en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

Tamaño: px
Comenzar la demostración a partir de la página:

Download "en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es"

Transcripción

1 UAH Actualización de Conocimientos de Matemáticas para Tema 08 DERIVADAS Derivada de una función en un punto Una función f () es derivable en el punto a si f ( a + ) f ( a) eiste el límite: lím Este límite se denota por f (a), y eiste cuando resulta un número real finito La derivada es el límite de un cociente de dos cantidades infinitesimales El numerador mide la variación de la variable dependiente (la f () ) cuando la variable dependiente (la ) pasa de a a a + El cociente mide la tasa de variación media de una variable respecto a la otra Cuando se impone que la variable independiente varíe una cantidad infinitesimal (eso indica que 0), lo que se está calculando es la tasa de variación instantánea de la función f () en un punto determinado Esto es, qué le pasa a f () cuando varía en los alrededores de un punto a Dada la función f ( ) +, su derivada en el punto es f ( + ) f () f () lím Como f ( + ) ( + ) + ( + ) + y f ( ), se + tendrá: f () lím lím ( ) lím lím( ) Luego, f ( ) (Este número indica que en el punto, la función está decreciendo en la proporción a : la razón que epresa la relación entre ambas variables vale ) Interpretación geométrica de la derivada La derivada, f (a), es un número que da el valor de la pendiente de la recta tangente a la curva f () en el punto P ( a, f ( a)) La ecuación de dica recta tangente será: y f ( a) f ( a)( a) Observaciones: La tangente a una curva en un punto es la recta que mejor aproima a la curva en ese punto concreto La derivada indica lo que variaría la función si se comportara linealmente (como la recta tangente) en un entorno de ese punto La derivada, como la recta tangente, va cambiando según cambia el punto de referencia Se recordará que la pendiente de una recta indica lo que la recta aumenta (si es positiva) o disminuye (si es negativa) por cada incremento unitario de la variable La recta tangente a la función f ( ) + en el punto de abscisa, será: y f () f ()( ) Y como f ( ) y f ( ), se obtiene: y ( ) y + 9

2 UAH Actualización de Conocimientos de Matemáticas para Derivabilidad, continuidad y derivadas laterales Para que una función sea derivable en un punto son precisas dos condiciones: Que la función sea continua en dico punto Que las derivadas laterales eistan y coincidan en ese punto Derivadas laterales f ( a + ) f ( a) + f ( a + ) f ( a) Izquierda: f ( a ) lím Dereca: f ( a ) lím + + La derivada, f (a), eiste cuando f ( a ) f ( a ) Geométricamente significa que la tangente a la curva en el punto ( a, f ( a)) es la misma tanto si se traza por la izquierda como por la dereca Las derivadas laterales no coinciden en los puntos angulosos, en los picos de las funciones Por tanto, en esos puntos no eiste la derivada Esta condición es particularmente importante en las funciones definidas a trozos Para esas funciones resulta obligado estudiar las derivadas laterales en los puntos de separación de los distintos trozos Continuidad y derivabilidad La relación entre derivabilidad y continuidad es la siguiente: si f () es derivable en a f () es continua en a El recíproco no es cierto Esto es, f () es continua en a f () es derivable en a +, a) La función f ( ) es continua y derivable + 9 > en el punto donde se unen las funciones a trozos, en Esto implica que se puede pasar de una función a otra sin cambios bruscos (Recuerda que y + 9 es la recta tangente a f ( ) + en ) +, < 0 b) La función f ( ) es continua en 0, pero + 0 no es derivable en ese punto (En el punto 0, la función ace un cambio brusco) Función derivada La función derivada de una función f () es una nueva función que asocia a cada número real su derivada Se denota por f () Su definición es la siguiente: f ( + ) f ( ) f ( ) lím Si y f (), se escribe y f ( ) También es frecuente escribir df ( ) f ( ) o d dy y d

3 UAH Actualización de Conocimientos de Matemáticas para Reglas de derivación para las operaciones con funciones Derivada de una constante por una función: F ( ) k f ( ) ( F ( ) ) ( k f ( ) ) k f ( ) Derivada de una suma o diferencia de funciones: F ( ) f ( ) ± g( ) ( F ( ) ) ( f ( ) ± g( ) ) f ( ) ± g ( ) Derivada de un producto de funciones: F ( ) ( f g) )( ) f ( ) g( ) F ( ) f ( ) g( ) f ( ) g( ) + f ( ) g ( Derivada de la opuesta de una función: ( ) ( ) ) F ( ) ( ) F( ) f f ( ) f ( ) Derivada de un cociente de funciones: ( ) f ( ) f ( ) ( ) F( ) g( ) g( ) Derivada de la función compuesta: f ( ) ( f ( )) F ( ) f ( ) g( ) f ( ) g ( ) ( g( )) F ( ) f ( g( )) ( F ( ) ) ( f ( g( ) ) f ( g( )) g ( ) TABLA DE FUNCIONES DERIVADAS Función simple Derivada Función compuesta Derivada y c y 0 y y n y, n R y n y a, a > 0 a ln a y n y ( f ( )), n n( f ( )) f ( ) f ( ) y f () y f ( ) f () n n f ( ) y a, a > 0 f ( ) a ln a y e y e f () y e f ( ) y f ( ) e f ( ) y log a log a e y log a f ( ) log a e f ( ) y ln f ( ) y ln f ( ) y f ( ) y sen cos y sen f ( ) y f ( ) cos f ( ) y cos sen y cos f ( ) f ( ) sen f ( ) y tag + tag y tag f ( ) y f ( )( + tag f ( )) y arcsen f ( ) y arcsen f ( ) ( f ( )) y arccos f ( ) y arccos f ( ) ( f ( )) y arctag f ( ) y arctag f ( ) + + ( f ( )) En esta tabla: c, n, a y e son números; designa la variable independiente e y o f representan funciones de

4 UAH Actualización de Conocimientos de Matemáticas para Ejemplos: f ( ) + f ( ) + f ( ) ( + )( ) ( ) ( + ) ( ) + ( + )( ) f ( ) ( f ( ) f ) ( ) ( ) f ( ) ( + ) f ( ) ( + ) ( ) f ( ) ( + ) / ( ) + / f ( ) ( + ) ( ) y y 0 y 0 ln y ( ) ln y e y ( + 0, + e f ) e ( + ) + 8 y ln( ) y log( + ) log e + y ln( ( )( ) ) ln 0,e ln( ) + ln( ) y sin cos y sen y sen cos 0, 0 + sen cos y y 7 y sen + cos tag cos sen ( + tag ) 8 y cos ( ) y cos( ) sin( ) ( ) 9 y ln cos ( sin ) tan cos 0 y arcsen ( ) ( ) y arcsen ( ) arccos( ) y ( ) 0 ( ) ( ) y arctag (+ ) + ( + ) + +

5 UAH Actualización de Conocimientos de Matemáticas para Idea de diferencial de una función Como se indicó anteriormente, la ecuación de la recta tangente a la curva y f (), en el punto P ( a, f ( a)), viene dada por y f ( a) f ( a)( a) Esta recta, cuya pendiente es f (a), es la función lineal que mejor aproima a f () en un entorno del punto a Se llama diferencial de f () en el punto a al producto f ( a) d Esto es, dy df ( a) f ( a) d En general, si y f () dy df ( ) f ( ) d Ejemplos: a) Para y + dy ( + ) d b) Si y ln dy d c) Si cost d sin tdt Cuantitativamente, la diferencial da la diferencia de los valores que toma la recta tangente en los puntos a y a + a + d (en general, puntos: y + d) Geométricamente, la diferencial es el incremento sobre la recta tangente, como puede verse en el triángulo PQR, de la figura adjunta: RQ dy tan α f ( a) dy f ( a) d Pq d Parece evidente que si d es un valor pequeño, también será pequeño el valor de dy, y más pequeña aún, la diferencia entre el valor sobre la curva f () y el valor sobre la recta tangente (En la figura se indica esa diferencia con el nombre de error) Esto permite concluir que, en un entorno del punto a, la función y f () y la recta tangente, y f ( a) + f ( a)( a), toman valores aproimados: [ y f ()] [ y f ( a) + f ( a)( a) ] Esto es: f ( a + ) f ( a) + f ( a), para pequeño Para allar la ecuación de la tangente a la curva y en el punto de abscisa, se procede así: y si, y(), y () / Luego, la tangente es: y ( ) y + Por tanto, en el punto, la función y puede aproimarse por la recta y + Así, la raíz cuadrada de,,,, +,0 (Lo que se ace es utilizar una función lineal, fácil de manejar, para calcular una raíz cuadrada)

6 UAH Actualización de Conocimientos de Matemáticas para Aplicación de la derivada primera para el estudio gráfico de funciones El signo de la derivada primera de una función permite conocer los intervalos de crecimiento y decrecimiento de la curva asociada a ella Además, en mucos casos posibilita la determinación de máimos y mínimos relativos Crecimiento y decrecimiento f () es creciente en un punto a si f ( a ) f ( a) f ( a + ), para > 0 y pequeño f () es decreciente en un punto a si f ( a ) f ( a) f ( a + ), para > 0 y pequeño La función f () es creciente (decreciente) en un intervalo cuando crece (decrece) en todos los puntos de él Caracterización mediante la derivada primera Si f ( a) > 0 f () es creciente en a En general, si una función f () es tal que f ( ) > 0 para todo de un intervalo, entonces f () es creciente en ese intervalo Si f ( a) < 0 f () es decreciente en a Si una función f () es tal que f ( ) < 0 para todo de un intervalo, entonces f () es decreciente ese el intervalo Máimos El punto es un máimo relativo cuando la función es creciente a su izquierda y decreciente a su dereca Por tanto: es un máimo si: f ( ) > 0, f ( ) 0, f ( ) < 0 Mínimos El punto es un mínimo relativo cuando la función es decreciente a su izquierda y creciente a su dereca Por tanto: + es un mínimo si: f ( ) < 0, f ( ) 0, f ( ) > 0 La función f ( ) + es creciente a la izquierda del punto, y decreciente a su dereca, pues f ( ) es positiva para < y negativa para > Por tanto, f ( ) + tiene un máimo en La determinación de los puntos singulares (aquellos en los que la derivada vale 0, llamados también estacionarios; y los puntos en lo que la función no está definida) permitirá obtener el crecimiento, el decrecimiento, los máimos y los mínimos Advertencia No siempre que f ( ) 0 se tiene un máimo o un mínimo; ni siquiera esto es una condición necesaria Puede aber mínimo sin que f ( ) 0 : Así, la función f ( ) tiene un mínimo en 0 y en ese punto no es derivable la función Puede suceder que f ( ) 0 y no aya mínimo ni máimo Así pasa en el punto 0 para la función f ( ) Su derivada, f ( ), se anula en 0, pero: Si < 0, (por ejemplo, ), f () > 0 f() es creciente Si > 0, (por ejemplo, ), f () > 0 f() es creciente Por tanto, en 0 no ay máimo ni mínimo Hay un punto de infleión +

7 UAH Actualización de Conocimientos de Matemáticas para 7 Trazado de gráficas con ayuda de la derivada primera Dada la función y f (), para dibujarla es útil el siguiente proceso: Determinar los puntos en los que no está definida f () Hallar la derivada f () Calcular las soluciones de la ecuación f ( ) 0 (puntos singulares) Marcar sobre el eje OX los puntos singulares y aquellos en los que la función no está definida Esos puntos dividen al eje OX en varios intervalos Estudiar el signo de la derivada en cada intervalo anterior: si el signo es positivo, la función crece; si es negativo, decrece (Basta con probar un punto de cada intervalo) Deducir (de lo anterior) dónde se dan los máimos y los mínimos, si es el caso 7 Trazar la gráfica ajustándose a la información obtenida y dando algunos de sus puntos, entre los correspondientes a los puntos singulares y a los cortes con los ejes de coordenadas Trazado de la gráfica de la función Está definida siempre y f ( ) f ( ) 0 ( ) 0 0,, y Marcamos los puntos: Si <, (por ejemplo, ), f () > 0 f () es creciente Si < < 0, (por ejemplo, ), f () < 0 f () es decreciente en ay máimo, Si 0 < <, (por ejemplo, ), f () < 0 f () es decreciente en 0 no ay ni máimo ni mínimo Si >, (por ejemplo, ), f () > 0 f () es creciente en 7 Dando algunos valores se obtiene la gráfica adjunta Para 0, f ( 0) 0 punto (0, 0) Para,, f ( / ), 0 punto (,,,0) Para,, f ( / ), 0 punto (,,,0) Los cortes con el eje OX, las soluciones de 0, son 0 y ± puntos (, 0), (0, 0) y (, 0) ay mínimo

8 UAH Actualización de Conocimientos de Matemáticas para 8 Aplicaciones de la derivada segunda: concavidad y conveidad; máimos y mínimos; puntos de infleión La concavidad y la conveidad dependen del punto de vista del que mira Aquí se mirará siempre desde la parte positiva del eje OY Por tanto, la concavidad será así: ; y la conveidad, así: Observa lo que sucede en un intervalo de concavidad ( ) Las tangentes a la curva están por debajo de ella Las rectas tangentes, de izquierda a dereca, tienen cada vez mayor pendiente O, lo que es lo mismo, sus pendientes crecen (La pendiente viene dada por la derivada) Luego la derivada crece: f () es creciente En consecuencia, su derivada (la de f () ) será positiva: f ( ) > 0 Los mínimos se dan siempre en una conveidad Por tanto, si en a ay un mínimo de f (), se cumplirá que f ( a) > 0 Observa lo que sucede en un intervalo de conveidad ( ): Las tangentes a la curva están por encima de ella Las rectas tangentes, de izquierda a dereca, tienen cada vez menor pendiente O, lo que es lo mismo, sus pendientes decrecen (La pendiente viene dada por la derivada) Luego la derivada decrece: f () es decreciente En consecuencia, su derivada (la de f () ) será negativa: f ( ) < 0 Los máimos se dan siempre en una conveidad Por tanto, si en a ay un máimo de f (), se cumplirá que f ( a) < 0 Por tanto, se tiene: Si f ( ) > 0 en el un intervalo (, ) f () es cóncava ( ) en ese intervalo Si f ( ) < 0 en el un intervalo (, ) f () es convea ( ) en ese intervalo Máimos y mínimos Si f (a) 0 y f ( a) < 0 f () tiene un máimo en a Si f (a) 0 y f ( a) > 0 f () tiene un mínimo en a El recíproco no es cierto Esto es, puede suceder que f () tenga un máimo (o un mínimo) en a siendo f (a) 0 y f ( a) 0 (sin que f ( ) < 0 o f ( a) > 0 ) Puntos de infleión Los puntos en los que la curva cambia de cóncava a convea, o al revés, se llaman puntos de infleión; en esos puntos, la tangente corta a curva Se cumple también que: Si a es un punto de infleión de f () f ( a) 0 PI a conveidad concavidad El recíproco no es cierto Esto es, puede suceder que f ( a) 0 y en a no aya punto de infleión

9 UAH Actualización de Conocimientos de Matemáticas para 9 Algunas aplicaciones (de tipo algebraico) para la determinación de funciones Con frecuencia se presenta la necesidad de encontrar una función (un modelo) que cumpla determinadas condiciones Por ejemplo, que sea creciente en un intervalo dado, que presente un máimo en un punto concreto, que tenga una infleión Esas condiciones eigirán que los parámetros que concretan la función cumplan las condiciones pedidas Los siguientes ejemplos aclaran esta cuestión Ejemplo : Considera la función: ( ) 7 + a + b Calcula el valor de los parámetros a y b para que la gráfica de la función pase por el punto (, 0) y en ese punto tenga un mínimo local 7 Por pasar por (, 0) ( ) + a + b 0 a + b 7 Por tener un mínimo en (, 0), debe cumplirse que ( ) 0 : 7 ( ) + a ( ) 7 + a 0 a 7 Y, por tanto, b Como ( ) es positiva en, en ese punto se da un mínimo 7 Luego, la función es ( ) + 7 a + b si < 0 Ejemplo : Se considera la función f ( ) sin cos si 0 a) Determina el valor de b para que la función sea continua en el punto 0 b) Calcule el valor de a y b para que la función sea derivable en el punto 0 a) Por separado, para cada intervalo de definición, las funciones dadas son continuas y derivables El único punto conflictivo es 0, en donde las funciones se juntan En ese punto la función está definida, siendo f(0) ; para que sea continua, además, debe tener límite en 0 y coincidir con su valor de definición Por la izquierda: Si 0, f ( ) a + b b Por la dereca: Si 0 +, f ( ) sin cos Ambos límites coinciden cuando b a si < 0 Luego, la función f ( ) es continua en todo R sin cos si 0 b) Salvo en 0, su derivada es a si < 0 f ( ) cos + sin si > 0 La función será derivable en 0 si coinciden las derivadas laterales Por la izquierda: Si 0, f ( ) a a Por la dereca: Si 0 +, f ( ) cos + sin Las derivadas son iguales cuando a En consecuencia, la función si < 0 f ( ) es continua y derivable en 0 sin cos si 0

10 UAH Actualización de Conocimientos de Matemáticas para 0 Ejemplo : Sea f ( ) A + B + C + D un polinomio de tercer grado del que se sabe que f(0), f (0) y que tiene dos etremos relativos en y en Calcula A, B, C y D y determina razonadamente si esos etremos son máimos o mínimos Hacemos la derivada primera y segunda: f ( ) A + B + C + D f ( ) A + B + C f ( ) A + B Por ser f(0) D Por ser f (0) C Por etremos relativos en y f () 0 y f () 0 Luego: A + B + 0 A + B + 0 A y B De donde, f ( ) + + Como f ( ) se tiene que: f ( ) en se tiene un máimo relativo f ( ) en se tiene un mínimo relativo Ejemplo : Entre los números, cuya suma es, encuentra aquellos números positivos cuya suma de cuadrados sea mínima Sean e y los números Cumplen que + y Se desea que C + y sea mínima Sustituyendo y C + C El mínimo de C se da en la solución e C 0 que ace positiva a C Derivando: C Como C > 0, para el valor 8 se tiene la suma de cuadrados mínima Por tanto, ambos números deben ser iguales a 8 en C se tiene: ( )

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Tema 7. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 7. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Tema 7 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización

Tema 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización 09 Tema 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Aplicaciones de la derivada primera para el estudio de la variación de una función El signo de la derivada primera

Más detalles

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es UAH Derivadas Tema 4 DERIVADAS Derivada de una función en un punto Una función f ( es derivable en el punto a si f ( a ) eiste el ite: Este ite se denota por f (a), y eiste cuando resulta un número real

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS) EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia

Más detalles

Tasa de variación. Tasa de variación media

Tasa de variación. Tasa de variación media Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama

Más detalles

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo?

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo? Análisis I (A y B) febrero9 Consideremos f() = sen() arctg( 3 Calcular el límite de f cuando tiende a Sea la sucesión ) a n = cosn Es convergente? Determinar el límite, si eiste, de la sucesión {f(a n

Más detalles

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN 9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula

Más detalles

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2

2. Calcula las velocidades medias anteriores tomando valores sobre la ecuación del movimiento de dicha partícula: s = 2 Unidad. Derivadas Resuelve Página 0 Movimiento de una partícula Un investigador, para estudiar el movimiento de una partícula, la a iluminado con destellos de flas cada décima de segundo (0, s) durante

Más detalles

1.- Concepto de derivada de una función

1.- Concepto de derivada de una función º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama

Más detalles

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad.

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad. Definición de derivada Observación: Algunos de los enunciados de estos problemas se an obtenido de Selectividad Halla, utilizando la definición, la derivada de la función f ( ) en el punto = Comprueba

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO

TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN MATEMÁTICAS II º Bach TEMA 9 DERIVADAS. TÉCNICAS DE DERIVACIÓN 9. DERIVADA DE UNA FUNCIÓN EN UN PUNTO TASA DE VARIACIÓN MEDIA Definición Se llama tasa de variación

Más detalles

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN

Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1 6 Derivadas CRITERIOS DE EVALUACIÓN ACTIVIDADES DE EVALUACIÓN A. Calcular la tasa de variación media de una función en un intervalo.. Calcula la tasa de variación media de las siguientes funciones en los

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente: U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento

Más detalles

2.2.1 Límites y continuidad

2.2.1 Límites y continuidad . Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

Tema 12. Derivabilidad de funciones.

Tema 12. Derivabilidad de funciones. Tema. Derivabilidad de funciones.. Tasa de Variación media. Derivada en un punto. Interpretación.... Tasa de variación Media.... Definición de derivada de una función en un punto.... Interpretación geométrica

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

Antes de comenzar. Qué entendemos por secante y por tangente de una recta a una curva?

Antes de comenzar. Qué entendemos por secante y por tangente de una recta a una curva? Indice. 1. Interpretación geométrica de la derivada. 2. Tasas de variación. 3. Derivabilidad de una unción en punto. 4. Funciones no derivables. 5. Función derivada. 6. Ecuación de la recta tangente. 7.

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular . Calcular el dominio de f()= ln(0 ) ln. Averiguar en qué valores del intervalo [0,] está definida la función f()= 3 sen 3 3sen 3 0 lim 3 5 4 3. Calcular 4. Averiguar el valor de k para que la función

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

y' nos permite analizar el crecimiento o decrecimiento

y' nos permite analizar el crecimiento o decrecimiento http://wwwugres/local/metcuant APLICACIONES DE LAS DERIVADAS La derivada de una función f (), en un punto = a, representa el valor de la pendiente de la recta tangente a dicha función, en el citado punto

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a): 0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Página 75 REFLEIONA RESUELVE Tomar un autobús en marca En la gráfica siguiente, la línea roja representa el movimiento de un autobús que arranca de la

Más detalles

LA DERIVADA. Ejemplo 1. Halla la tasa de variación media de la función f(x) =3-x 2 en el intervalo [0,2] Solución

LA DERIVADA. Ejemplo 1. Halla la tasa de variación media de la función f(x) =3-x 2 en el intervalo [0,2] Solución LA DERIVADA INTRODUCCIÓN El deseo de medir y de cuantificar el cambio, la variación, condujo en el siglo XVII hasta la noción de derivada. El estudio de las operaciones con derivadas, junto con las integrales,

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Página 194 EJERCICIOS Y PROBLEMAS PROPUESTOS. Tasa de variación media PARA PRACTICAR UNIDAD

Página 194 EJERCICIOS Y PROBLEMAS PROPUESTOS. Tasa de variación media PARA PRACTICAR UNIDAD UNIDAD Página 9 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Tasa de variación media Calcula la tasa de variación media de esta función en los intervalos: a) [, 0] b) [0, ] c) [, 5] 0 5 f (0) f ( ) a)

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

ACTIVIDADES INICIALES b EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES b EJERCICIOS PROPUESTOS 6 Derivadas ACTIVIDADES INICIALES 6I Escribe la ecuación de las siguientes rectas: a) Horizontal y que pase por el punto A(, ) b) Decreciente y que pase por el punto A(, ) c) Creciente y que pase por el

Más detalles

2.1 Derivadas Tipo Función Simple Función Compuesta

2.1 Derivadas Tipo Función Simple Función Compuesta Tema 2: Derivadas, Rectas tangentes y Derivabilidad de funciones. 2.1 Derivadas Tipo Función Simple Función Compuesta Constante Identidad Potencial Irracional Exponencial Logarítmica Suma Resta Producto

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles

Unidad 3. Funciones.Derivabilidad 3 FUNCIONES TEMA ERIVABILIDAD. José L. Lorente Aragón

Unidad 3. Funciones.Derivabilidad 3 FUNCIONES TEMA ERIVABILIDAD. José L. Lorente Aragón Unidad. Funciones.Derivabilidad TEMA FUNCIONES UNCIONES.DERIVABILIDAD ERIVABILIDAD.. Tasa de variación media. Derivada en un punto. Interpretación.. Tasa de variación media.. Deinición de derivada en un

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a 3 Derivación 3.. La derivada La derivada de una función en punto a de su dominio está dada por la fórmula f (a) = lím a f() f(a) a El cociente f() f(a) a es la pendiente de la recta secante a la función

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles