Se trata de encontrar el área limitada por una curva de ecuación y = f (x) continua y positiva, el eje de abscisas y dos ordenadas x=a, y x=b.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Se trata de encontrar el área limitada por una curva de ecuación y = f (x) continua y positiva, el eje de abscisas y dos ordenadas x=a, y x=b."

Transcripción

1 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Ára dfinida bajo na crva LA INTEGRAL DEFINIDA. APLICACIONE Mlid d problmas q s planan n la vida ral s rslvn calclando l ára bajo la crva d na fnción. Ejmplos: ( Espacio, Vlocidad, Trabajo, Volmn, Cadal.). raa d nconrar l ára limiada por na crva d cación = f () conina posiiva, l j d abscisas dos ordnadas =a, =b. Trapcio miilíno = figra drminada por la crva = f (), l j OX las rcas =a =b. Cómo procdr para obnr l ára dl rcino R? Parición d n inrvalo: Una parición P, d n inrvalo [a, b], s na colcción finia d pnos dl inrvalo [ ] dond Una parición d n+ pnos divid n inrvalo n n sbinrvalos. El ára d s rapcio crvilíno s pd aproimar por smas infrior sprior d áras d rcánglos q inn la misma bas cas alras son rspcivamn l valor máimo mínimo d la fnción n s inrvalo.

2 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Aproimación por dfco dl ára (smas infriors) ma infrior aproimada asociada a la parición P infrior infrior Los valors d sas smas van crcindo sgún amna l númro d pnos d la parición dl inrvalo [a, b] Al amnar l númro d lmnos d la parición dl inrvalo [a, b], l valor dl ára obnida s acrca cada vz más al ára aca dl rcino R. Cada valor así obnido s na aproimación dl ára dl rcino R.

3 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Aproimación por cso dl ára (smas spriors) ma sprior aproimada asociada a la parición P sprior sprior Los valors d sas smas van dcrcindo sgún amna l númro d pnos d la parición dl inrvalo [a, b] Al amnar l númro d lmnos d la parición dl inrvalo [a, b], l valor dl ára obnida s acrca cada vz más al ára aca dl rcino R. Cada valor así obnido s na aproimación dl ára dl rcino R.

4 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo in q: infriors Ára dl rcino R spriors i l númro d lmnos d la parición dl inrvalo [a, b] amna, l máimo l mínimo n cada no d los inrvalos s aproiman con lo q: ( ) ( ) Es lími común rcib l nombr d Ingral Dfinida d la fnción f() n l inrvalo [a, b] s dsigna por: ( ) ( ) ( ) ( ) ( ) [ ] ( ) Noa: l símbolo rcrda l d na (d sma) pro n ano silizada. Los límis a b s llaman límis infrior sprior d ingración, rspcivamn f() s l ingrando. Al amnar l nº d lmnos d la parición mas d las áras d los rcánglos

5 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Propidads 5

6 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Torma dl valor mdio para ingrals i f s conina n [a, b], is n pno c n l inrior d s inrvalo al q: El ára dl rapcio miilino abba s igal al ára d n rcánglo d bas (b - a) alra f (c) Fnción Ingral Dada n fnción conina n, [a,b] is para odo dl mismo la ingral dfinida: Para na fnción q oma valors posiivos, la ingral F() rprsna l ára dl rcino R limiada por la fnción f, l j horizonal las rcas =a =. (Para cada dl inrvalo.) b i bin las áras q drminan las fncions s pdn calclar con l méodo comnado anriormn, afornadamn aqí no ralizarmos límis d smas d áras d rcánglos. Ello s db a n rslado conocido como orma fndamnal dl cálclo ingral.

7 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Torma Fndamnal dl Cálclo Ingral i f s na fnción conina n [a,b], considramos la fnción ingral in q F() drivabl n [a,b] s drivada s: F () = f () Eso s, l orma nos dic q la fnción ingral F() q da las áras nr a (para cada valor d ) s na primiiva d f() Dmosración: Torma dl valor mdio ingral a [ ] calqira, calclmos ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) [ ] ( ) ( ) Cando Por ano qda dmosrado q ( ) ( ) Para calqir [ ], lgo s: ( ) ( ) [ ] d és modo s F() UNA PRIMITIVA d la fnción f(). Problma dl ára rslo! i por los méodos d ingración dl ma anrior podmos obnr na primiiva G() d la fnción f(), noncs, como la fnción Ára F() s ambién na primiiva d la fnción f(), ambas primiivas G() F() s difrnciarán n na consan, so s: F() = G() + C dond C s na consan Calclmos sa consan: Por na par, s F(a) = G(a) + C pro ambién ( ) por lo ano: = G(a) + C lgo C = - G(a) Qda así F() = G() - G(a) por ano F(b) = G(b) - G(a) pro como ( ) Qda = G(b) G(a) problma rslo! 7

8 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Obsrvacions: La imporancia d sa rgla s fndamnal, a q pon n rlación las ingrals con las drivadas. Para hallar la ingral dfinida sgirmos l sigin procso: o halla na primiiva G() calqira d la fnción f(). o ssin n sa primiiva G() los límis d ingración -l sprior l infrior s rsan los rslados. Aplicacions d la ingral dfinida al cálclo d áras La ingral dfinida s n méodo rápido para calclar áras, volúmns, longids, c. En física s mplo s consan al sdiar l movimino, l rabajo, la lcricidad, c. 8

9 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo 9

10 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Aplicación d la ingral dfinidla cálclo d volúmns. Volmn d n sólido d rvolción. El volmn d n sólido d rvolción gnrado al girar alrddor dl j d abscisas, l rcino limiado por la gráfica d f() l j OX nr a b s: Volmn f Cálclo dl volmn por sccions. Principio d Cavaliri. a A() l ára d las sccions prodcidas n n sólido por planos prpndiclars al j OX n odos los pnos d[a,b]. i A() s na fnción conina, l volmn dl sólido s: Dos sólidos cas áras d las sccions prpndiclars a n drminado j san Igals inn l mismo volmn

11 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Cálclo d la longid d na crva La longid d na crva q coincid con la gráfica d na fnción drivabl f n [a, b] s: Longid Aplicacions Físicas d la Ingral a b Oras aplicacions: Eaminar l comporamino alaorio d variabls coninas (fnción d dnsidad probabilidad). Conocr l valor promdio d na fnción. Hallar momnos (frzas q jrcn ciras masa con rspco a n pno) cnros d masa o cnroid (l pno n q n objo s qilibra horizonalmn). Enconrar la prsión jrcida por n flido. Calclar l rabajo ralizado d movr n objo d n pno a oro. Obnr vlocidads aclracions d móvils. Conocr l správi dl consmidor (canidad d dinro ahorrado por los consmidors, al comprar n aríclo a n prcio dado). Drminar l fljo sangíno (volmn d sangr q pasa por na scción ransvrsal por nidad d impo) d na prsona s gaso cardiaco (volmn d sangr bombado por l corazón por nidad d impo.

12 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Ejrcicios:. Hallar l ára d la rgión limiada por las crvas Calclamos los pnos d cor d las dos crvas, para lo cál rsolvmos l sisma d cacions: d d. Hallar l ára d la rgión limiada por la crva las rcas Calclamos los pnos d cor d la crva con la rca = para lo cál rsolvmos l sisma d cacions: 5 5 d d

13 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo. Hallar l ára d la rgión limiada por la crva las rcas angns n los pnos d abcisa Calclamos las cacions d las rcas angns: En nsro caso srán: 5 5 f f f f f d d. Hallar l ára d la rgión limiada por las crvas Calclamos los pnos d cor d las crva para lo cál rsolvmos l sisma d cacions: d Calclamos los pnos d cor d las crva para lo cál rsolvmos l sisma d cacions:

14 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo d Enoncs 7 5. Hallar l ára d la rgión limiada por las crvas Calclamos los pnos d cor d las crva para lo cál rsolvmos l sisma d cacions: d d

15 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo 5. Hallar l ára d la rgión limiada por las crvas d v d dv d d d d d d 7. Hallar l ára d la rgión limiada por las crvas los js coordnados. Calclamos los pnos d cor d las crva para lo cál rsolvmos l sisma d cacions: d 8. Hallar l ára d n círclo d radio. La cación d la circnfrncia d cnro l orign radio r s: r En nsro caso: El ára dl scor circlar corrspondin al primr cadran s:

16 Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo cos cos cos cos cos cos cos sn sn d d sn sn sn sn sn d d d d sn d sn d sn d

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL (Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I. variación de x 0 variación de correspondiente a x. razón ó velocidad de cambio. es llamado la

CÁLCULO DIFERENCIAL E INTEGRAL I. variación de x 0 variación de correspondiente a x. razón ó velocidad de cambio. es llamado la Dada una unción al qu, + h Dom dirmos qu: h s llamado + - s llamado s llamado la d la unción rspco d la variabl n [, + ] Si is ' s llamado la d la unción n. Usualmn s l valor absoluo d la vlocidad. Sabmos:

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

Ecuación de transmisión de calor

Ecuación de transmisión de calor Ensaos Ecación d ransmisión d calor smn Absrac ésmé En s rabajo d invsigación s sdia l problma d valor inicial con valor n la fronra para la cación d ransmisión d calor n la smirrca para >: k > > > > S

Más detalles

Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por

Ejercicios de integrales 2008: 1.2A Ejercicio 2.- [2'5 puntos] Dadas las funciones f : [0;+ ) R y g : [0;+ ) R definidas por INTEGRALES MATEMATICAS II 0-0 Ejrcicios d intgrals 00:.A Ejrcicio.- ['5 pntos] Dadas las fncions f : [0;+ ) R g : [0;+ ) R dfinidas por f ( ) g() Calcla l ára dl rcinto limitado por las gráficas d f g..b

Más detalles

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando

Más detalles

Capítulo 1: Integral indefinida. Módulos 1 al 4

Capítulo 1: Integral indefinida. Módulos 1 al 4 Módulos al En los jrcicios a 8 s dan las funcions f y F. Comprub, usando drivación, qu F( ) s la primiiva más gnral d f ( ). Qué fórmula d ingración pud dducirs n cada caso?. f ( ) = ; ( ) = ln ( ). F

Más detalles

Temas y 18.- Curvas de de Excreción Urinaria

Temas y 18.- Curvas de de Excreción Urinaria Tmas 7 7 y 8. Crvas d d Excrción Urinaria T7 Inrodcción. Rlación nr concnracions plasmáicas y vlocidads d xcrción n orina. Crvas disribivas. Cálclo d las consans cinéicas n los modlos monocomparimnal y

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

Taller 4 cálculo Un rectángulo se inscribe en un semicírculo de radio 4 Cuál es el área máxima que puede tener y cuáles son sus dimensiones?

Taller 4 cálculo Un rectángulo se inscribe en un semicírculo de radio 4 Cuál es el área máxima que puede tener y cuáles son sus dimensiones? Tallr cálculo 1 Profsor Jaim Andrés Jaramillo Gonzálz. jaimaj@concpocompuadors.com. www.jaimaj.concpocompuadors.com UdA 017-1 Problmas d Opimización Rfrncia sudiar jrcicios scción.8 dl o d Zill 1. A un

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTICS II PRUEBS DE CCESO L UNIVERSIDD DE OVIEDO.- NÁLISIS ª PRTE.- Cálclo Intgral.- MODELO DE PRUEB Dada la parábola, s corta por la rcta d cación ; n los pntos d intrscción s trazan las tangnts a

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

Tema 10. La integral indefinida

Tema 10. La integral indefinida Mamáicas II (achillrao d incias). nálisis: Ingral Indfinida 9. oncpo d ingral indfinida Tma 0. La ingral indfinida La drivada d una función prmi conocr la asa d variación (l cambio insanáno) d un drminado

Más detalles

CONSOLIDACIÓN DE SUELOS. Ing. Silvia Angelone

CONSOLIDACIÓN DE SUELOS. Ing. Silvia Angelone CONSOLIDACIÓN DE SUELOS Ing. Silia Anglon Bibliografía Jár Badillo Cap. X Brry y Rid Cap. 4 Inrodcción Todos los marials xprimnan dformacions cando s los sja a n cambio n las condicions d sfros. Las caracrísicas

Más detalles

Funciones de dos variables independientes.

Funciones de dos variables independientes. Mamáicas : Unidad Dscripción: Toría jmplos jrcicios para alar la nidad. Tma: Cálclo d dos o más ariabls indpndins Cálclo dirncial parcial Indicacions: L cidadosamn la oría psa n los sigins docmnos rsl

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: ECUACIONES DIFERENCIALES. AÑO 007 TALLERES HORAS DE DURACION

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Inroducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions acas.7 Facor Ingran.8 Esabilidad dinámica dl quilibrio.9

Más detalles

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución MEMÁIC VNZ RBJO PRÁCICO N O Sima Linal - nálii d Sñal - Convolción ESCRIPCIÓN E SEÑLES: FUNCIONES RMP ESCLÓN Y EL E IRC Grafiq la igin fncion dl impo. a b r - c d P - r-r- Ecriba na rprnación mamáica para

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv a Dtrminar la intgral dfinida f ( ). g ( ) d, bosqjar l ára rprsntada por b la crva y las rctas a y b, con rspcto l j, aplicando l método d intgración por parts d cada no d los sigints problmas: Ejmplo

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2

Opción A ( ) ( ) Examen. 2ª evaluación 4/03/2008. Obtener el valor del siguiente límite: ab entonces la función. t ln 1 4t dt x ln 1 4x ln 1 4x 2 Eamn. ª valuación //8 Opción A Ejrcicio. Puntuación máima: puntos Obtnr l valor dl siguint límit: lim + t ln t dt 5 Aplicación dl torma fundamntal dl cálculo intgral: Si f s continua n [, ] f t dt s drivabl

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

FUNCIONES EULERIANAS

FUNCIONES EULERIANAS NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Taller 1 cálculo integral: Integral Indefinida. Profesor Jaime Andrés Jaramillo. UdeA dx 2. x 1.

Taller 1 cálculo integral: Integral Indefinida. Profesor Jaime Andrés Jaramillo. UdeA dx 2. x 1. Tallr álulo ingral: Ingral Indfinida. Profsor Jaim Andrés Jaramillo. jaimaj@onpoompuadors.om. UdA. 07-. Calul la ingral manipulando l ingrando para obnr una forma qu orrsponda on las fórmulas básias a)

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

( x) ( 1) OPCIÓN A Ejercicio 1 : Calificación máxima: 3 puntos. = + 1 ln. x x + x. 4 x = + = + = 0 + = 0. x x. x x. lim lim = + 1 lim. ln 1 1 1.

( x) ( 1) OPCIÓN A Ejercicio 1 : Calificación máxima: 3 puntos. = + 1 ln. x x + x. 4 x = + = + = 0 + = 0. x x. x x. lim lim = + 1 lim. ln 1 1 1. ES Mdiáno d Málaga Solción Jnio Jan Calos lonso Gianonai OPCÓN Ejcicio : Caliicación áia: pnos. ada la nción ( dond dnoa l logaio npiano s pid: a ( pnos ina l doinio d ss asínoas. b ( pnos Calcla la ca

Más detalles

GEOLOGIA Y GEOTECNIA ( edición)

GEOLOGIA Y GEOTECNIA ( edición) GEOLOGIA Y GEOTECNIA 03 ( dición) CONSOLIDACION UNIDIMENSIONAL DE SUELOS Ing. Silia Anglon CONSOLIDACIÓN DE SUELOS Bibliografía:Jár Badillo Cap. X, Brry y Rid Cap. 4 Todos los marials xprimnan dformacions

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

= = y x 1 3 = xsenx. cos. y x

= = y x 1 3 = xsenx. cos. y x Tallr cálculo ingral: Prparación sgundo quiz sgundo parcial. Profsor Jaim Andrés Jaramillo. jaimaj@concpocompuadors.com. ITM. - A. Drmin l ára d la rgión bajo la gráfica usando la fórmula n i i n f lím

Más detalles

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular

6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES UNIDAD 9 INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES.- Calclar las sigientes integrales definidas: a) d b) d c) e e ln(ln ) d d) e + d e) sen cos d f ) ( )cos d e + +.- Sean a = sen d y b = los valores de a y

Más detalles

POLÍTICA ECONÓMICA Curso 2012 MAESTRIA DE ECONOMÍA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRACIÓN Universidad de la República

POLÍTICA ECONÓMICA Curso 2012 MAESTRIA DE ECONOMÍA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRACIÓN Universidad de la República OLÍTICA ECONÓICA Curso 01 AESTRIA DE ECONOÍA FACULTAD DE CIENCIAS ECONÓICAS Y ADINISTRACIÓN Univrsidad d la Rpública Ejrcicios d olíica onaria y Cambiaria. Ejrcicio 1 (dificulad mdia: Inconsisncia dinámica

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

EJERCICIOS UNIDAD 2: DERIVACIÓN (II)

EJERCICIOS UNIDAD 2: DERIVACIÓN (II) IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

GEOLOGIA Y GEOTECNIA

GEOLOGIA Y GEOTECNIA GEOLOGIA Y GEOTECNIA 004 CONSOLIDACION UNIDIMENSIONAL DE SUELOS Ing. Silia Anglon CONSOLIDACIÓN DE SUELOS Bibliografía:Jár Badillo Cap. X, Brry y Rid Cap. 4 Todos los marials xprimnan dformacions cando

Más detalles

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

Fundamentos Físicos de la Ingeniería Primer Parcial / 12 enero 2010

Fundamentos Físicos de la Ingeniería Primer Parcial / 12 enero 2010 Fundamnos Físicos d a Ingniría rimr arcia / nro. Una mbarcación a moor navga nr dos pobacions ribrñas disans nr si km. En viaj d ida arda h n cuar rcorrido; n d vua, mpa an soo.5 h. Supongamos qu ano a

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS

SOLUCIONES A LOS EXÁMENES DE ANÁLISIS SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

2.6 SOLUCION DE SISTEMAS DE ECUACIONES DIFERENCIALES CON COEFICIENTES CONSTANTES MEDIANTE EL METODO DE LOS OPERADORES

2.6 SOLUCION DE SISTEMAS DE ECUACIONES DIFERENCIALES CON COEFICIENTES CONSTANTES MEDIANTE EL METODO DE LOS OPERADORES Euaions difrnials Profsor Bogar Ménd /7 6 SOLUCION E SISTEMAS E ECUACIONES IFERENCIALES CON COEFICIENTES CONSTANTES MEIANTE EL METOO E LOS OPERAORES En sa sión aprndrmos a rsolvr sismas d uaions difrnials

Más detalles

TEMA 66. Distribuciones de probabilidad de variable

TEMA 66. Distribuciones de probabilidad de variable TEMA 66. Disribucions d probabilidad d variabl coninua. Disribución normal TEMA 66. Disribucions d probabilidad d variabl coninúa. Disribución Normal.. Inroducción.. Hisórica. Los concpos d azar incridumbr

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

APELLIDOS Y NOMBRES: C.I.: NOTA: ASIGNATURA: Matemática II -

APELLIDOS Y NOMBRES: C.I.: NOTA: ASIGNATURA: Matemática II - REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES 1. Lln todos los datos n ltra

Más detalles

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Sstitción n cacions difrncials Ecación d Brnolli Ecación d Ricatti 7 Otras sstitcions 0 Rsmn 4 Bibliografía rcomndada 4 No 4 Atovalación formativa 5 Copright 999 FUNDACION UNIVERSITARIA

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones Capíulo. Sñals, spcros y ilros Univrsidad dl Cauca Toría d Tlcomunicacions Inroducción Las sñals prsns n los sismas d comunicacions varían con l impo, mas sin mbargo n ocasions sul sr más convnin analizar

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

IES Mediterráneo de Málaga Examen Septiembre de 2012 Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Examen Septiembre de 2012 Juan Carlos Alonso Gianonatti IES Mdiáno d Málaga Ean Spib d Jan alos lonso Gianonai UNIVERSIDD DE ZRGOZ SEPTIEMRE Tipo disponibl: h in Insccions : S poponn dos opcions. Ha q lgi na d las opcions consa a ss csions. La pnación sa dallada

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2011 Juan Carlos Alonso Gianonatti

I.E.S. Mediterráneo de Málaga Julio 2011 Juan Carlos Alonso Gianonatti I.E.S. Mdirráno d Málaga Julio Juan Carlos lonso Gianonai POPUEST.- ( punos) Encunra un cor prpndicular al plano d cuacions paraméricas El cor dircor dl plano π s prpndicular a él por lo ano hallarmos

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.

3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2. MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

Al integrar cada miembro de esta ecuación se obtiene la fórmula de integración por partes:

Al integrar cada miembro de esta ecuación se obtiene la fórmula de integración por partes: Intgración por parts Spón q tnmos dos fncions ( ) y ( ) continamnt difrnciabls dfinidas n n intralo abirto I. D acrdo con la rgla d la difrncial dl prodcto tnmos q: O qialntmnt: d ( ) = d + = d ( ) d Al

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles