Tanto pilas y filas son un caso especial de un objeto de datos más general, listas secuenciales:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tanto pilas y filas son un caso especial de un objeto de datos más general, listas secuenciales:"

Transcripción

1 5. Pils y Fils Tnto pils y fils son un cso especil de un objeto de dtos más generl, lists secuenciles: A = {, 2,..., n }, donde n Pils Un pil es un list secuencil donde tods ls inserciones y eliminciones son hechs un extremo, llmdo el top. Ddo un pil S = {, 2,..., n }, diremos que es el elemento más l fondo de l pil y el elemento i está l tope del elemento i. Cinco son ls operciones comunes cundo se ccesn pils: crer, gregr, eliminr, obtener el tope y pil vcí. Un especificción lgebric de l estructur de pil es l siguiente: structurestack(item) declre NEW() stck ADD(stck, item) stck DELETE(stck) stck TOP(stck) item IS EMPTY(stck) boolen for ll s ST ACK, i ITEM let IS EMPTY(NEW()) ::= true IS EMPTY(ADD(s, i)) ::= flse TOP(NEW()) ::= error TOP(ADD(s, i)) ::= i DELETE(NEW()) ::= NEW() DELETE(ADD(s, i)) ::= s Un uso de pils en progrmción es el procesmiento de llmds subrutins y su retorno. Un sistem opertivo ejecut instrucciones siguiendo l secuenci en el código del progrm. Al encontrr un llmd rutin, el sistem opertivo debe lmcenr el lugr de donde se hizo l llmd, como tmbién, ls vribles y vlores de ests vribles hst ntes de l llmd (mnejo de scope de vribles). L rutin se ejecut y un vez que se termin l ejecución, el sistem opertivo debe volver l ejecución l lugr de donde se hizo originlmente l llmd. Gráficmente, vemos el modelo de pil de un lenguje de progrmción (Figur 5). 22

2 Progrm Puntero instrucción Puntero mbiente RA2 RA memori (pil) Registro ctivción de procedure retorno identificción vribles en bloque Link estático Link dinámico Figur 5: Modelo de Pil de un Lenguje de Progrmción Considere el siguiente lgoritmo donde l procedure p(i) us un psje por vlor de l vrible i: [ integer 2 Procedure p(integer i) [ 3 := i ] 4 [ integer 5 := 6 p() 7 ] 8 ] Ddo el siguiente lgoritmo, l ejecución del lgoritmo en el modelo de pil es el siguiente: 23

3 pil vcí 5 RA 6 3 i ret RA 0 Figur 6: Ejecución de progrm 24

4 Un form simple de rresentr pils es con un rreglo stck( : n), donde n es el número máximo de elementos en l pil y el i-ésimo elemento está loclizdo en stck(i). Usndo est rresentción, l implementción de ls funciones quedn definids de est form: NEW()::= declre stck( : n); top := 0 IS EMPTY(stck)::= if top = 0 then true else flse TOP(stck)::= if top = 0 then error else stck(top) Procedure ADD(T item, n, vr ST ACK, vr top) if top n do cll ST ACK FULL top := top + stck(top) :=item ] Procedure DELETE(stck, vr top, vr item) if top 0docllST ACK EMPTY item := stck(top) top := top ] Problems con l rresentción con rreglos son: Desperdicio de espcio cundo l pil está vcí Problem de overflow cundo l pil está llen Como solución prcil se puede usr rreglos con bse (prtid) vrible, lo que signific un movimiento de elementos cd vez que existe overflow. Otro to de implementción consiste en usr punteros, es decir, mnejr un list de registros o nodos unidos por punteros. En este cso, el top de l list es el primer elementos de l list y está designdo por el puntero stck. Dd est rresentción, un lgoritmo pr insertr y eliminr en un pil es, donde p y stck son punteros elementos de un pil: Procedure ADD(item, vr stck) p := NEW() p info := item p next := stck stck := p Procedure DELETE(vr stck) if IS EMPTY(stck) docllst ACK EMPTY p := stck; stck := stck next; DELETE(p) ] 25

5 5.2. Fils Un fil es un estructur de dtos linel donde se insert en un extremo de l fil (rer) yse sc del otro extremo de l fil (front). Un conjunto mínimo de operciones con un fil son crer, gregr, borrr, obtener el elemento l frente y preguntr si l fil está vcí. Un especificción como estructur lgebric es: structurequeue(item) declre NEW() queue ADD(queue, item) queue DELETE(queue) queue FRONT(queue) item IS EMPTY(queue) boolen for ll q, q QUEUE,i ITEM let IS EMPTY(NEW()) ::= true IS EMPTY(ADD(q, i)) ::= flse FRONT(NEW()) ::= error FRONT(ADD(q, i)) ::= if IS EMPTY(q) then i else FRONT(q) DELETE(NEW()) ::= NEW() DELETE(ADD(q, i)) ::= if IS EMPTY(q) then NEW() else ADD(DELETE(q),i) Al igul que pr pils, un form simple de rresentr fils es con un rreglo queue( : n), siendo n el número máximo de elementos en l fil y siendo rer y front ls vribles que indicn el comienzo y fin de l fil, respectivmente. Usndo est rresentción, l implementción de ls funciones quedn definids de est form: NEW()::= declre queue( : n); front := rer := 0 IS EMPTY(queue)::= if front = rer then true else flse FRONT(queue)::= if IS EMPTY(q) then error else queue(front +) Procedure ADD(item, n, vr queue,vr rer) if rer = n do cll QUEUE FULL rer := rer + queue(rer) :=item ] Procedure DELET E(rer, queue, vr f ront, vr item) if front = rer do cll QUEUE EMPTY front := front + item := queue(front)] L función QUEUE FULL puede ser implementd de tl mner que si hy espcio vcío l comienzo de l fil, los elementos sen movidos de mner de comenzr nuevmente en l posición 26

6 0. Esto es bstnte ineficiente. Un form más eficiente de implementr un fil es considerr el rreglo queue( : n) circulr. Considere l declrcin de queue(0 : n ), cundo rer = n, el próximo elemento que se ingres es colocdo en l posición queue(0), en cso de que este vcío. Ls funciones ADD y DELETE son hor definids de l siguiente mner: Procedure ADD(item, f ront, vr queue, vr rer) rer := (rer +)modn if rer = front do cll QUEUE FULL else queue(rer) :=item Procedure DELET E(rer, queue, vr f ront, vr item) if front = rer do cll QUEUE EMPTY front := (front +)modn item := queue(front)] En est implementción se permiten n elementos y l mism condición se cumple pr QUEUE EMPTY o FULL. En el cso de insertr un elemento en el último espcio disponible, no hy form de distinguir entre vcío o lleno. En ese cso se puede usr un vrible Boolen. Cómo serín los lgoritmos nteriores con es vrible? Un form es considerr que l vrible Boolen mntiene el to de operción que h sido ejecutd último. En cso de que rer = front en un DELETE, est condición será vcímenosquelúltim operción hy sido un ADD, en cuyo cso, l fil no está vcí sino llen. Cómo se puede expresr el número de elementos de un fil circulr en función de n, front, nd rer? Considere l rresentción por rreglo con elementos queue(0 : n ). En ese cso, el número de elementos en l fil (num) está ddo por: rer front if front<rer rer +(n front) if rer > front num = 0 QUEUE EMPTY n QUEUE FULL L rresentción con punteros de un fil mnej dos punteros rer nd front, hciendo este último equivlente queue. Los lgoritmos ADD y DELETE son: 27

7 Procedure ADD(item, vr queue, vr rer) p := NEW() p info := item p next := nil if IS EMPTY(queue) doqueue := rer := p rer next := p rer := p] Procedure DELETE(vr queue) if IS EMPTY(queue) docllqueue EMPTY p := queue; queue := queue next; DELETE(p) ] Ejercicios:. Se F un operción donde su rgumento y resultdo son un fil y cuyos xioms son: F (NEW()) = NEW() F (ADD(i, q)) = if IS EMPTY(q) then ADD(i, q) else ADD(FRONT(q),F(DELETE(ADD(i, q))) Qué reliz est función? 2. Escribir un lgoritmo de búsqued de l id en un lberinto. i j Figur 7: Ejercicio del lberinto 28

8 Algoritmo T (n) Procedure PATH(lberinto, mrc, m, n, mov, stck) C: lberinto(0 : m +, 0:n +) C: mrc(0 : m +, 0:n +)esceroenmrc(i, j) si es no h sido visitd l celd C: mov(8, 2) es un tbl que describe movimientos posibles C: stck(mn, 3) es un pil de tres elementos mntiene el cmino ctul, es decir, l posición i,j,y el to de movimiento stck(, ) := 2 stck(, 2) := 3 stck(, 3) := 2 4 top := 5 while top 0do[ t top + 6 i := stck(top, ) t top 7 j := stck(top, 2) t top 8 m := stck(top, 3)+ t top 9 top := top t top 0 while m 8do[ t top t m + g := i + mov(m, ) t top t m 2 h := j + mov(m, 2) t top t m 3 if (g = m) nd (h = n) do[ t top t m 4 for p := t o top do top + 5 print(stck(p,),stck(p,2)) top + 6 return ] 7 if (lberinto(g, h) = 0) nd (mrc(g, h) =0do[ t top t m 8 mrc[g, h] := (t top t m ) mrc 9 top := top + (t top t m ) mrc 20 stck(top, ) := i (t top t m ) mrc 2 stck(top, 2) := j (t top t m ) mrc 22 stck(top, 3) := m (t top t m ) mrc 23 m := 0 (t top t m ) mrc 24 i := g (t top t m ) mrc 25 j := h] (t top t m ) mrc 26 m := m +]] (t top t m ) mrc 27 print( no hy cmino ) end PATH En este ejemplo, t top es el número de veces que se ejecut el while que comienz en posición 5 (es decir, el número de lmcenmientos en l pil), t m es el número de veces que se ejecutn los movimientos en el while de posición 0 (es decir, el número de veces que consultn diferentes movimiento prtir de un posición dd, y () mrc es el número de veces que se encuentr un celd no visitd pr el número de movimientos revisdos. Un cot superior pr este lgoritmo este lgoritmo es: t top < nm, t top O(nm) t m 8,t m O() (t top t m ) mrc < t top t m < 8nm, (t top t m ) mrc O(nm) 29

9 5.3. Pils o Fils Múltles L ide es poder provechr l máximo el espcio disponible pr el mnejo de múltles pils. Centrándose en l rresentción bsd en rreglos V ( : m), un solución simple pr mnejr dos pils es usr el V () pr el elemento más l fondo de un pil y el elemento V (m) pr el correspondiente elemento ( es decir, el de más l fondo) en l segund pil. Pr n pils, uno debier subdividir el espcio, ojlá, en prticiones equivlentes. Pr cd stck i se debier usr B(i) pr rresentr l posición nterior l del elemento más profundo en l pil. T (i), i n direccion l elemento l tope de l pil i. Lpilestrá vcí si B(i) =T (i). Si l pil i está loclizd en índices de memori más bjos que i +, entonces inicilmente: B(i) =T (i) = m (i ), i n n Pil T (i) puede crecer de B(i)+ B(i+), donde B(n+) = m. Ddos B( : n) yt ( : n), los lgoritmos ADD y DELETE pr l pil i e item x con rreglo V ( : m) pr los dtos en l pil son : Procedure ADD(i, item, B, vr T, vr V ) if T (i) =B(i +)docllst ACK FULL else[ T (i) :=T (i)+ V (T (i)) := item ] Procedure DELETE(i, vr T, vr x) if T (i) =B(i) docllst ACK EMPTY else[ x := V (T (i)) T (i) :=T (i) ] Un lterntiv pr definción de STACK FULL es: Encontrr el menor j con i j n tl que exist espcio libre entre l pil j y j +, es decir, T (j) <B(j + ). Si existe, mover ls pils i +,...,j un posición l derech crendo un espcio entre pils i y i +. Si no existe j, entonces mire hci l izquierd. Si no existe j en mbs búsqueds, no existe espcio en l pil. 30

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Algoritmos matemáticos sobre matrices:

Algoritmos matemáticos sobre matrices: Algoritmos mtemáticos sobre mtrices: Representciones especiles de mtrices, Algoritmo de Strssen, multiplicción y tringulción de mtrices Jose Aguilr Mtriz Mtriz Un mtriz es un rreglo rectngulr de elementos

Más detalles

Tema 25. AP con dos pilas. Más allá del autómata de pila. No-LLC. Máquina de Turing, Problema del paro y Tesis de Church

Tema 25. AP con dos pilas. Más allá del autómata de pila. No-LLC. Máquina de Turing, Problema del paro y Tesis de Church Tem 25 Máquin de Turing, Prolem del pro y Tesis de Church No-LLC LLC no-miguos LLC-Det LR Pl mrk Pl i i c i Dr. Luis A. Pined ISBN: 970-32-2972-7 LLC Proceso de i i c i : AP con dos pils Push tods ls s

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Lenguajes de consulta. Marta Zorrilla Universidad de Cantabria

Lenguajes de consulta. Marta Zorrilla Universidad de Cantabria Lengujes de consult Mrt Zorrill Universidd de Cntbri Lengujes de consult Lenguje con el cul el usurio consult informción l BD. Clsificción Procedimentles el usurio indic ls operciones pr obtener el resultdo

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Lenguajes de consulta

Lenguajes de consulta Lengujes de consult Mrt Zorrill Universidd de Cntbri Silberschtz, A., Korth, H.F., Sudrshn, S., Fundmentos de Bses de Dtos, 5ª edición, Mdrid, 006 Lecturs recomendds Básics Cp. y 5. Silberschtz, A., Korth,

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

Soluciones a los ejercicios

Soluciones a los ejercicios Soluciones los ejercicios PROBLEMA : Considérese el grfo G siguiente: b f c d g h j e i ( Es G un grfo simple? Es plno? Es biprtito? Es completo? Es regulr? Es conexo? (b Hllr el número de regiones, vértices

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

departamento de electricidad y electrónica elektrika eta elektronika saila

departamento de electricidad y electrónica elektrika eta elektronika saila ALGORITMOS Y ESTRUCTURAS DE DATOS Convoctori de junio Curso 2000/2001 Soluciones propuests 1. (1 punto) L complejidd temporl de un cierto lgoritmo, en términos del tmño del prolem n, viene dd por l siguiente

Más detalles

a Y = X donde a 1 siendo Lg el logaritmo y

a Y = X donde a 1 siendo Lg el logaritmo y Mteri: Mtemátics de 4to ño Tem: Función logrítmic Mrco Teórico L función exponencil de l form f ( ) tiene un función invers, que llmmos función logrítmic y se escribe de l form: Un función > 0 g( ) Lg

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos

Más detalles

Semánticas de procesos y aplicaciones

Semánticas de procesos y aplicaciones Semántics de procesos y plicciones Clse 06: Puntos Fijos Qué vimos hst hor? cciones: multicciones: α 3 operdores sobre multicciones: α \ β, α β y α operdor de elección: + operdor de secuenci:. operdor

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general.

Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general. Mtemátics.7 Operciones con epresiones lgebrics UNIDAD II. ALGEBRA.7. Operciones con epresiones lgebrics Polinomiles. Ls epresiones lgebrics pueden clsificrse en monomios, binomios, trinomios y polinomios.

Más detalles

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas.

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas. Fctorizr un polinomio consiste en convertir un polinomio en un producto de epresiones lgebrics. Cso 1. Monomio como fctor común. Un polinomio tiene fctor común sí y sólo sí todos los términos del polinomio

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA Est metodologí es plicble ls ctividdes de proyecto que conllevn un cmbio de flot de vehículos pesdos en el trnsporte de mercncís

Más detalles

Autómatas sobre palabras infinitas

Autómatas sobre palabras infinitas Autómts sobre plbrs infinits Mrcelo Arens M. Arens Autómts sobre plbrs infinits 1 / 46 Teorí de utómts sobre plbrs infinits Los utómts sobre plbrs infinits son un herrmient fundmentl pr l verificción forml.

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

REGLAS DE LOS PRODUCTOS NOTABLES

REGLAS DE LOS PRODUCTOS NOTABLES UNIDAD V.- PRODUCTOS NOTABLES Y FACTORIZACIO N Productos Notbles ( (b ( (d (e ( REGLAS DE LOS PRODUCTOS NOTABLES Un producto notble (multiplicción es quel que se puede obtener su resultdo sin necesidd

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

Práctica 3. Convertidores de códigos

Práctica 3. Convertidores de códigos . Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista s s no s s s DSIC - UPV June 24, 2011 (DSIC - UPV) s s June 24, 2011 1 / 41 (AFD) s s no s (AFD) Un (AFD) es un 5-tupl de l siguiente form: A = (Q,Σ,δ, q 0, F), siendo: Q un conjunto finito de estdos Σ

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid.

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid. Dpto. de Informátic (ATC, CCIA y SI). Univiersidd de Vlldolid. TEORÍA DE AUTÓMATAS Y ENGUAJES FORMAES II Ingenierí Técnic en Informátic de Sistems. Curso 20-2 AUTÓMATAS DE PIA. Dd l siguiente grmátic independiente

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso 15- Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería.

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería. CONSULTA DE LA IGAE Nº 13/1995 FORMULADA POR VARIAS CORPORACIONES LOCALES, EN RELACIÓN CON EL TRATAMIENTO CONTABLE DE LA RENTABILIZACIÓN DE EXCEDENTES TEMPORALES DE TESORERÍA. CONSULTA En virtud de ls

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

UT3. TÉCNICAS DE SIMPLIFICACIÓN

UT3. TÉCNICAS DE SIMPLIFICACIÓN UT3. TÉCNICA DE IMPLIFICACIÓN OBJETIVO: Reducir l máximo ls funciones. Expresr en un único tipo de puert (NAND que es l puert universl). MINTERM / MAXTERM Psos seguir:. Entender bien el enuncido del problem.

Más detalles

Aplicaciones Lineales Entre Espacios Vectoriales

Aplicaciones Lineales Entre Espacios Vectoriales Aplicciones lineles Bloque 2 Lección 2.2.- Aplicciones Lineles Entre Espcios Vectoriles Progrm: 0.- Concepto de Homomorfismo. Propieddes. Homomorfimos de grupos, nillos y cuerpos. 1- Concepto de plicción

Más detalles

En el ejercicio 3 el alumno demuestra nociones de aritmética, sobre números pares e impares, media aritmética, y nociones de lógica.

En el ejercicio 3 el alumno demuestra nociones de aritmética, sobre números pares e impares, media aritmética, y nociones de lógica. L prueb de l XV Olimpid Mtemátic de º de ESO de Cntbri, celebrd en Universidd de Cntbri el 16 de bril de 011 const de 5 ejercicios de diferentes tems decudos los contenidos de º de ESO. Est prueb fue pensd

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES Sistems de ecuciones lineles Tem 2 SISTEMAS DE ECUACIONES LINEALES Los sistems de ecuciones lineles tienen muchs plicciones en todos los cmpos y ciencis y y desde. C. se tenín métodos pr resolver los sistems.

Más detalles

Tema 3: El Modelo Relacional

Tema 3: El Modelo Relacional Tem 3: El Modelo Relcionl Estructur de bses de dtos relcionles Conversión de diseños E-A relciones Integridd de dominio y referencil Álgebr relcionl Operciones del álgebr relcionl extendid Modificciones

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales.

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales. Clse del Miércoles 3 de Junio de 22: Ecuciones Integrles. Introducción En est clse estudiremos ls ecuciones integrles de Fredholm y de Volterr. -+ - Empezremos por considerr l ecución de Fredholm de segund

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

manual de normas gráficas

manual de normas gráficas mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición

Más detalles

Internacional. Inicio

Internacional. Inicio IMPULSO COMPETITIVO Minut Mes Interncionl Minut N 5 Fech ctul: 06 12 2011 Inicio 11:30 Finl 13:00 Fech próxim reunión: Inicio Finl Presidee Coordindor de mes Aníbl Ariztí, Director Ncionl del SAG Miguel

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles