TITULO. Estudio analítico para hallar un modelo matemático que optimiza un perfil de ojiva balístico (región subsónica, sónica y supersónica)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TITULO. Estudio analítico para hallar un modelo matemático que optimiza un perfil de ojiva balístico (región subsónica, sónica y supersónica)"

Transcripción

1 TITULO Estuio analítico para hallar un moelo matemático que optimiza un perfil e ojiva balístico (región subsónica, sónica supersónica) Por Alfreo R Garasini RESUMEN Partieno e una función e isipación tipo Frantl, con el auilio el cálculo variacional se obtiene una epresión que aos el raio (calibre) la longitu e la ojiva, se permite eterminar la curva (perfil e ojiva) que hace mínima la resistencia el aire al avance el proectil

2 NOMENCLATURA ρ : ensia el aire C (W ) : coeficiente e arrastre : velocia en el eje : velocia en el eje s : elemento el área anular F: fuerza resistente el aire ξ : función subintegral t: variable tiempo r: raio e la ojiva h: longitu e la ojiva Página e 5

3 INTRODUCCION Hipótesis a emplear - Amitimos que la ojiva es un paraboloie e revolución - Empleamos una función e isipación tipo Frantl 3- La ensia el aire es constante 4- El coeficiente e arrastre (rag) es constante 5- La fuerza e isipación o resistencia el aire es una funcional A continuación el ibujo muestra un paraboloie elemental, esto es: Entonces la función e isipación que obra sobre la superficie elemental s, es: () F ρ C( W ) S Done: S π Por consecuencia tenemos que: F ρc( W ) π Página 3 e 5

4 O bien (3) F π ρc( w) En virtu e las hipótesis (3) (4) resulta así mismo: (4) F ρπ C( w) Como γγ t (la componente e la velocia sobre el eje γ ) la integral (4) se convierte en otra equivalente tal que: t F ρπc (5) ( w) t t Fijamos los límites e integración por ejemplo t (luego serán O t) t Ahora bien, por la estructura e la función integral, estaríamos en presencia e un problema e etremos, por lo tanto formulamos la hipótesis e que la fuerza F e la resistencia el aire es una funcional, esto significa: O δf ρπc (6) ( w) δ t t t Es ecir intentamos hallar una función que haga máima o mínima al valor F (en este caso es mínimo, pues como se avierte se cumple la conición e Legenre) Página 4 e 5

5 DESARROLLO Una vez establecios estas bases poemos aplicar las ecuaciones e Euler-Lagrange, resulta el siguiente sistema e ecuaciones iferenciales: (8) (7) t t ζ ζ ζ Sieno (9): ζ Operamos: () () t t () o a a Llevamos a ésta última a la epresión () : (3) a a t Página 5 e 5

6 Quea: t Hacemos: (el simple artificio) t Llamamos: ϕ, que resulte la ecuación iferencial orinaria: t t ϕ ϕ Eliminamos el tiempo; separamos las variables: ϕ ϕ ϕ ϕ Tenremos: b ϕ O bien: b O bien: b Página 6 e 5

7 Etraemos la raíz cuaraa: (4) b Separaremos variables e integramos nuevamente, por la naturaleza el problema los límites e integración porán ser: t t b e ahí que: (5) t b Por otra parte tenieno en cuenta la () en virtu e la (4) resulta: (6) a b O bien: ab c Evientemente: (7) ct Ahora resta por eliminar el tiempo entre las relaciones (5) (7) esto es: b c Página 7 e 5

8 Por último: bc Despejamos : bc Llamamos: (8) κ bc Obtenemos: (9) k Si aplicamos las coniciones e contorno para un proectil, el valor e la constante κ r puee ser: κ h Por lo que resulta efinitivamente: r () h Página 8 e 5

9 BREVE COMENTARIO Cabe señalar que la constante κ (relación 8) contiene la velocia c que ahora actúa como parámetro, notemos entonces que la misma figura en el enominaor, lo cual nos informa que en cuanto maor es icha velocia, menor ebe ser la orenaa, o sea: cuanto maor es la velocia, más aguzaa ebe ser la ojiva e un proectil BIBLIOGRAFIA CONSULTADA - Ecuaciones iferenciales Cálculo Variacional Autor: L Elsgoltz - Cálculo Infinitesimal (cálculo e etremales) Autor: J Re Pastor 3- Tratao e Balística Autor: Dr L Hanert 4- Tabla e Coeficientes e arrastre Autor: Pranntl Página 9 e 5

10 TABLA DE VALORES CORRESPONDIENTE AL MODELO MATEMÁTICO (FfLA) ( perfil e ojiva) X Y Página e 5

11 Página e 5

12 Página e 5

13 Página 3 e 5

14 Página 4 e 5

15 NOTA Es importante comentar que este trabajo contiene una seguna parte que se va a publicar (sin cargo también) oportunamente Este consiste en una curiosa relación matemática que puee ser e capital significación para la fabricación e municiones, pues la misma relaciona el Factor e Estabilización e un proectil con el calibre, la longitu el cuerpo la altura e la ojiva Esta epresión ha sio verificaa para 7 proectiles e istintos calibres Página 5 e 5

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables MATEMÁTICAS II Valores etremos Curso - e unciones e varias variables EJERCICIOS ) Calcular el volumen e la caja rectangular más grane situaa en el primer octante con tres e sus caras en los planos coorenaos

Más detalles

Variación de un funcional Funcional ( ) 1.6 Introducción al cálculo variacional 1.6. Introducción al cálculo variacional

Variación de un funcional Funcional ( ) 1.6 Introducción al cálculo variacional 1.6. Introducción al cálculo variacional 1.6. Introducción al cálculo variacional El cálculo variacional estudia los métodos, llamados variacionales, que permiten hallar los valores estacionarios de los funcionales. Puesto que un funcional representa

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico.

MMII_CV_c1 CÁLCULO VARIACIONAL: Introducción y modelo básico. MMII_CV_c CÁLCULO VARIACIONAL: Introucción moelo básico. Guión Esta es una clase e introucción al Cálculo e Variaciones (CV). Por un lao, se establece su relación con otros campos e la Optimización en

Más detalles

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves,

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, Explicación e la velocia e rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, yulalebran9@gmail.com) A continuación se presenta una emostración e la velocia e rotación en galaxias

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

Ecuaciones Diferenciales de primer Orden

Ecuaciones Diferenciales de primer Orden 4 Ecuaciones Diferenciales e primer Oren 1.1 1.1. Introucción Las palabras ecuaciones y iferenciales nos hacen pensar en la solución e cierto tipo e ecuación que contenga erivaas. Así como al estuiar álgebra

Más detalles

IV.- CONDICIÓN DE CONTORNO DE CONVECCIÓN EN SÓLIDOS INFINITOS

IV.- CONDICIÓN DE CONTORNO DE CONVECCIÓN EN SÓLIDOS INFINITOS IV.- CONDICIÓN DE CONTONO DE CONVECCIÓN EN SÓLIDOS INFINITOS IV.1.- INTODUCCIÓN En la mayor parte e los problemas e tipo térmico que se plantean a nivel técnico intervienen variaciones e la temperatura

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA ( ).

RESOLVIENDO PROBLEMAS DE MATEMÁTICA ( ). Matemática, Física, Astronomía, casanchi.com 07 RESOLVIENDO PROBLEMAS DE MATEMÁTICA RESOLUCIÓN DE LOS PROBLEMAS PROPUESTOS PROBLEMA 50 (7) Sea Γ la topología de R constituida por R, φ y todos los intervalos

Más detalles

Principio de incertidumbre de Heisenberg

Principio de incertidumbre de Heisenberg Principio e incertiumbre e Heisenberg n un átomo e irógeno, nos se pueen meir simultáneamente la cantia e movimiento mv y la posición e su electrón. a cantia e movimiento e una partícula se enomina momento,

Más detalles

Escuela Politécnica. Universidad de Alcalá

Escuela Politécnica. Universidad de Alcalá Escuela Politécnica. Universia e Alcalá Asignatura: PROPAGACIÓN Y ONDAS Grao en Ingenieria Electrónica e Comunicaciones (G37) Grao en Ingeniería Telemática (G38) Grao en Ingeniería en Sistemas e Telecomunicación

Más detalles

Funciones de Bessel. Dr. Héctor René Vega-Carrillo

Funciones de Bessel. Dr. Héctor René Vega-Carrillo Funciones e Bessel Dr. Héctor René Vega-Carrillo 1 2 Ínice 1. Introucción............................. 3 2. Solución e la Ecuación iferencial e Bessel........... 5 2.1. Caso n entero............................

Más detalles

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017

EXAMEN EXTRAORDINARIO DE FÍSICA I. CUESTIONES 30/01/2017 EXAME EXTRAORDIARIO DE FÍSICA I. CUESTIOES 30/0/07.- a) Defina el momento angular e una partícula. Demostrar que si la partícula se mueve en un plano, la irección el momento angular permanece constante.

Más detalles

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE

LA CICLOIDE, UNA CURVA DE MUCHO EMPAQUE LA CICLOIDE, UNA CUVA DE MUCHO EMPAQUE CALOS S CHINEA LA CICLOIDE UNA CUVA DE MUCHO EMPAQUE Una breve introucción 1 Ecuaciones paramétricas La tangente y la normal en un punto 3 Longitu e un arco 4 El

Más detalles

UNIDAD IV.- CÁLCULO INTEGRAL

UNIDAD IV.- CÁLCULO INTEGRAL UNIDAD IV.- CÁLCULO INTEGRAL En la práctica e cualquier campo científico es frecuente que se presenten prolemas relacionaos con el cálculo e áreas, algunas veces e figuras regulares y muchas otras, con

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

A y B

A y B TIVIDDES DE MTRIES. º HILLERTO Hallar el rango e la matriz: 7 8 7 9 8 Se observa que el menor e oren formao por la primera y tercera filas y columnas no es nulo sino igual a 8, veamos: 8 Luego rg () es

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

LAS ECUACIONES VARIACIONALES DE EULER

LAS ECUACIONES VARIACIONALES DE EULER LAS ECUACIONES VARIACIONALES DE EULER Los conceptos de máximo y de mínimo -de extremo o extremal, en definitivade una expresión funcional, es algo corriente en el análisis matemático, y las condiciones

Más detalles

La naturaleza dual de la materia. Los electrones y todas las partículas que forman parte del microcosmos tienen un comportamiento dual.

La naturaleza dual de la materia. Los electrones y todas las partículas que forman parte del microcosmos tienen un comportamiento dual. La naturaleza ual e la materia. Los electrones y toas las partículas que forman parte el microcosmos tienen un comportamiento ual. Se comportan como onas y como corpúsculos. Orígenes: Newton consieraba

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger Ecuación e Schröinger En cuanto a onas electromagnéticas, ya vimos que su comportamiento está regio por las ecuaciones e Maxwell. También hemos visto que a una partícula con masa se le puee asignar una

Más detalles

DERIVADAS DERIVACIÓN DE FUNCIONES

DERIVADAS DERIVACIÓN DE FUNCIONES DERIVADAS DERIVACIÓN DE FUNCIONES Introucción: Después e haber aquirio los conocimientos e los temas anteriores e funciones límites se requiere establecer un proceimiento más eficiente que nos permita

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Ayudantía 2. Ley de Coulomb 08 de Marzo de 2018 Ayudante: Matías Henríquez - Nm 2. e = [C] (1.3)

Ayudantía 2. Ley de Coulomb 08 de Marzo de 2018 Ayudante: Matías Henríquez - Nm 2. e = [C] (1.3) Pontificia Universia Católica e Chile Faculta e Física FIS533 - Electricia y Magnetismo // -28 Profesor: Giuseppe De Nittis - gienittis@uc.cl Ayuantía 2 Ley e Coulomb 8 e Marzo e 28 Ayuante: Matías Henríquez

Más detalles

PIEZAS SOMETIDAS A FLEXIÓN

PIEZAS SOMETIDAS A FLEXIÓN PIEZAS SOETIDAS A FLEXIÓN PROBLEA Nº Comprobar si un perfil IPE300 en acero S75 sería una sección aecuaa para la viga continua con os vanos e 6m cargaa vinculaa como se muestra en la figura. Suponremos

Más detalles

MATEMÁTICA DE JORGE JUAN

MATEMÁTICA DE JORGE JUAN LA FIGUA DE LA TIEA MATEMÁTICA DE JOGE JUAN POFESO DIEGO GACÍA CASTAÑO LA ASAMBLEA AMISTOSA LITEAIA La Figura e la Tierra E,; ED ECUADO DB SEMIEJE DE LA TIEA ; GI ; FH Ecuaciones e la elipse : cosφ; senφ

Más detalles

Ejercicios N 3 (MAT 021)

Ejercicios N 3 (MAT 021) Ejercicios N 3 (MAT 021) Universidad Técnica Federico Santa María Departamento de Matemática Septiembre 2009 1 Rectas 1. En cada caso determine la ecuación de la recta L (a) L pasa por el punto P ( 1,

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

(A) Primer parcial. (3) Encuentre gráfica, dominio, rango, intervalos de monotonía y paridad de la función: x 2 + x 2, x = parte entera de x.

(A) Primer parcial. (3) Encuentre gráfica, dominio, rango, intervalos de monotonía y paridad de la función: x 2 + x 2, x = parte entera de x. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E3000 ) ) + + < 0. 5+4. A) Primer parcial 3) Encuentre gráfica, dominio, rango, intervalos de monotonía y paridad de la función: f) = +3, 0. 4) Determine

Más detalles

PROBLEMAS DE TEOREMA DE LA DIVERGENCIA

PROBLEMAS DE TEOREMA DE LA DIVERGENCIA PROBLMA D TORMA D LA DIVRGNCIA NUNCIADO DL TORMA ea una región simple sólia cua superficie frontera tiene una orientación positiva (hacia afuera). ea un campo vectorial cuas funciones componentes tienen

Más detalles

RESALTO DE ONDAS (1< Fr 1 < 1,7)

RESALTO DE ONDAS (1< Fr 1 < 1,7) UNIVERSIDAD DE CHIE - CI 4A HIDRÁUICA RESATO DE ONDAS (< Fr

Más detalles

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa

Más detalles

25 EJERCICIOS de RADICALES 4º ESO opc. B

25 EJERCICIOS de RADICALES 4º ESO opc. B EJERCICIOS de RADICALES º ESO opc. B RECORDAR: Definición de raíz n-ésima: Consecuencia: n n x n a x x x, y también ( ) n n x n a x Equivalencia con una potencia de exponente fraccionario: Simplificación

Más detalles

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar

Más detalles

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable Departamento de Matemáticas Página PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. d 4.0.- Calcula ( ) (Sugerencia: cambio de variable t ) 4-0.- Sea f : R R la función definida por Sea f ( ) e cos ( )

Más detalles

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables.

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables. Matemáticas II Curso 0/4 Opción A (ª evaluación) Ejercicio. (Puntuación máima: puntos) Estudia las características de la función = ln = ( 0, + ) ( + ) f Dom f y = ln ; con los datos obtenidos representa

Más detalles

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES Tema 4 Funciones elementales Matemáticas CCSSI º Bachillerato TEMA 4 FUNCIONES ELEMENTALES FUNCIÓN EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.

Más detalles

Seminario de problemas. Curso Hoja 5. Soluciones

Seminario de problemas. Curso Hoja 5. Soluciones Seminario e problemas. Curso 018-19. Hoja. Soluciones 49. Encuentra una expresión cerraa para la suma S m = 1 + 7 +... + 1 m+1 m 1 aplicano el cálculo e iferencias, o/y e otro moo. Solución. S n = 1 +

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-1-M--00-017 CURSO: Matemática Básica SEMESTRE: Seguno CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Primer eamen

Más detalles

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 7 INTRODUCCIÓN El propósito e este tema es introucir a los alumnos en la terminología básica e las Ecuaciones Diferenciales eaminar brevemente como se

Más detalles

Coordinación de Matemática I (MAT021) Taller 6

Coordinación de Matemática I (MAT021) Taller 6 Coordinación de Matemática I MAT0 Taller 6 Primer semestre de 0 Semana 7: Lunes 07 viernes de mayo Ejercicios Ejercicio Calcular [ ] 0 + donde [ ] denota la función parte entera. Ejercicio Calcular cos

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIÓN CUADRÁTICA GUÍA TEÓRICO PRÁCTICA Nº8 A la función de segundo grado f() = a + b + c, siendo a, b, c lr a 0 se le denomina función cuadrática. La

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que

Más detalles

Cálculo de variaciones para estudiantes de primer curso de Ingenierías: Problemas Isoperimétricos

Cálculo de variaciones para estudiantes de primer curso de Ingenierías: Problemas Isoperimétricos Cálculo de variaciones para estudiantes de primer curso de Ingenierías: Problemas Isoperimétricos Autoría: Mª José Haro Delicado Mª José Pérez Haro emática: Este documento completa otro anterior en el

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones

Capitulo IV. IV.1 Síntesis dimensional de mecanismos. Generación de funciones Capitulo IV IV. Síntesis imensional e mecanismos. Generación e funciones Cinemática y Dinámica e Máquinas. IV. Síntesis imensional e mecanismos. Generación e funciones Capítulo IV Síntesis imensional e

Más detalles

PIEZAS SOMETIDAS A FLEXIÓN

PIEZAS SOMETIDAS A FLEXIÓN PIEZAS SOETIDAS A FEXIÓN PROBEA 6 En la figura se representa una viga continua e os vanos e 5m y 4m respectivamente con su extremo izquiero empotrao y su extremo erecho apoyao. Tenieno en cuenta que las

Más detalles

Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy.

Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy. Función polinómica: La función polinómica está compuesta por una serie de operaciones; sumas, restas, productos potencias. Todas ellas están perfectamente definidas en el conjunto de los números reales.

Más detalles

Ejemplo de aplicación práctica de dimensionado de un bulón

Ejemplo de aplicación práctica de dimensionado de un bulón Ejemplo e aplicación práctica e imensionao e un bulón Apellios, nombre Guariola Víllora, Arianna (aguario@mes.upv.es) Departamento Centro Mecánica el Meio continuo y Teoría e Estructuras Universitat Politècnica

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

Clase 11 Tema: Fórmula general para solucionar ecuaciones cuadráticas

Clase 11 Tema: Fórmula general para solucionar ecuaciones cuadráticas Matemáticas 9 Bimestre: III Número de clase: Clase Tema: Fórmula general para solucionar ecuaciones cuadráticas Actividad Lea la siguiente información. La deducción de una fórmula práctica nos permite

Más detalles

Universidad de Castilla la Mancha Septiembre Propuesta A

Universidad de Castilla la Mancha Septiembre Propuesta A A.- árbara Cánovas Conesa 67 7 Universidad de Castilla la Mancha Septiembre.7 Propuesta A www.clasesalacarta.com Septiembre 7 a) Calcula razonadamente el área de la región determinada por la curva f()

Más detalles

TEMA 7: Sistemas de ecuaciones

TEMA 7: Sistemas de ecuaciones TEMA 7: Sistemas de ecuaciones 7.1 Ecuaciones con dos incógnitas. Soluciones Ejemplo 1. Encuentra soluciones para la siguiente ecuación de primer grado con dos incógnitas: 5 a., 0, 5 Si sustituimos en

Más detalles

TEMA 6 PROBLEMAS DE VALOR INICIAL PROBLEMAS DE CÁLCULO NUMÉRICO (8/9) El código se lista a continuación: function [S,T]resuelve_ed(Tobs,h) T[:h:Tobs];

TEMA 6 PROBLEMAS DE VALOR INICIAL PROBLEMAS DE CÁLCULO NUMÉRICO (8/9) El código se lista a continuación: function [S,T]resuelve_ed(Tobs,h) T[:h:Tobs]; TEMA 6 PROBLEMAS DE VALOR INICIAL PROBLEMAS DE CÁLCULO NUMÉRICO (8/9) TEMA 6: RESOLUCIÓN NUMÉRICA DE PROBLEMAS DE VALOR INICIAL Problema El siguiente código en MATLAB resuelve una ecuación diferencial

Más detalles

UNIDAD 6 ORIFICIOS. VERTEDEROS Y RESALTO HIDRÁULICO

UNIDAD 6 ORIFICIOS. VERTEDEROS Y RESALTO HIDRÁULICO UNIA 6 ORIFIIO. VERTEERO Y REALTO HIRÁULIO apítulo 1 EAGÚE POR ORIFIIO Y BAJO OMPUERTA EIÓN 1: EAGÚE POR ORIFIIO INTROUIÓN Estuiamos en este capítulo los esagües por orificio bajo compuerta, secciones

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

Para encontrar el valor de k sustituimos el valor de h en la función inicial.

Para encontrar el valor de k sustituimos el valor de h en la función inicial. .3.4 GRÁFICAS DE FUNCIONES CUADRÁTICAS COMPLETAS. Ejemplo 1. Construir la gráfica de la siguiente función f()= -4-5, estableciendo su dominio, rango, las coordenadas de su vértice sus raíces (método de

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

K

K Universia e Navarra Naarroako Unibertsitatea Escuela Superior e Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA: TECNOLOGÍAS DE FABRICACIÓN CURSO KURTSOA: 4º Tiempo: 1 hora, 30 minutos P_JUN_09

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos página 1/10 Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos Hoja 8. Problema 1 a) Deriva f ()=arcosen( 1 2 ) 1 f ' ( )= 2 1 ( 1 2 ) 2 2 1 = 1 2 1 2 b) Determina el punto (,

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

Cinemática y Dinámica de Fluidos: Fundamentos Básicos

Cinemática y Dinámica de Fluidos: Fundamentos Básicos Cinemática y Dinámica e Fluios: Funamentos Básicos Santiago López Algunas Definiciones Antes e empezar con el tema central e éste capítulo, se eben introucir unos conceptos que son útiles a la hora e e

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema). Eamen e Física-1, 1 Ingeniería Química Eamen final. Septiembre e 2013 Problemas Dos puntos por problema). Problema 1 Primer parcial): Un cuerpo e masa m = 0, 5kg se lanza hacia abajo meiante un muelle

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

Colegio Cristo Rey Matemáticas Aplicadas a las Ciencias Sociales I Temas 9 y 10. Derivadas y aplicaciones. x 3x. x x x. x 2

Colegio Cristo Rey Matemáticas Aplicadas a las Ciencias Sociales I Temas 9 y 10. Derivadas y aplicaciones. x 3x. x x x. x 2 Colegio Cristo Re Matemáticas Aplicadas a las Ciencias Sociales I Temas 9. Derivadas aplicaciones. Halla la derivada de estas funciones: a) f ln f ' ln ln 4 b) f f ' 4 c) f f ' ln d) f log f ' 4 4 ln e)

Más detalles

Figura 1. Sistema de control del problema 6. = K (sin compensar) no pasa por la ubicación deseada. ( s)

Figura 1. Sistema de control del problema 6. = K (sin compensar) no pasa por la ubicación deseada. ( s) TEORÍA DEL ONTROL. SEGUNDO EXAMEN PARIAL MODELO DE SOLUIÓN. M. EN. RUBÉN VELÁZQUEZ UEVAS Problema 6. onsiere le sistema e la figura. Diseñe un compensaor e aelanto tal que los polos ominantes e lazo cerrao

Más detalles

MÉTODO DE LOS ELEMENTOS FINITOS INTRODUCCIÓN AL CÁLCULO DE VARIACIONES

MÉTODO DE LOS ELEMENTOS FINITOS INTRODUCCIÓN AL CÁLCULO DE VARIACIONES MÉTODO DE LOS ELEMENTOS INITOS INTRODUCCIÓN AL CÁLCULO DE VARIACIONES 64.4 - método de los elementos finitos MÁXIMOS Y MÍNIMOS (I) Para la una función f(x) dada se puede hallar un extremo mediante: x df

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTOS

MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTOS MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTOS 0 . POLEAS Y CORREAS Figura : correas abiertas. La figura, muestra el caso e correas abiertas. En este caso, poemos obtener la expresión e la longitu

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

El Problema de Cauchy para EDPs de Primer Orden

El Problema de Cauchy para EDPs de Primer Orden Capítulo 2 El Problema de Cauchy para EDPs de Primer Orden Este capítulo está dedicado al estudio de EDPs de primer orden, esto es, ecuaciones en las que sólo aparecen derivadas parciales de a lo sumo

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación

Más detalles

MATEMÁTICAS III. 5. Elige el Plan NME Entra al Semestre que cursas. 2. Da clic en Alumnos o Docentes.

MATEMÁTICAS III. 5. Elige el Plan NME Entra al Semestre que cursas. 2. Da clic en Alumnos o Docentes. MATEMÁTICAS III Joven Bachiller: Como parte e las acciones e mejora para fortalecer el nivel acaémico e nuestros estuiantes, el Colegio e Bachilleres, pone a isposición, para estuiantes, irectivos, pares

Más detalles

Mecanismo de reacción. Orden y Molecularidad

Mecanismo de reacción. Orden y Molecularidad Química General II puntes Cinética Mecanismos primavera 0 Mecanismo e reacción. Oren y Molecularia Mecanismo e reacción: Descripción etallaa y completa e caa una e las etapas o secuencia e reacciones que

Más detalles

UNIDAD 6 ORIFICIOS. VERTEDEROS Y RESALTO HIDRÁULICO

UNIDAD 6 ORIFICIOS. VERTEDEROS Y RESALTO HIDRÁULICO UNIDAD 6 ORIFIIOS. VERTEDEROS Y RESALTO HIDRÁULIO apítulo VERTEDEROS SEIÓN 1: VERTEDEROS EN PARED DELGADA DEFINIIÓN DE VERTEDERO Y FUNIONES uano un líquio tiene su superficie lire a cota superior a la

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO Moelo e estao. De la misma forma que se planteó para sistemas continuos, existe la posibilia e moelar un sistema iscreto meiante un moelo e estaos. El sistema

Más detalles

Examen de Matemáticas II 2º de Bachillerato

Examen de Matemáticas II 2º de Bachillerato º Bachillerao - Maemáicas II 1. Calcular el siguiene límie: Eamen e Maemáicas II º e Bachillerao 1 cos lim 0 e 1. Encuenra el puno e la reca y, que cumpla que la suma e los cuaraos e sus coorenaas sea

Más detalles

APUNTES DE ECUACIONES CON UNA Y DOS INCOGNITAS Docente: Roque Julio Vargas R. Departamento de Ciencias Básicas. Unidades Tecnológicas de Santander

APUNTES DE ECUACIONES CON UNA Y DOS INCOGNITAS Docente: Roque Julio Vargas R. Departamento de Ciencias Básicas. Unidades Tecnológicas de Santander APUNTES DE ECUACIONES CON UNA Y DOS INCOGNITAS Docente: Roque Julio Vargas R. Departamento de Ciencias Básicas. Unidades Tecnológicas de Santander 1 ECUACIONES DE PRIMER GRADO CON UNA Y DOS INCOGNITAS

Más detalles

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Universia Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Grupo e Matemáticas Especiales Resumen Se presenta la efinición

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES LA PARÁBOLA. FUNCIONES CUADRÁTICAS. FUNCIONES A TROZOS CON RECTA Y PARÁBOLAS. HIPÉRBOLAS. FUNCIONES RADICALES. FUNCIONES EXPONENCIALES. FUNCIONES LOGARITMICAS. La función =.- LA PARÁBOLA

Más detalles

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x.

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x. APLICACIONES DE LA INTEGRAL Si R es la región limitada por las líneas y f() y y g(), con f() g(), entre a y b, el área de R viene dada por la integral A: b a ( ( ) ( )) A f g EJERCICIOS: ) Calcular el

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles