 5, 9, 5. ( + ) = En los ejercicios 5 5, encontrar las ecuaciones e las rectas tangente normal a la circunferencia en el punto inicao (la recta normal en un punto es perpenicular a la tangente en ese punto). Utilizar una herramienta e graficación para representar la ecuación, la recta tangente la normal. (, ), 5, 5 En los ejercicios 57 58, localizar los puntos en los que la gráfica e la ecuación tiene recta tangente horizontal o vertical Traectorias ortogonales En los ejercicios 59 a, utilizar herramienta e graficación para representar las ecuaciones probar que en sus intersecciones son ortogonales. (Dos gráficas son ortogonales en un punto e intersección si sus rectas tangentes en ese punto son perpeniculares entre sí.) ( ) sen ( 9) Traectorias ortogonales En los ejercicios, verificar que las os familias e curvas son ortogonales, sieno C K números reales. Utilizar una herramienta e graficación para representar ambas familias con os valores e C os valores e K.. C, K. C, K En los ejercicios 5 a 8, erivar: a) respecto a ( es una función e ) b) respecto a t ( son funciones e t) cos sen 8. sen cos Desarrollo e conceptos 9. Describir la iferencia que eiste entre la forma eplícita e una ecuación una ecuación implícita. Elaborar un ejemplo e caa una. 70. Con sus propias palabras, establezca las estrategias a seguir en la erivación implícita. 7. Traectorias ortogonales En la siguiente figura se muestra un mapa topográfico realizao por un grupo e ecursionistas. Ellos se encuentran en el área boscosa que está en la parte superior e la colina que se muestra en el mapa ecien seguir la ruta e escenso menos empinaa (traectorias ortogonales a los contornos el mapa). Dibujar la ruta que eben seguir si parten ese el punto A si lo hacen ese el punto B. Si su objetivo es llegar a la carretera que pasa por la parte superior el mapa, cuál e esos puntos e partia eben utilizar? (, ), (, ) (, 0), (5, ) 55. Demostrar que la recta normal a cualquier punto e la circunferencia r pasa por el origen. 5. Dos circunferencias e raio son tangentes a la gráfica e en el punto (, ). Encontrar las ecuaciones e esas os circunferencias. 7 A B

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

FÓRMULAS DE DERIVACIÓN

FÓRMULAS DE DERIVACIÓN SESIÓN Nº 1 Derivaas e Funciones Trigonométricas, Eponenciales y Logarítmicas Ahora correspone revisar las fórmulas principales e erivación y algunos ejemplos e aplicación. FÓRMULAS DE DERIVACIÓN 1) (

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3)

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3) CAPÍTULO 10 FUNCIONES IMPLÍCITAS 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 3) En el curso e Precálculo el 4º semestre se vieron iferentes clasificaciones e las funciones, entre ellas las funciones eplícitas

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe DERIVADA DEFINICION DE DERIVADA Sea una función efinia en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite eiste Dicho límite, cuano eiste, se llama DERIVADA e f

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

LA DERIVADA. Introducción:

LA DERIVADA. Introducción: LA DERIVADA Introucción: Fue Isaac Newton que estuiano las lees el movimiento e los planetas que Kepler había escubierto meio siglo antes, llegó a la iea e incremento e una función como se nos ofrece en

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

Escuela de Economía UTPL Cálculo I Autora: Ing. Ana Lucía Abad Ayavaca UNIDAD II: DERIVADA

Escuela de Economía UTPL Cálculo I Autora: Ing. Ana Lucía Abad Ayavaca UNIDAD II: DERIVADA UNIDAD II: DERIVADA Continuano con el estuio e la seguna unia lo iniciaremos con el estuio el cálculo iferencial que se ocupa e cómo varía una cantia en relación con otra (LA DERIVADA). En el teto guía

Más detalles

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

12. Funciones trigonométricas

12. Funciones trigonométricas . Funciones trigonométricas asfasfasfasfasf.. Funciones seno coseno En este móulo nos ocuparemos, en primer lugar, e las funciones trigonométricas. Wang Zheni (78-797) sen() cos() Son funciones one la

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación 96 CAPÍTULO Derivación. La erivaa el problema e la recta tangente Hallar la peniente e la recta tangente a una curva en un punto. Usar la efinición e límite para calcular la erivaa e una función. Comprobar

Más detalles

3.1 Ejercicios. En qué punto de la curva y e x es paralela la recta tangente a la recta

3.1 Ejercicios. En qué punto de la curva y e x es paralela la recta tangente a la recta SECCIÓN 3. DERIVADAS DE FUNCIONES POLINOMIALES Y EXPONENCIALES 8 = FIGURA 9 3 (ln, ) = EJEMPLO 9? En qué punto e la curva e es paralela la recta tangente a la recta SOLUCIÓN Como e, tenemos e. Sea a la

Más detalles

Curso Introductorio a las Matemáticas Universitarias

Curso Introductorio a las Matemáticas Universitarias Curso Introuctorio a las Matemáticas Universitarias Tema 8: Derivación Víctor M. Almeia Lozano Jorge J. García Melián Licencia Creative Commons 2013 8. DERIVACIÓN En este tema veremos el concepto e erivaa

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

Derivadas algebraicas

Derivadas algebraicas CDIN0_M1AAL1_Algebraicas Versión: Septiembre 01 Revisor: Sanra Elvia Pérez Derivaas algebraicas por Sanra Elvia Pérez Derivaa e una función El concepto e erivaa, base el cálculo iferencial, ha permitio

Más detalles

Derivación e vectorial

Derivación e vectorial 1. Vectores variables Derivación e vectorial Los vectores porán ser constantes o variables. Ahora bien, esa característica se verificará tanto en las componentes como en la base. Esto quiere ecir que cuano

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

http://www.matematicaaplicaa.co.cc jezasoft@gmail.com e MATEMÁTICA APLICADA TECNOLOGIA EN ELECTRÓNICA CÁLCULO TALLER DE DERIVADAS Manizales, 26 e Marzo e 20 Solucionar los siguientes problemas referenciaos

Más detalles

2.1. Derivada de una función en un punto

2.1. Derivada de una función en un punto Capítulo 2 Diferenciación 1 2.1. Derivaa e una función en un punto Ritmo (o razón, o tasa) e cambio e una función en un momento ao. Peniente e la recta tangente. Aproximación por la peniente e las rectas

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

Derivadas algebraicas:

Derivadas algebraicas: 49 Derivaas algebraicas: El métoo e los cuatro pasos para hallar la erivaa e una función es en la mayoría e los casos laborioso y complicao, por lo que se han esarrollao teoremas e erivación que nos permiten

Más detalles

Reglas de derivación

Reglas de derivación 1 CAPÍTULO 6 Reglas e erivación 6.6 erivación imlícita 1 Hasta aquí la alabra erivaa ha sio asociaa a funciones efinias exlícitamente meiante una iguala e la forma y f.x/, one una e las variables.y/ aarece

Más detalles

Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Pre saberes: Despeje de ecuaciones. Concepto de línea recta. Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:.

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES Asignatura Clave: FIM6 Número e Créitos: 7 Teóricos: 4 Prácticos: INSTRUCCIONES PARA OPERACIÓN ACADÉMICA: El Sumario representa un reto, los Contenios son los ejes temáticos, los

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

Matemticas V: Cálculo diferencial

Matemticas V: Cálculo diferencial Matemticas V: Cálculo iferencial Soluciones Tarea 8. Para caa una e las siguientes ecuaciones encuentra la ecuación e la recta tangente a la curva en el punto ao p. (a) x y + xy, p (, ). Suponemos que

Más detalles

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Escuela Colombiana e Ingeniería 4.. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Derivaa e y La erivaa e y se puee obtener como: y + Lim 0 Para calcular este límite se utilizan los siguientes conceptos previamente

Más detalles

5.2 La función logaritmo natural: integración

5.2 La función logaritmo natural: integración CAPÍTULO 5 Funciones logarítmica, eponencial otras funciones trascenentes 5. La función logaritmo natural: integración Usar la regla e logaritmo e integración para integrar una función racional. Integrar

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-1-M--00-017 CURSO: Matemática Básica SEMESTRE: Seguno CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Primer eamen

Más detalles

DERIVADAS DERIVACIÓN DE FUNCIONES

DERIVADAS DERIVACIÓN DE FUNCIONES DERIVADAS DERIVACIÓN DE FUNCIONES Introucción: Después e haber aquirio los conocimientos e los temas anteriores e funciones límites se requiere establecer un proceimiento más eficiente que nos permita

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena Escuela Técnica Superior e Ingeniería e Telecomunicación CAMOS ELECTOMAGNÉTICOS ráctica 3. La Teoría e Imágenes..-rofesores: ero Vera Castejón Alejanro Álvare Melcón Fernano Quesaa ereira 1 1. Introucción

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen

Más detalles

Ecuación vectorial de la recta en el plano y su ecuación cartesiana

Ecuación vectorial de la recta en el plano y su ecuación cartesiana iceo Técnico Aolfo Matthei ierano la Eucación Técnico Profesional Docente: Cristian Casas. GUIA MATEMATICA Departamento e Matemática Curso: 4 Meio Fecha : Puntos : NOMBRE: Nota : Ecuación vectorial e la

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN.3 Reglas el proucto, el cociente erivaas e oren superior 119.3 Reglas el proucto, el cociente erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar la erivaa

Más detalles

Derivación de funciones trascendentes.

Derivación de funciones trascendentes. 57 Derivación e funciones trascenentes. Como en el caso e las funciones algebraicas eisten teoremas para erivar las funciones trascenentes como se muestra a continuación: Teoremas e erivación: Sean u y

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2 CAPÍTULO 10 Pruebas Prueba N o 1 - Tema: Capitulo 1 y 2 1. 1 punto. Se espera que del total de alumnos inscritos en la asignatura, el 20 % obtendrá una nota no menor a 6,0; el 65 % obtendrá una nota no

Más detalles

Reglas de derivación

Reglas de derivación CAPÍTULO 6 Reglas e erivación OBJETIVOS PARTICULARES. Aplicar reglas básicas e erivación para calcular erivaas, e iverso oren, e funciones algebraicas.. Aplicar la regla e la caena en el cálculo e erivaas,

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

f(x,y) = e x+y cos(xy)

f(x,y) = e x+y cos(xy) Universia e los Anes Departamento e Matemáticas MATE1207 Cálculo Vectorial Tarea 1 Iniviual Entregue en clase a su profesor e la MAGISTRAL la semana 6 (Lu. 3 Sep. Vi. 7 Sep.) 1. Consiere la función f efinia

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS CAPÍTULO 6 FUNCIONES TRIGONOMÉTRICAS 6.1 FUNCIONES TRASCENDENTES (Áreas 1, y ) Las funciones trascenentes se caracterizan por tener lo que se llama argumento. Un argumento es el número o letras que lo

Más detalles

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 7 INTRODUCCIÓN El propósito e este tema es introucir a los alumnos en la terminología básica e las Ecuaciones Diferenciales eaminar brevemente como se

Más detalles

Seminario de problemas. Curso Hoja 5. Soluciones

Seminario de problemas. Curso Hoja 5. Soluciones Seminario e problemas. Curso 018-19. Hoja. Soluciones 49. Encuentra una expresión cerraa para la suma S m = 1 + 7 +... + 1 m+1 m 1 aplicano el cálculo e iferencias, o/y e otro moo. Solución. S n = 1 +

Más detalles

aletos CAPÍTULO 6.04 SISTEMAS ÓPTICOS CENTRADOS

aletos CAPÍTULO 6.04 SISTEMAS ÓPTICOS CENTRADOS aletos 1 6.04-1 Conceptos funamentales Un conjunto e superficies que separan meios e istinto ínice e refracción constituyen un sistema óptico. Si, como caso particular, estas superficies son esféricas

Más detalles

Diferenciales e integral indefinida

Diferenciales e integral indefinida Diferenciales e integral inefinia El estuiante: Aplicará los conceptos e iferencial e integral inefinia, meiante la solución e problemas relacionaos con las ciencias naturales, las económico-aministrativas

Más detalles

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita:

La esfera. Haciendo los cuadrados y agrupando se obtiene la ecuación implícita: José María Martíne Meiano La esfera La superficie esférica la esfera es el conjunto e puntos el espacio que equiistan e otro punto fijo, llamao centro Si el centro es el punto Oa, b, c el raio vale r,

Más detalles

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05 Sustituyeno 5, el nivel e proucción actual, obtenemos 0. Repita el ejemplo 6 para la función e costo C() 5 3 C t 5 0 (0.7).05 Así que los costos e proucción se están incrementano a una tasa e.05 por año.

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C) EXMEN DE FÍSIC. 4 DE JUNIO DE 999. TEORÍ. GRUPOS 6() Y 7(C) C. Tenemos una superficie cónica e raio r = 0.5 m y altura h = m (ver figura), entro e un campo eléctrico E uniforme y paralelo al eje el cono

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coorinación e Matemática II (MAT0) Primer semestre e 03 Semana 6: Lunes e Abril Viernes 6 e Abril CÁLCULO Contenios Clase : Funciones Trascenentales: Función logaritmo natural y eponencial. Propieaes algebraicas

Más detalles

d) Si tiene la siguiente función para la oferta de trabajo:

d) Si tiene la siguiente función para la oferta de trabajo: Capítulo MERCADO DE TRABAJO, FUNCIÓN DE RODUCCIÓN Y OFERTA AGREGADA DE ARGO AZO. Sea la función e proucción: Y = A0( f 0 f ) Done las uniaes en las que se expresa la cantia e trabajaores a emplear son

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

Derivadas logarítmicas, exponenciales y regla de la cadena

Derivadas logarítmicas, exponenciales y regla de la cadena CDIN0_MAAL_Logarítmicas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaaslogarítmicas,eponencialesyreglaelacaena por Sanra Elvia Pérez Las funciones logarítmicas y eponenciales se aplican con frecuencia

Más detalles

Unidad 2 - Lección 2.5

Unidad 2 - Lección 2.5 Unia - Lección.5 La Regla e la Caena 9/11/017 Prof. José G. Roríguez Ahumaa 1 e 18 Activiaes.5 Referencia: Section 11.5: The Chain Rule. Estuie Ejemplos el 1 al 8. Ejercicios e práctica 1 ; 9-9,,, 5, 7,

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

LA DERIVADA UNIDAD III III.1 ENTORNOS. a, donde δ es la

LA DERIVADA UNIDAD III III.1 ENTORNOS. a, donde δ es la LA DERIVADA UNIDAD III III. ENTORNOS Se enomina entorno e un punto a en, al intervalo abierto ( δ a δ ) semiamplitu el intervalo. a, one δ es la El entorno e a, en notación e conjuntos puee escribirse

Más detalles