La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2."

Transcripción

1 SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la regla e la potencia. Encontrar la erivaa e una función por la regla el múltiplo constante. Encontrar la erivaa e una función por las reglas e suma iferencia. Encontrar la erivaa e las funciones seno coseno. Usar erivaas para calcular razón e cambio. La peniente e una recta horizontal es 0 La regla e la constante En la sección. se usó la efinición por meio e límites para calcular las erivaas. Ésta las os próimas secciones presentan varias reglas e erivación que permiten calcular las erivaas sin el uso irecto e la efinición por límites. La erivaa e una función constante es 0 f() c Se observa que la regla e la constante equivale a ecir que la peniente e una recta horizontal es 0. Esto emuestra la relación que eiste entre erivaa peniente Figura.4 TEOREMA. LA REGLA DE LA CONSTANTE La erivaa e una función constante es 0. Es ecir, si c es un número real, entonces c 0. (Ver la figura.4) DEMOSTRACIÓN Sea ƒ() c. Entonces, por la efinición e erivaa meiante el proceso e límite, se euce que c f 0 c c f f EJEMPLO Aplicación e la regla e la constante c) ) 7 f 0 st Derivaa 0 f 0 st 0 k,k es constante 0 EXPLORACIÓN Conjetura Utilizar la efinición e erivaa e la sección. para encontrar la erivaa e las siguientes funciones. Qué patrones se observan? Utilizar los resultaos para elaborar una conjetura acerca e la erivaa e ƒ() n. ƒ() ƒ() c) ƒ() ) ƒ() 4 e) ƒ() ƒ) ƒ()

2 08 CAPÍTULO Derivación La regla e la potencia Antes e emostrar la próima regla, revisar el proceso e esarrollo e un binomio. El esarrollo general el binomio para un entero positivo n cualquiera es n n n n nn n... n. () es un factor común en estos términos. Este esarrollo el binomio se va a utilizar para emostrar un caso especial e la regla e la potencia. TEOREMA. LA REGLA DE LA POTENCIA NOTA Del ejemplo 7 e la sección., se encontró que la función f() está efinia en 0 pero no es erivable en 0. Esto se ebe a que no está efinia sobre un intervalo que contiene al cero. Si n es un número racional, entonces la función ƒ() n es erivable n n n. Para que ƒ sea erivable en 0, n ebe ser un número tal que n se encuentre efinio en un intervalo que contenga al 0. DEMOSTRACIÓN Si n es un entero positivo maor que, entonces el esarrollo el binomio resulta 4 n n n 0 nn n n n n 0 0 n n n n n n.... n n nn n... n Esto emuestra el caso en que n es un entero positivo maor que. Se eja al lector la emostración el caso n. En el ejemplo 7 e la sección. se emuestra el caso para el que n es un entero negativo. En el ejercicio 76 e la sección.5 se emuestra el caso en el cual n es racional (en la sección 5.5 la regla e la potencia se etenerá hasta abarcar los valores irracionales e n). Al utilizar la regla e la potencia, resulta conveniente separar el caso para el que n como otra regla istinta e erivación, a saber 4 La peniente e la recta es Figura.5. Regla e las potencias para n. Esta regla es congruente con el hecho e que la peniente e la recta es, como se muestra en la figura.5.

3 SECCIÓN. Reglas básicas e erivación razón e cambio 09 EJEMPLO Aplicación e la regla e la potencia c) f g Derivaa f) g Observar que en el ejemplo c, antes e erivar se ha reescrito l como. En muchos problemas e erivación, el primer paso consiste en reescribir la función. f() 4 Daa: Reescribir: Derivar: Simplificar EJEMPLO Peniente e una gráfica (, ) (, ) Calcular la peniente e la gráfica e ƒ() 4 cuano 0 c). (0, 0) Observar que la peniente es negativa en el punto (, ), cero en el (0, 0) positiva en el (, ) Figura.6 Solución La peniente e una gráfica en un punto es igual a la erivaa en icho punto. La erivaa e ƒ es ƒ() 4. Para, la peniente es ƒ() 4() 4. La peniente es negativa. Para 0, la peniente es ƒ(0) 4(0) 0. La peniente es 0. c) Para, la peniente es ƒ() 4() 4. La peniente es positiva. Ver la figura.6. EJEMPLO 4 Ecuación e una recta tangente (, 4) 4 f() Encontrar la ecuación e la recta tangente a la gráfica e ƒ() cuano. Solución Para encontrar el punto sobre la gráfica e ƒ, evaluar la función en. (, ƒ()) (, 4) Punto e la gráfica. Para calcular la peniente e la gráfica en, evaluar la erivaa, ƒ(), en. m ƒ() 4 Peniente e la gráfica en (, 4). 4 4 La recta tangente 4 4 es tangente a la gráfica e ƒ() en el punto (, 4) Figura.7 Ahora, utilizano la forma punto-peniente e la ecuación e una recta, escribir m Ver la figura.7. Forma punto-peniente. Sustituir, m. Simplificar.

4 0 CAPÍTULO Derivación La regla el múltiplo constante TEOREMA.4 LA REGLA DEL MÚLTIPLO CONSTANTE Si ƒ es una función erivable c un número real, entonces cƒ también es erivable cf cf. DEMOSTRACIÓN cf 0 0 c c 0 cf cf cf f f f f Definición e erivaa. Aplicar teorema.. De manera informal, esta regla establece que las constantes se pueen etraer e la erivaa, incluso cuano aparecen en un enominaor. cf c f cf f c c f c f c f EJEMPLO 5 Aplicación e la regla el múltiplo constante c) ) e) 4t ft 5 Derivaa ft t 4 5 t 4 5 t t 4 5 t 8 5 t 5 5 La regla el múltiplo constante la e la potencia se pueen combinar en una sola. La regla resultante es cn cn n.

5 SECCIÓN. Reglas básicas e erivación razón e cambio EJEMPLO 6 Uso e paréntesis al erivar original Reescribir Derivar Simplificar c) ) Las reglas e suma iferencia TEOREMA.5 LAS REGLAS DE SUMA Y DIFERENCIA La erivaa e la suma (o e la iferenci e os funciones erivables ƒ g es erivable en sí. Aemás, la erivaa e ƒ g (o ƒ g) es igual a la suma (o iferenci e las erivaas e ƒ g. f g f g f g f g Regla e la suma. Regla e la iferencia. DEMOSTRACIÓN Una emostración e la regla e la suma se sigue el teorema. (la e la iferencia se emuestra e manera análog. f g f g f g f g f g f g f f 0 f f g g 0 g g Las reglas e suma iferencia pueen ampliarse en cualquier número finito e funciones. Por ejemplo, si F() f() g() h(), entonces F() ƒ() g() h(). EJEMPLO 7 Aplicación e las reglas e suma iferencia f 4 5 g 4 Derivaa f 4 g 9

6 CAPÍTULO Derivación PARA MAYOR INFORMACIÓN El esbozo e una emostración geométrica e las erivaas e las funciones seno coseno puee consultarse en el artículo The Spier s Spacewalk Derivation of sin an cos e Tim Hesterberg en The College Mathematics Journal. Derivaas e las funciones seno coseno En la sección. se vieron los límites siguientes: sen lím 0 cos lím 0 0 Estos os límites pueen utilizarse para emostrar las reglas e erivación e las funciones seno coseno (las erivaas e las emás funciones trigonométricas se analizan en la sección.). TEOREMA.6 DERIVADAS DE LAS FUNCIONES SENO Y COSENO sen cos cos sen creciente positiva 0 0 ecreciente creciente negativa sen positiva cos La erivaa e la función seno es la función coseno Figura.8 DEMOSTRACIÓN sen sen sen 0 0 cos sen sen cos 0 0 cos sen sen cos cos 0 cos sen 0 cos sen cos cos sen sen sen sen 0 Definición e erivaa. cos Esta regla e erivación se ilustra en la figura.8. Observar que para caa, la peniente e la curva seno es igual al valor el coseno. La emostración e la seguna regla se eja como ejercicio (ver el ejercicio 0). EJEMPLO 8 Derivaas que contienen senos cosenos = sen = sen c) sen sen sen cos Derivaa cos cos cos sen = sen Figura.9 = sen a sen a cos TECNOLOGÍA Una herramienta e graficación permite visualizar la interpretación e una erivaa. Por ejemplo, en la figura.9 se muestran las gráficas e a sen para a,,. Estimar la peniente e caa gráfica en el punto (0, 0). Después verificar los cálculos e manera analítica meiante el cálculo e la erivaa e caa función cuano 0.

7 SECCIÓN. Reglas básicas e erivación razón e cambio Razón e cambio Ya se ha visto que la erivaa se utiliza para calcular penientes. Pero también sirve para eterminar la razón e cambio e una variable respecto a otra, lo que le confiere utilia en una amplia variea e situaciones. Algunos ejemplos son las tasas e crecimiento e poblaciones, las tasas e proucción, las tasas e flujo e un líquio, la velocia la aceleración. Un uso frecuente e la razón e cambio consiste en escribir el movimiento e un objeto que va en línea recta. En tales problemas, la recta el movimiento se suele representar en posición horizontal o vertical, con un origen marcao en ella. Sobre tales rectas, el movimiento hacia la erecha (o hacia arrib se consiera e irección positiva el movimiento hacia la izquiera (o hacia abajo) e irección negativa. La función s que representa la posición (respecto al origen) e un objeto como función el tiempo t se enomina función e posición. Si urante cierto lapso e tiempo t el objeto cambia su posición en una cantia s s(t t) s(t), entonces, empleano la consabia fórmula: istancia Razón tiempo la velocia meia es Cambio en istancia Cambio en tiempo s. Velocia meia. t EJEMPLO 9 Velocia meia e un objeto en su caía Si se eja caer una bola e billar ese una altura e 00 pies, su altura s en el instante t se representa meiante la función posición s 6t 00 posición. one s se mie en pies t en segunos. Encontrar su velocia meia para caa uno e estos intervalos. [, ] [,.5] c) [,.] Solución En el intervalo [, ], el objeto cae ese una altura e s(l) 6() pies hasta una altura e s() 6() 00 6 pies. La velocia meia es Richar MegnaFunamental Photographs Eposición fotográfica e larga uración e una bola e billar en caía libre. s pies por seguno. t En el intervalo [,.5] el objeto cae ese una altura e 84 pies hasta una altura e 64 pies. La velocia meia es s pies por seguno. t c) En el intervalo [,.] el objeto cae ese una altura e 84 pies hasta una altura e pies. La velocia meia es s pies por seguno. t. 0. Observar que las velociaes meias son negativas, lo que refleja el hecho e que el objeto se mueve hacia abajo.

8 4 CAPÍTULO Derivación s P Recta secante Recta tangente Supongamos que en el ejemplo anterior se quisiera encontrar la velocia instantánea (o simplemente e la veloci el objeto cuano t. Al igual que la peniente e la recta tangente puee aproimarse utilizano las penientes e rectas secantes, se puee aproimar la velocia en t por meio e las velociaes meias urante un pequeño intervalo [, t] (ver la figura.0). Se obtiene icha velocia calculano el límite cuano t tiene a cero. Al intentar hacerlo se puee comprobar que la velocia cuano t es e pies por seguno. En general, si s s(t) es la función posición e un objeto en movimiento rectilíneo, su velocia en el instante t es t t La velocia meia entre t t es igual a la peniente e la recta secante. La velocia instantánea en t es igual a la peniente e la recta tangente Figura.0 t st t st vt st. velocia. t0 t En otras palabras, la función velocia es la erivaa e la función posición. La velocia puee ser positiva, cero o negativa. La rapiez e un objeto se efine como el valor absoluto e su velocia, nunca es negativa. La posición e un objeto en caía libre (espreciano la resistencia el aire) bajo la influencia e la gravea se obtiene meiante la ecuación st gt v 0 t s 0 posición. one s 0 es la altura inicial el objeto, v 0 la velocia inicial g la aceleración e la gravea. En la Tierra, el valor e g es e aproimaamente pies. EJEMPLO 0 Aplicación e la erivaa para calcular la velocia En el instante t 0, un clavaista se lanza ese un trampolín que está a pies sobre el nivel el agua e la piscina (ver la figura.). La posición el clavaista está aa por pies s(t) l6t 6t one s se mie en pies t en segunos. Cuánto tara el clavaista en llegar al agua? Cuál es su velocia al momento el impacto? Solución posición. La velocia es positiva cuano un objeto se eleva, negativa cuano esciene. Se observa que el clavaista se mueve hacia arriba urante la primera mita e seguno, porque la velocia es positiva para 0 t. Cuano la velocia es e 0, el clavaista ha alcanzao la altura máima el salto Figura. Para eterminar el momento en que toca el agua hacemos s 0 espejamos t. 6t 6t 0 6t t 0 t o Igualar a cero la función posición. Factorizar. Despejar t. Como t 0, hemos e seleccionar el valor positivo, así que el clavaista llega al agua en t segunos. Su velocia en el instante t está aa por la erivaa s(t) t 6. En consecuencia, su velocia en t es s() () 6 48 pies por seguno.

9 SECCIÓN. Reglas básicas e erivación razón e cambio 5. Ejercicios En los ejercicios, utilizar la gráfica para estimar la peniente e la recta tangente a n en el punto (, ). Verificar la respuesta e manera analítica... (, ) En los ejercicios a 4, usar las reglas e erivabilia para calcular la erivaa e la función f f.. f t t t 6 4. t t 5. g st t 5t t 8 8. (, ) sen cos. cos.. sen 4. En los ejercicios 5 a 0, completar la tabla. f g 4 (, ) (, ) g f gt cos t 7 sen 5 cos En los ejercicios a 8, encontrar la peniente e la gráfica e la función en el punto inicao. Utilizar la función erivative e una herramienta e graficación para verificar los resultaos original 4 f f 5 f 4 sen gt cos t 5 Reescribir En los ejercicios 9 a 54, encontrar la erivaa e caa función. 9. f gt t 4 4. t 4. f f f hs s 45 s f 6 5 cos 54. Derivar ft 5t 5, f 7 5 0, Punto,, 4 0, 5, 0 0, 0, 7 f Simplificar f f 6 h 6 5 f 5 f t t t 4 f cos En los ejercicios 55 a 58, encontrar la ecuación e la recta tangente a la gráfica e ƒ en el punto inicao, utilizar una herramienta e graficación para representar la función su recta tangente en el punto, c) verificar los resultaos empleano la función erivative e su herramienta e graficación original Reescribir Derivar Simplificar f 4 Punto, 0,,, 6

10 6 CAPÍTULO Derivación En los ejercicios 59 a 64, eterminar los puntos (si los h one la gráfica e la función tiene una recta tangente horizontal sen, cos, 0 < 0 < En los ejercicios 65 a 70, encontrar una k tal que la recta sea tangente a la gráfica e la función. Desarrollo e conceptos (continuación) En los ejercicios 75 76, se muestran las gráficas e la función ƒ e su erivaa ƒ en el mismo plano cartesiano. Clasificar las gráficas como f o ƒ eplicar en un breve párrafo los criterios empleaos para hacer tal selección f k f k Recta f k 5 4 f k f() k f k Construir las gráficas e las ecuaciones 6 5, así como las os rectas que son tangentes a ambas gráficas. Encontrar las ecuaciones e ichas rectas. 78. Demostrar que las gráficas e l tienen rectas tangentes perpeniculares entre sí en su punto e intersección. 79. Demostrar que la gráfica e la función 7. Bosquejar la gráfica e una función ƒ tal que ƒ 0 para toas las cua razón e cambio e la función sea ecreciente. Para iscusión 7. Utilizar la gráfica para responer a las siguientes preguntas. A B C Entre qué par e puntos consecutivos es maor la razón e cambio promeio e la función? La razón e cambio promeio e ƒ entre A B es maor o menor que la razón e cambio instantáneo en B? c) Trazar una recta tangente a la gráfica entre los puntos C D cua peniente sea igual a la razón e cambio promeio e la función entre C D. Desarrollo e conceptos D En los ejercicios 7 74 se muestra la relación que eiste entre ƒ g. Eplicar la relación entre ƒ g. 7. g() ƒ() g() 5 ƒ() E f f sen no tiene ninguna recta tangente horizontal. 80. Demostrar que la gráfica e la función f 5 5 no tiene una recta tangente con peniente e. En los ejercicios 8 8, encontrar la ecuación e la recta tangente a la gráfica e la función ƒ que pasa por el punto ( 0, 0 ), no perteneciente a la gráfica. Para eterminar el punto e tangencia (, ) en la gráfica e ƒ, resolver la ecuación f f 8. 0, 0 4, 0 8. Aproimación lineal En una ventana cuaraa e la herramienta e graficación, aplicar el zoom para aproimar la gráfica e f 4 a fin e estimar ƒ(). Calcular ƒ() por erivación. 84. Aproimación lineal En una ventana cuaraa e la herramienta e graficación, aplicar el zoom para aproimar la gráfica e f 4 f 0, 0 5, 0 a fin e estimar ƒ(4). Calcular ƒ(4) por erivación.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación 96 CAPÍTULO Derivación. La erivaa el problema e la recta tangente Hallar la peniente e la recta tangente a una curva en un punto. Usar la efinición e límite para calcular la erivaa e una función. Comprobar

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN.3 Reglas el proucto, el cociente erivaas e oren superior 119.3 Reglas el proucto, el cociente erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar la erivaa

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada

Semana 14-Derivadas I[1/29] Derivada. 7 de junio de Derivada Semana 14-s I[1/9] 7 e junio e 007 s Introucción Semana 14-s I[/9] Introucción P f Q Consieremos el gráfico e una función f con ominio R. Sea P = (x 0, y 0 ) un punto el gráfico e f y sea Q = (x 1, y 1

Más detalles

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05

EJERCICIOS Sustituyendo x 5, el nivel de producción actual, obtenemos. dc dt (0.7) 1.05 Sustituyeno 5, el nivel e proucción actual, obtenemos 0. Repita el ejemplo 6 para la función e costo C() 5 3 C t 5 0 (0.7).05 Así que los costos e proucción se están incrementano a una tasa e.05 por año.

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

3.1 Definiciones previas

3.1 Definiciones previas ÍNDICE 3.1 Definiciones previas............................... 1 3.2 Operaciones con funciones........................... 8 3.3 Límite e una función en un punto...................... 15 3.3.1 Operaciones

Más detalles

3.4. Derivadas de funciones trigonométricas. Derivada de la función seno

3.4. Derivadas de funciones trigonométricas. Derivada de la función seno 3.4 Derivaas e funciones trigonométricas 83 T 6. Drenao e un tanque El número e galones e agua que ay en un tanque t minutos espués e que éste empezó a vaciarse es Q(t) (3 t). Qué tan rápio salía el agua

Más detalles

Derivadas algebraicas

Derivadas algebraicas CDIN0_M1AAL1_Algebraicas Versión: Septiembre 01 Revisor: Sanra Elvia Pérez Derivaas algebraicas por Sanra Elvia Pérez Derivaa e una función El concepto e erivaa, base el cálculo iferencial, ha permitio

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

Clase 6: Derivadas direccionales

Clase 6: Derivadas direccionales Clase 6: Derivaas ireccionales C. J. Vanegas 27 e abril e 2008 preliminares Sean x R 3 y v R 3 fijos en R 3. Consiere la recta L que pasa por x y tiene irección v, es ecir: L = {y R 3 : y = x + t v t R}

Más detalles

5.2 La función logaritmo natural: integración

5.2 La función logaritmo natural: integración CAPÍTULO 5 Funciones logarítmica, eponencial otras funciones trascenentes 5. La función logaritmo natural: integración Usar la regla e logaritmo e integración para integrar una función racional. Integrar

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim FORMULARIO V1.00 - Introucción a la Física Licenciatura en Física 1 Operaor Derivaa 1.1 De nición formal f (z 0 ) lim lim z 0!z z z 0 4z!0 f (z + 4z) 4z (1) 1. Derivaas e algunas funciones elementales

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

LA DERIVADA. Introducción:

LA DERIVADA. Introducción: LA DERIVADA Introucción: Fue Isaac Newton que estuiano las lees el movimiento e los planetas que Kepler había escubierto meio siglo antes, llegó a la iea e incremento e una función como se nos ofrece en

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

Ecuación vectorial de la recta en el plano y su ecuación cartesiana

Ecuación vectorial de la recta en el plano y su ecuación cartesiana iceo Técnico Aolfo Matthei ierano la Eucación Técnico Profesional Docente: Cristian Casas. GUIA MATEMATICA Departamento e Matemática Curso: 4 Meio Fecha : Puntos : NOMBRE: Nota : Ecuación vectorial e la

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

Propiedades de los límites

Propiedades de los límites SECCIÓN 3 Cálculo analítico de ites 59 3 Cálculo analítico de ites Evaluar un ite mediante el uso de las propiedades de los ites Desarrollar usar una estrategia para el cálculo de ites Evaluar un ite mediante

Más detalles

DERIVADAS DERIVACIÓN DE FUNCIONES

DERIVADAS DERIVACIÓN DE FUNCIONES DERIVADAS DERIVACIÓN DE FUNCIONES Introucción: Después e haber aquirio los conocimientos e los temas anteriores e funciones límites se requiere establecer un proceimiento más eficiente que nos permita

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

2.1. Derivada de una función en un punto

2.1. Derivada de una función en un punto Capítulo 2 Diferenciación 1 2.1. Derivaa e una función en un punto Ritmo (o razón, o tasa) e cambio e una función en un momento ao. Peniente e la recta tangente. Aproximación por la peniente e las rectas

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen

Más detalles

PROYECTO MATEM CÁLCULO I PLANEAMIENTO ANUAL

PROYECTO MATEM CÁLCULO I PLANEAMIENTO ANUAL Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CÁLCULO I PLANEAMIENTO ANUAL 2016 Coordinadores: Licda. Elizabeth Díaz G. (U.C.R) y Mag. Randall Blanco B. (TEC) Parcial I II

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

Lección 2.1. La Derivada y las Reglas básicas de la Diferenciación. 02/07/2011 Prof. José G. Rodríguez Ahumada 1 de 30

Lección 2.1. La Derivada y las Reglas básicas de la Diferenciación. 02/07/2011 Prof. José G. Rodríguez Ahumada 1 de 30 Lección. La Derivaa y las Reglas básicas e la Dierenciación 0/07/0 Pro. José G. Roríguez Aumaa e 0 Objetivos Interpretar la erivaa e una unción como la peniente e la tangente e una curva en un punto y

Más detalles

La derivada. 2.1 Dos problemas con el mismo tema. recta secante de P y Q tiene pendiente dada por (véase la figura 4): m sec = Rectas secantes

La derivada. 2.1 Dos problemas con el mismo tema. recta secante de P y Q tiene pendiente dada por (véase la figura 4): m sec = Rectas secantes CAPÍTULO La erivaa. Dos problemas con el mismo tema. La erivaa. Reglas para encontrar erivaas. Derivaas e funciones trigonométricas.5 La regla e la caena.6 Derivaas e oren superior.7 Derivación implícita.8

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º

Cada grado se divide en 60 minutos (60 ) y cada minuto en 60 segundos (60 ). Así, por ejemplo, un ángulo puede medir = 38º Sistemas e meición e ángulos Como en toos los elementos susceptibles a meiciones, en los ángulos se han establecio iversos sistemas e meición, entre ellos los más importantes son: El sistema seagesimal

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

CLASE II Estática de las construcciones II

CLASE II Estática de las construcciones II ntroucción a las construcciones CLASE Estática e las construcciones lustración sobre la variación e los esfuerzos e estructuras simples. Galileo Galilei, en Discorsi e Dimostrazioni Matematiche, intorno

Más detalles

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado

Grafos. es un grafo sobre V, donde V es el conjunto de vértices y E el conjunto de aristas. Lo anotaremos G ( V, E) Abierto Cerrado Grafos Sea V un conjunto finito no vacío, y E V V. El par ( V, E) es un grafo sobre V, one V es el conjunto e vértices y E el conjunto e aristas. Lo anotaremos G ( V, E). Vértice(s) repetio(s) Arista(s)

Más detalles

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3)

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3) CAPÍTULO 10 FUNCIONES IMPLÍCITAS 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 3) En el curso e Precálculo el 4º semestre se vieron iferentes clasificaciones e las funciones, entre ellas las funciones eplícitas

Más detalles

Funciones polinomiales

Funciones polinomiales 1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

RESALTO DE ONDAS (1< Fr 1 < 1,7)

RESALTO DE ONDAS (1< Fr 1 < 1,7) UNIVERSIDAD DE CHIE - CI 4A HIDRÁUICA RESATO DE ONDAS (< Fr

Más detalles

Nombre:...Curso:... CAMPO ELECTRICO

Nombre:...Curso:... CAMPO ELECTRICO Nombre:...Curso:... CAMPO ELECTRICO El concepto e campo es un importante meio para la escripción e algunos fenómenos físicos, un ejemplo e esto es el caso e la Tierra, ya que cualquier objeto e masa m

Más detalles

MOVIMIENTO PARABÓLICO

MOVIMIENTO PARABÓLICO MOIMIENTO PARABÓLICO En la naturaleza no se presentan los movimientos aislaamente, sino combinaos ó superpuestos e os o más movimientos simples. Son movimientos simples : el Movimiento Rectilíneo Uniforme

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 30 CAPÍTULO Derivació.4 La regla e la caea Ecotrar la erivaa e ua fució compuesta por la regla e la caea. Ecotrar la erivaa e ua fució por la regla geeral e la potecia. Simplificar la erivaa e ua fució

Más detalles

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan

Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan Taller 4 Ecuaciones Diofánticas Lineales Profesor Manuel O Ryan En general una Ecuación Diofántica es una ecuación polinomial en una o más variables para la que buscamos soluciones en los números enteros,

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

3.1 Ejercicios. En qué punto de la curva y e x es paralela la recta tangente a la recta

3.1 Ejercicios. En qué punto de la curva y e x es paralela la recta tangente a la recta SECCIÓN 3. DERIVADAS DE FUNCIONES POLINOMIALES Y EXPONENCIALES 8 = FIGURA 9 3 (ln, ) = EJEMPLO 9? En qué punto e la curva e es paralela la recta tangente a la recta SOLUCIÓN Como e, tenemos e. Sea a la

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

Física para todos 1 Carlos Jiménez Huaranga MOVIMIENTO PARABÓLICO. a) Aplicamos la ecuación: ttotal. b) Para calcular la máxima altura, utilizamos la

Física para todos 1 Carlos Jiménez Huaranga MOVIMIENTO PARABÓLICO. a) Aplicamos la ecuación: ttotal. b) Para calcular la máxima altura, utilizamos la Física para toos 1 Carlos Jiménez Huarana MOVIMIENTO PARABÓLICO Es un movimiento compuesto por: Un movimiento orizontal rectilíneo uniforme one la componente orizontal e la velocia permanece constante

Más detalles

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe DERIVADA DEFINICION DE DERIVADA Sea una función efinia en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite eiste Dicho límite, cuano eiste, se llama DERIVADA e f

Más detalles

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 7 INTRODUCCIÓN El propósito e este tema es introucir a los alumnos en la terminología básica e las Ecuaciones Diferenciales eaminar brevemente como se

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE 5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.

Más detalles

MOVIMIENTO PARABÓLICO

MOVIMIENTO PARABÓLICO NIEL: BASICO MOIMIENTO PARABÓLICO En la naturaleza no se presentan los movi mientos aislaamente, sino combinaos ó superpuestos e os o más movimientos si mples. Son movimientos si mples : el Movimiento

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS CAPÍTULO 6 FUNCIONES TRIGONOMÉTRICAS 6.1 FUNCIONES TRASCENDENTES (Áreas 1, y ) Las funciones trascenentes se caracterizan por tener lo que se llama argumento. Un argumento es el número o letras que lo

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo

Más detalles

Diferenciales e integral indefinida

Diferenciales e integral indefinida Diferenciales e integral inefinia El estuiante: Aplicará los conceptos e iferencial e integral inefinia, meiante la solución e problemas relacionaos con las ciencias naturales, las económico-aministrativas

Más detalles

Derivadas de orden superior

Derivadas de orden superior Tema 6 Derivadas de orden superior 6 Polinomios de Taylor Nuestro objetivo es aproimar una función dada mediante funciones polinómicas Resulta conveniente estudiar las funciones polinómicas con más detenimiento

Más detalles

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

3.4 Concavidad y el criterio de la segunda derivada

3.4 Concavidad y el criterio de la segunda derivada 90 CAPÍTULO 3 Aplicaciones de la derivada 3.4 Concavidad el criterio de la segunda derivada Determinar intervalos sobre los cuales una función es cóncava o cóncava. Encontrar cualesquiera puntos de infleión

Más detalles

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que

Logaritmo Natural. x I t dt = ln(x) = ln(x) > 0 para x (1, ) Observación 5. El primer teorema fundamental del Cálculo implica que Logaritmo Natural Si n ya sabemos que x t n t = n+ xn+ + C, con C una constante. Definición. La regla e corresponencia ln(x) = x t t = x I efine una función con ominio D ln = (0, ). A esta función se le

Más detalles

d) Si tiene la siguiente función para la oferta de trabajo:

d) Si tiene la siguiente función para la oferta de trabajo: Capítulo MERCADO DE TRABAJO, FUNCIÓN DE RODUCCIÓN Y OFERTA AGREGADA DE ARGO AZO. Sea la función e proucción: Y = A0( f 0 f ) Done las uniaes en las que se expresa la cantia e trabajaores a emplear son

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I CÁLCULO DIFERENCIAL E INTEGRAL I CUADERNO DE ACTIVIDADES DE APRENDIZAJE, CONSOLIDACIÓN Y RETROALIMENTACIÓN

CÁLCULO DIFERENCIAL E INTEGRAL I CÁLCULO DIFERENCIAL E INTEGRAL I CUADERNO DE ACTIVIDADES DE APRENDIZAJE, CONSOLIDACIÓN Y RETROALIMENTACIÓN COLEGIO DE BACHILLERES COORDINACIÓN DE ADMINISTRACIÓN ESCOLAR DEL SISTEMA ABIERTO CUADERNO DE ACTIVIDADES DE APRENDIZAJE, CONSOLIDACIÓN RETROALIMENTACIÓN DE LA ASIGNATURA CÁLCULO DIFERENCIAL E INTEGRAL

Más detalles

CAPÍTULO. Conceptos básicos

CAPÍTULO. Conceptos básicos CAPÍTULO Conceptos básicos.5 Familias de curvas Para continuar con el estudio de las soluciones de las ED, daremos en esta sección una interpretación gráfica del conjunto de soluciones para una ED de primer

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

3.1 Extremos en un intervalo

3.1 Extremos en un intervalo 6 CAPÍTULO Aplicaciones de la derivada. Etremos en un intervalo Entender la definición de etremos de una función en un intervalo. Entender la definición de etremos s de una función en un intervalo abierto.

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.

Más detalles

f x 41 f x x 2 x 2 19 f x x 3 46 asíntotas verticales: x 2, x 0 47 asíntotas verticales: x 3, x 1 x 1 9 f x 3x x 2 9

f x 41 f x x 2 x 2 19 f x x 3 46 asíntotas verticales: x 2, x 0 47 asíntotas verticales: x 3, x 1 x 1 9 f x 3x x 2 9 4.5 Funciones racionales 35 Ejer. 7-32: Trace la gráfica de f. 7 3 4 8 9 3 2 4 2 3 2 3 4 2 2 3 2 4 5 2 2 6 6 7 4 2 2 8 9 3 2 2 3 3 4 2 5 5 3 3 7 5 3 3 7 2 2 3 2 2 4 2 4 Ejer. 37-44: Simplifique f() trace

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles