{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar."

Transcripción

1 . Estudia el dominio de las siuientes unciones a ( Función Racional, el dominio son todos los números reales ecepto los que anulen el denominador. R / 0 0 ± [ ( ] { } R ± { } b ( Función Racional, el dominio son todos los números reales ecepto los que anulen el denominador. R / 0 0 [ ( ] { } 0 R {} 0 Nota. La raíz no impone condiciones al dominio por ser de índice impar. c ( Función Racional con numerador irracional, el dominio lo imponen dos condiciones, todos los números reales ecepto los que anulen el denominador que además haan maor o iual que cero el radicando de la epresión irracional 0 [ ( ] R / > 0 0 R [, ] R [, ] [, ] d ( Función irracional. El dominio lo orman los números reales que haan el radicando maor o iual que cero. [ (] R / 0 [, 0 [,

2 7 e ( Función con denominador irracional, el dominio son todos los números reales 7 que haan el radicando maor que cero, en este caso el cero no se admite. [ (] { R / 7 > 0} 7 > 0 > 7 7 ( 7, 7 ( 5 Función con denominador irracional, el dominio son todos los números 6 reales que haan el radicando maor que cero. ( R / 6 > 0 [ ] { } 5,, 6 ( 7 Función irracional. El dominio lo orman los números reales que haan el radicando maor o iual que cero. ( R / 7 0 [ ] { } 7 [, ] h ( 5 Función irracional. El dominio lo orman los números reales que haan el radicando maor o iual que cero. ( ,

3 5 i ( Función irracional. El dominio lo orman los números reales que haan 5 el radicando maor o iual que cero. 5 [ (] R / ( ( ( ( (, ] [, (, j ( Función Racional con epresiones irracionales, el dominio lo imponen dos condiciones, todos los números reales ecepto los que anulen el denominador que además haan maor o iual que cero los radicándoos de las epresiones irracionales. 0 0 [ 0, [ (] R / 0 0 [ 0, (, [ 0, { } k ( Función con denominador irracional, el dominio son todos los números reales que haan el radicando maor que cero. [ (] { R / > 0}, ( l ( Ln Función loarítmica. El dominio lo orman los números reales que haan el arumento maor que cero. [ ] ( ( R / > 0 ( ( ( ( ( 0 > Ln ( (, 0 (,

4 m ( Ln [ (] R / > 0 0 > 0 0 Ln (, (, n ( e La unción eponencial no impone restricciones al dominio, si el eponente es un número real, eiste su eponencial, por lo tanto [ Función eponencial ] [ Eponente] e [ ] R o ( e e { R / 0} R { 0} p ( e e [ ] { R / 0} [ 0, calcular. Sean las unciones 6 ( ; ( ; h( ( h( a ( ( h( b ( ( h( c ( ( d ( a ( ( h( b 6 ( ( ( ( ( h( ( ( ( ( ( ( ( ( ( ( ( ( ( 6 6 ( ( ( ( ( 5

5 ( ( ( c ( ( 6 ( ( ( d ( h( ( ( ( ( ( (. Calcular la inversa, [ (] de las siuientes unciones a ( b ( 6 c ( d ( e ( 5 5 ( ( e h ( Ln Pasos a seuir para calcular la inversa de una unción. sustitue por e por. Se despeja en unción de. Se sustitue por ( a (. Se sustitue por e por 6. Se despeja en unción de 6. Se sustitue por 6 ( ( b (. Se sustitue por e por. Se despeja en unción de. Se sustitue por ( ( ( ( 5

6 c (. Se sustitue por e por. Se despeja en unción de. Se sustitue por ( ( ( ( d ( 5. Se sustitue por e por 5. Se despeja en unción de. Se sustitue por ( ( e ( 5. Se sustitue por e por. Se despeja en unción de 5. Se sustitue por ( ( 5 ( 5 ( ( e. Se sustitue por e por e. Se despeja en unción de e. Se sustitue por ( ( Ln Ln Ln e Ln Ln Ln ( Ln. Se sustitue por e por Ln. Se despeja en unción de Ln e e e e. Se sustitue por ( ( e Ln e e ( e e e e ( e e e 6

7 Calcular a o. Sean las unciones b o c o ( h o a ( o ( ( ( ( ( h( ( ( ( b ( ( ( ( ( o ( ( c ( o ( h o ( ( h( ( Se empieza calculando ( ( h ( ( h( ( Calculado h((, se calcula (h((. Calcular ( h( ( h ( ( ( h ( ( 5. Sean las unciones ( sen ( a o b a ( ( ( ( ( sen o sen ( b ( o ( ( ( ( ( c ( o ( o ( ( ( ( sen ( ( ( h. ( ( 6 o c o ( o ( ( sen( ( ( ( sen sen sen ( ( ( ( ( sen sen 6. Sean (, (, h(, comprueba que no se veriica la propiedad distributiva de la composición de unciones respecto la suma o ( h o o h Se hace cada composición por separado, se comprueba que son dierentes. ( ( ( ( ( ( ( o h h ( ( h( ( 6 8 ( h( ( o o h( ( ( ( h( ( ( h( ( ( ( h( ( ( 0 7

8 7. Comprobar que se cumple ( o o siendo ( ; ( Se calcula cada término de la iualdad por separado. Primer miembro de la iualdad o Calculo de ( ( Calculo de ( o ( ( o ( ( ( ( ( 6. Se sustitue por e por 7 6. Se despeja en unción de ( 6 7 ( 7 6 ( 6 7. Se sustitue por ( o ( o ( ( ( º miembro de la iualdad (. Se sustitue por e (( por. Se despeja en unción de. Se sustitue por ( ( ( ( (. Se sustitue por e (( por. Se despeja en unción de. Se sustitue por ( ( o ( o ( ( 7 6 ( ( ( Se demuestra que ( o o 7 ( 6 6 8

9 8. Si (, (, hallar a o b o c - a a ( o ( ( ( Se sustitue la variable de la unción por la unción. ( ( ( ( ( ( b b ( ( ( ( o Se sustitue la variable de la unción por la unción. ( ( ( ( ( ( ( ( d Si la composición de dos unciones es la unción identidad (I(, las unciones son inversas entre si, además la composición es conmutativa ( o ( ( o (. Teniendo en cuenta esto ( (. adas las unciones ( ( h( a Calcular sus dominios b Estudiar sus simetrías c Calcular las unciones ( o (, ( h o ( d Calcular las unciones (, h ( a ominios { R / 0} (, ] [, [ ] R { R / 0} 0 ± Por ser polinómica R ± { }

10 b Simetría e orma riurosa ha que estudiar como se transorma la unción cuando se cambia por, pudiendo darse tres casos dierentes ( (. Función par. Simétrica respecto de OY ( (. Función impar. Simétrica respecto de (0, 0. Ninuno de los anteriores. No tiene simetría. - ( ( ( - ( ( h( - h( ( ( h( Simétrica PAR ( Simetría impar No tiene simetria Eiste otra orma menos riurosa que es un poco más sencilla. Se seleccionan dos valores ±a pertenecientes al dominio de la unción se calcula el valor de la unción en ellos. (a (a. Función par. Simétrica respecto de OY (a (a. Función impar. Simétrica respecto de (0, 0. Ninuno de los anteriores. No tiene simetría. - [ ( ] ( ( 5 ± ( (. Simétrica PAR ( 5 ( - ( ± ( - (. Simetría impar ( h( ( ( 0 h( h(. No tiene simetría h( h( - [ ( ] - ± [ h( ] c ( o ( ( ( ( ( ( 5 ( h o ( h( ( ( ( ( d ( h ( Se intercambian con se despeja. No tiene inversa. ( 0. adas las unciones ( ( h( Calcular a Sus dominios b Simetrías c Las unciones [ o ](, [ h o ]( d Sus unciones inversas cuando eistan a - { R / 0} 0

11 [ ], - { } R 0 0 R / R - [ ] R. Por ser polinómica. b - ( ( (. Par. Simétrica respecto OX - ( ( ( (. Par. Simétrica respecto OX - ( ( h. Par. Simétrica respecto OX c - [ ]( ( ( ( ( ( ( 0 o - [ ]( ( ( ( ( ( 5 h h o d - ( ( - ( ( ( ( - ( h ( h. Calcular el dominio, las simetrías la composición en los dos sentidos de las unciones ( ( ominio - { } 0 0 R / ± { } R ± - { } 0 R /

12 (, ] [ 0, Simetría - ( coordenadas. ( - ( ( ( Composición - ( o ( ( ( ( ( (.No tiene simetría. ( ( ( 6. Impar. Simétrica respecto del orien de -( o ( ( ( ( ( ( ( 6 ( 6 (. Se quiere construir un cilindro de altura ija de base variable. ar una unción que eprese el volumen del cilindro en unción del radio. V π r H π H r. Un lobo se hincha mediante una maquina durante un minuto. El radio, r(cm del lobo varía con el tiempo de la siuiente orma r (t t (0 t t (s Epresar a El volumen del as contenido en el lobo en unción de r b El volumen del as contenido en el lobo en unción de t a V π r V πr b ( ( ( V t π t 0 t πt ( 0 t r t ( 0 t

13 . Epresar en unción de la lonitud de la base el área de un rectánulo inscrito en el mismo de radio R. El área de cualquier rectánulo es base altura. Aplicado al rectánulo de la iura A Si el rectánulo está inscrito en una circunerencia de radio R, sus dimensiones (, están relacionados por el teorema de Pitáoras. ( R Esta epresión permite epresar una variable en unción de la otra. R Sustituendo en el área del rectánulo es obtiene una unción que permite calcular el área de cualquier rectánulo inscrito en una circunerencia de radio R en unción de la lonitud de la base. A 5. Epresar el volumen de un cubo en unción del perímetro del mismo. a Lonitud de la arista. P Perímetro V Volumen V a a P a P V P 6. Epresar en unción de la lonitud de la base el volumen de una caja con tapa de base cuadrada, sabiendo que el área total vale S. R P Conocida la supericie total del cubo se establece una relación entre e que permite epresar en unción de V S S V V ( S S 7. Epresar en unción del radio el área total de un cilindro de volumen V. El área lateral de un cilindro es unción de dos variables, el radio la altura. Para poderlas relacionar se tiene en cuenta que el volumen del cilindro esta ijado (es un dato, por lo tanto de la deinición del volumen podemos obtener una relación entre la altura el radio. V πr h V h A πrh πr πr V A πr πr πr V A πr r

14 8. Hallar la unción que epresa el área de un triánulo isósceles inscrito en un círculo de radio conocido R, en unción de la lonitud de la base. El área de un triánulo es base altura A Si a la base se la denomina, el problema está en epresar la altura (h en unción de del radio conocido R. Seún se observa en el dibujo h h R. R. h` se puede obtener mediante el teorema de Pitáoras en el trianulo sombreado en unción de h R h h R h R R Sustituendo en la epresión del área R R base altura R A R R Calcular el área lateral de un pozo de orma cilíndrica con ondo esérico abierto superiormente en unción del radio, teniendo en cuenta que el radio debe ser la décima parte de la proundidad máima.. El elemento radio se descompone seún la epresión 0'000 t ( N 0 e N t onde N(t es la cantidad en ramos de radio que queda sin descomponer en el instante t, t es el tiempo en años N o es la cantidad inicial en ramos. Sí se empieza con 50 ramos a Cuántos ramos quedarán sin descomponer al cabo de 500 años? b Cuánto tiempo tardará en desaparecer el % de la muestra? c Cuál es la vida media del radio? Se deine vida media como el tiempo necesario para que se descompona la mitad de la muestra a. Se pide calcular el valor que toma la unción para t '000 t N( t 50 e 0' ( 50 e 0,r N 500 b. Si desaparece el,% de la muestra, queda sin descomponer el 0,0% de la muestra inicial. Se pide calcular el tiempo necesario para que la muestra se reduzca hasta 0,0% de la cantidad inicial. 0,0 N( t N o 0 N o 00 Sustituendo en la epresión inicial N( t 0 N o o 0'000 t N e 0'000 t ( N 0 e, se despeja t. 0'000 t 0'000 t ( 0 e Ln 0 Ln e Para despejar t se toman loaritmos neperianos en ambos miembros. Ln0 0'000 t Ln0 t 05,8 años 0'000

15 c. Se pide calcular el tiempo necesario para que la muestra inicial se reduzca a la mitad. N o N( t Sustituendo en la epresión inicial N( t N o o 0'000 t ( N 0 e 0'000 t N e, se despeja t. 0'000 t e Para despejar t se toman loaritmos neperianos en ambos miembros. Ln 0'000 t Ln Ln e 0 '000 t Ln t 7 años 0'000 5

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente:

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente: Páina del Coleio de Matemáticas de la ENP-UNAM Funciones Autor: r. José Manuel Becerra Espinosa FUNCIONES UNIA I Las manitudes que caracterizan un enómeno dado pueden quedar completamente determinadas

Más detalles

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x .- Halla el dominio de deinición de las siguientes unciones polinómicas y racionales: a) ( ) b) ( ) 8 j) ( ) 9 4 d) ( ) 6 9 l) 7 ( ) 5 ( ) ( ) 4 p) q) r) 7 9 ( ) 8 ( ) 7 9 ( ) 4 6 ( ) 4 ( ) ( ) s) 5 (

Más detalles

= x De este modo: Esto es un ejemplo de FUNCIÓN.

= x De este modo: Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 6 FUNCIONES REALES. PROPIEDADES GLOBALES.. CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal:

Más detalles

FUNCIONES ( ) Racionales: ( ) Irracionales: ( ) Logarítmicas: ( )

FUNCIONES ( ) Racionales: ( ) Irracionales: ( ) Logarítmicas: ( ) FUNCIONES Definición. Función real de variable real es una aplicación del conjunto de los números reales en sí mismo, de tal forma que a cada número real le hace corresponder otro número real. CORRESPONDENCIA

Más detalles

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente:

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente: Facultad de Contaduría Administración. UNAM Teoría de unciones Autor: r. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS TEORÍA E FUNCIONES Las manitudes que caracterizan un enómeno dado pueden quedar

Más detalles

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x

f p) 2 3x f q) f r) 4 x f s) x 6 f t) f u) x 3x f v) x 7x x x 9x .- Halla el dominio de deinición de las siguientes unciones polinómicas y racionales: a) b) 8 j) 9 4 d) 9 l) 7 ( ) 5 ( ) ( ) 4 p) q) r) 7 9 ( ) 8 7 9 ( ) 4 ( ) 4 ( ) ( ) s) 5 m) t) h) ( ) 7 ( ) 4 u) v)

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + =

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + = Funciones Se ha hecho un estudio de mercado en el que la curva de oferta de un determinado producto viene dada por la función,7 8 la curva de demanda por, -. Si el punto de corte de ambas curvas es el

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente:

Una función se refiere a una asignación o correspondencia de un conjunto a otro. Su definición formal es la siguiente: FUNCIÓN UNIDAD II Las magnitudes que caracterizan un enómeno dado pueden quedar completamente determinadas por los valores de otras. Estas interdependencias ueron las que dieron origen al concepto de unción

Más detalles

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES.

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES. REPRESENTACIÓN GRÁFICA DE FUNCIONES. TEORÍA - ESQUEMA A SEGUIR EN LA REPRESENTACIÓN DE FUNCIONES. Para dibujar la curva (C) de la unción :->y() se estudiará sucesivamente los siguientes puntos: * Dominio

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

Tema 10 Funciones elementales Matemáticas I 1º Bachillerato 1

Tema 10 Funciones elementales Matemáticas I 1º Bachillerato 1 Tema 0 Funciones elementales Matemáticas I º Bachillerato TEMA 0 FUNCIONES ELEMENTALES FUNCIÓN EJERCICIO : Indica cuáles de las siuientes representaciones corresponden a la ráica de una unción. Razona

Más detalles

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones.

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones. . CONCEPTO DE FUNCIÓN TEMA 7 : Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El espacio que recorre un móvil con movimiento uniforme depende del tiempo invertido.

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMA 1 FUNCIONES REALES DE VARIABLE REAL. FUNCIONES ELEMENTALES. SITUACIONES EN QUE APARECE. FUNCION COMPUESTA. 1. Introducción. 1.1. Subconjuntos de. 1..

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): FUNCIONES ELEMENTALES 0. CONCEPTO DE FUNCIÓN DEFINICIÓN : es una unción de R en R si a cada número real, Dom, le hace corresponder un único número real, (): Lo denotamos por : : Dom -----> R -----> ()

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

en su construcción sea mínima. Sol: r = 3, h =

en su construcción sea mínima. Sol: r = 3, h = RELACIÓN DE PROBLEMAS ) Encontrar los etremos absolutos de y 6+ definida en [0, ]. Sol. Má en 0 y ; mín -/ en,5. ) Hallar dos números positivos cuya suma sea 0, sabiendo que su producto es máimo. Sol.:

Más detalles

( x) ( ) = D) k( x) ( ) = es una función: 3 x. = + + es una función: h x e + = C) ( ) g x A) B) Sesión 2

( x) ( ) = D) k( x) ( ) = es una función: 3 x. = + + es una función: h x e + = C) ( ) g x A) B) Sesión 2 Sesión Unidad I Clasificación dibujo de gráfica de funciones. D. Clasificación de funciones. h ( ) 0.- La función es una función: Creciente Trascendente Irracional Constante Logarítmicas.- Una función

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

TEMA 5: FUNCIONES. LIMITES Y CONTINUIDAD

TEMA 5: FUNCIONES. LIMITES Y CONTINUIDAD TEMA 5: FUNCIONES. LIMITES Y CONTINUIDAD 5. Funciones reales PÁGINA. Una empresa fabrica cajas de latón sin tapa para almacenar un líquido colorante con un volumen de 500 c m. Las cajas tienen la base

Más detalles

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES #20 y #21

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES #20 y #21 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES #20 y #2 (Tomado de: Stewart, James. "Precálculo". Quinta Edición. Sección 2.7) Funciones Pares e Impares Sea una unción. Decimos

Más detalles

******* Enunciados de Problemas *******

******* Enunciados de Problemas ******* ******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional

Más detalles

Dominio de una función

Dominio de una función Dominio de una unción Ejercicio nº.- Averiua cuál es el dominio de deinición de las siuientes unciones: a) Ejercicio nº.- Halla el dominio de deinición de las siuientes unciones: a) 9 Ejercicio nº - Halla

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

BLOQUE 6: Iniciación al cálculo de derivadas Aplicaciones DERIVADAS . 125

BLOQUE 6: Iniciación al cálculo de derivadas Aplicaciones DERIVADAS . 125 BLOQUE 6: DERIVADAS Iniciación al cálculo de derivadas Aplicaciones. 5 6.INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 6. INTRODUCCIÓN En nuestro entorno ran parte de la inormación que recibimos viene

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles

f : R R y en cuanto a los elementos x f ( x)

f : R R y en cuanto a los elementos x f ( x) CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA CALCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : FUNCIONES REALES. CONCEPTO

Más detalles

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo Modelo 01. Problema B.- Calificación máima: puntos) El coste de fabricación de una serie de hornos microondas viene dado por la función C) + 0 + 0000, donde representa el número de hornos fabricados. Supongamos

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

1. FUNCIÓN REAL DE VARIABLE REAL

1. FUNCIÓN REAL DE VARIABLE REAL 1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y . DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación Alumn@: Nota Curso: º Bacillerato Recuperación Feca: de Enero de 6 º Evaluación.- Calcule las dimensiones de tres campos cuadrados que no tienen ningún lado común y que satisfacen que el perímetro de uno

Más detalles

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN.

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. CONCEPTO DE FUNCIÓN. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal: A cada número se le hace corresponder su doble.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

Funciones Guía Teórico y práctico.

Funciones Guía Teórico y práctico. Carrera: Profesorado en Física. Materia: MATEMÁTICA Titular: Dra. Godoy, Antonia E. Adscripta: Lubaczewski, Itatí Funciones Guía Teórico y práctico. Dados dos conjuntos no vacíos A y B y una relación que

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2. LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) =

x 1. [ANDA] [SEP-B] Considera la función f:[0,4] definida por: f(x) = Selectividad CCNN 00. [ANDA] [SEP-B] Considera la función f:[0,] definida por: f() = +a+b si 0 c si

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

s(t) = 5t 2 +15t + 135

s(t) = 5t 2 +15t + 135 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000, 1-1-000 (A) Primer parcial (1) Se lanza una pelota hacia arriba a una velocidad de 15 m/seg desde el borde de un acantilado a 15 m arriba del suelo.

Más detalles

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I Soluciones a los ejercicios propuestos Unidad. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I CONCEPTO DE FUNCIÓN. EXPRESIÓN ANALÍTICA DE UNA FUNCIÓN. A partir de los

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos

Más detalles

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría 8 Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f() = representada en el margen, halla los máimos y los mínimos relativos y los intervalos de

Más detalles

UNIDAD 2 CALCULO DIFERENCIAL

UNIDAD 2 CALCULO DIFERENCIAL UNIDAD CALCULO DIFERENCIAL DEFINICION DE FUNCIÓN: una función es una epresión matemática en la que aparecen variables constantes relacionadas. Las variables en este curso serán dos: Una llamada variable

Más detalles

Unidad 6: Funciones reales de variable real.

Unidad 6: Funciones reales de variable real. Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación

Más detalles

FUNCIONES: GENERALIDADES

FUNCIONES: GENERALIDADES FUNCIONES: GENERALIDADES DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL.- Una unción,, es una correspondencia entre dos conjuntos numéricos A y B, que asigna a cada número, x, del primer conjunto A, un único

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0)

RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0) RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0). DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción real de variable real es una aplicación de un subconjunto D de los números reales en un subconjunto

Más detalles

1. Efectúa las siguientes operaciones, simplificando el resultado lo máximo posible:

1. Efectúa las siguientes operaciones, simplificando el resultado lo máximo posible: 4ºESO 1. Efectúa las siguientes operaciones, simplificando el resultado lo máimo posible: a. 18 50 8 b. 7 3 180 c. 4 3 64 d. e. 3 3 3 5 88 : 1 3 4 7 5. Racionaliza las siguientes epresiones, simplificando

Más detalles

FUNCIONES. entonces:

FUNCIONES. entonces: FUNCIONES. Si f ( ) para y g( ), entonces: + g f ( ), para + B) g f ( ), para + C) g f ( ), para + D) g f ( ), para + (Convocatoria septiembre 00. Eamen tipo B) La composición de funciones es una operación

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

FUNCIONES PRÁCTICA N 2

FUNCIONES PRÁCTICA N 2 Capitulo II FUNCIONES PRÁCTICA N. En cada uno de los siguientes casos dar la ley de la función descripta: a) El área de un rectángulo es de 0 cm². Epresar el perímetro del mismo en función de la longitud

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

A partir de la gráfica de las siguientes funciones, indica cuál es su dominio de definición y su recorrido:

A partir de la gráfica de las siguientes funciones, indica cuál es su dominio de definición y su recorrido: Modelo de eamen Ejercicio nº. Halla el dominio de definición de las siguientes funciones: a) y = ( 3) b) y = S Fecha: b) > 0 > Dominio = (, + ) Ejercicio nº. A partir de la gráfica de las siguientes funciones,

Más detalles

GUÍA MATHCAD 1: b- (. ) 3- Realizar las siguientes operaciones, modificando las anteriores, sin ingresar nuevamente los números y operadores.

GUÍA MATHCAD 1: b- (. ) 3- Realizar las siguientes operaciones, modificando las anteriores, sin ingresar nuevamente los números y operadores. GUÍA MATHCAD : - Ingresar y realizar las siguientes operaciones combinadas: a- 6 + = 4 ln e 4 + = (. ) 5 + 6 + 6 = 4 5 6 + ( 0 ). 0 = - Modificar el formato de los resultados a cinco decimales. - Realizar

Más detalles

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM)

Cálculo de Derivadas. 2º Bachillerato. Materiales (Editorial SM) Cálculo de Derivadas. 2º Bacillerato Materiales Editorial SM Esquema Tasa de variación media en un intervalo Para una unción se deine la tasa de variación media de en un intervalo [a, b], contenido en

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES.

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. Concepto de unción.. Monotonía y etremos. Acotación... Monotonía... Etremos relativos y absolutos... Funciones acotadas.. Simetría y periodicidad... Funciones

Más detalles

De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender.

De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este tema lo iniciamos recordando el concepto de función y dando algunas nociones básicas sobre funciones, para dar paso al estudio del límite de una función, cálculo

Más detalles

4 Polinomios. 1. Polinomios. Piensa y calcula. Aplica la teoría. 1. Cuáles de las siguientes expresiones son monomios? Indica

4 Polinomios. 1. Polinomios. Piensa y calcula. Aplica la teoría. 1. Cuáles de las siguientes expresiones son monomios? Indica 4 Polinomios 1. Polinomios Piensa y calcula Calcula mentalmente el área y el volumen del cubo del dibujo. A() = 6 2 V() = 3 Aplica la teoría 1. Cuáles de las siguientes epresiones son monomios? Indica

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

TEMA 0 FUNCIONES ***************

TEMA 0 FUNCIONES *************** TEMA 0. Definición y terminología.. Funciones conocidas. 3. Operaciones con funciones. 4. Funciones inversas. FUNCIONES ***************. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable

Más detalles

2.2.1 Límites y continuidad

2.2.1 Límites y continuidad . Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización 09 Tema 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) :

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) : Resumen Tema 2: Funciones Concepto de función. Gráficas Definición. Se llama función (real de variable real) a toda aplicación f : R R que a cada número le hace corresponder otro valor f(). f() Definición

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles