P(A) > 0. Para cualquier otro suceso B (B A A ), se dfi define la probabilidad condicionada de B dado A o probabilidad de B condicionada a A como

Tamaño: px
Comenzar la demostración a partir de la página:

Download "P(A) > 0. Para cualquier otro suceso B (B A A ), se dfi define la probabilidad condicionada de B dado A o probabilidad de B condicionada a A como"

Transcripción

1 Tema 4. Probabilidad Codicioada: Teoremas básicos. Idepedecia de Sucesos 4.. Probabilidad Codicioada. Defiició El objetivo de este tema es aalizar cómo afecta el coocimieto de la realizació de u determiado suceso a la probabilidad de que ocurra cualquier otro. Ejemplo. Supogamos que u cajó hay 0 bolas blacas y 8 bolas rojas umeradas dl del al 0 y dl del al 8 respectivamete. t E ttl8 total bl bolas. Claramete si se saca ua bola al azar del cajó se peude calcular la probabilidad de ser roja y la probabilidad de ser blaca: 0 8 PB ; PR 8 8 hora, supogamos que ua vez realizado el experimeto, se cooce el color de la bola y pretedemos calcular la probabilidad de que se haya sacado u úmero determiado, por ejemplo el 7. Esta probabilidad viee dada por S "sacar u 7" /8 PSB /8 PSR P S / B = = ; P S / R = = 0 0 /8 P B 8 8 /8 P R Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro Defiició. Probabilidad Codicioada Sea (,, P) u espacio probabilístico arbitrario y u suceso ( ) tal que P() > 0. Para cualquier otro suceso B (B ), se dfi defie la probabilidad bilid d codicioada de B dado o probabilidad de B codicioada a como P B/ P B P Nota. Desde la defiició se tiee que P B PB/ P Teorema. Sea (,, P) u espacio probabilístico bilí i arbitrario i y u suceso ( ) tal que P() > 0. Etoces (,, P( )), dode P( ) es la defiida ateriormete es u espacio probabilístico. Dem. Debemos probar que P( ) es ua probabilidad (axiomas de Kolmogorov). P B. P B / 0, B P 2. P P P P / P = = Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 2

2 3. Si B, B 2,, es ua sucesió (colecció umerable o fiita) de sucesos icompatibles de, P B P B PB P B P B / = P P P P P B Dado que P( ) es ua probabilidad, verifica todas las propiedades de ua probabilidad. sí por ejemplo: / / P B/ P B/, B P BC/ P B/ P C/ P BC/, B, C E realidad, se está realizado ua trasformació del espacio muestral ya que si ha ocurrido el suceso sobre el que codicioo, o puede haber ocurrido igú resultado elemetal de, todos deberá estar e. Esto lleva a la siguiete defiició. Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 3 Defiició. Espacio de Probabilidad Codicioado Sea (,, P) u espacio probabilístico arbitrario y u suceso ( ) tal que P() > 0. Cosideremos la clase de cojutos y la fució dada por P C Etoces PC P. es ua -álgebra coteida e B B P : P 2. es ua medida de probabilidad sobre l espacio de probabilidad (,, P )sededeomiaespacio de probabilidad codicioado Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 4

3 Demostració. coteida e imediato desde defiició i ) imediato ii C C * ) (complemetario e ) * C C C C siedo el complemetario de e Como C por ser ua -álgebra etoces C iii) Sea C, B C B * C B B B dado que 2. Veamos que P es ua medida de probabilidad ) PC i P 0, C C P Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 5 P ii ) P P iii ) Dados C icompatibles P C P C PC P C P C P P P Nota. Las medidas de probabilidad defiidas está relacioadas como sigue, / P B P B P B P B PC PB C, C B co B, P C PB/ P P Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 6

4 Ejemplo. Se laza dos dados y se observa que la suma de los dos úmeros es impar. Cuáto vale etoces la probabilidad de ser mayor que 8? Solució. El espacio muestral viee dado por : la suma es impar B: suma mayor que 8 ={(,), (,2),, (,6), (2,),, (2,6),, (6,),,, (6,6)} Cálculo mediate el espacio probabilístico:(,, P) P B / P P P (,2),(,4),(,6),...,(6,),(6,3),(6,5) P B (3,6),(6,3),(4,5),(5,4),(5,6),(6,5) 6/36 8 / 36 3 Cálculo mediate el espacio probabilístico codicioado:(,, P ) 6 P B 8 3 Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro Teoremas Básicos de Probabilidad Codicioada Desde la defiició de probabilidad codicioada se tiee que P B P B/ P si P 0 P B P / B P B si P B 0 Teorema de la probabilidad compuesta o regla de multiplicació Sea (,, P) u espacio probabilístico y, 2,,, tal que etoces se tiee que P i i 0, i i i i P P P P P P Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 8

5 Demostració. Claramete se tiee que Iducció : P P P desde defiició de probabilidad codicioada 2 2 Supoemos cierto para - 2 i i i i P P P P P P Demostramos el caso Pi Pi i i i i i i P P 2 i i i i P P P P P P Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 9 Ejemplo. 40 jugadores e fila va extrayedo cada uo, si devolució, ua carta de ua baraja española. Gaa aquel jugador que saque el as de espadas. Calculamos a cotiuació la probabilidad de gaar que tiee cada jugador. Solució. Llamamos i : gaar el jugador i P P P P i i i2 i i P P P P P P i i i Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 0

6 Teorema de la probabilidad total Sea (,, P) u espacio de probabilidad y sea ua partició de co P(( )>0, para cualquier atural.seabu suceso cualquiera de. Etoces Demostració. P B P B P B B B B icompatibles prob. cod. PB P P B P B P B Ejemplo. Se tiee dos uras, la primera co 0 bolas blacas y 5 egras y la seguda co 5 blacas y 0 egras. Si se saca ua bola al azar e algua de las dos uras elegidas equiprobablemete, cuál es la probabilidad de ser blaca? Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro Ejemplo. Se tiee dos uras, la primera co 0 bolas blacas y 5egras y la seguda co 5 blacas y 0 egras. Si se saca ua bola al azar e algua de las dos uras elegidas equiprobablemete, cuál es la probabilidad de ser blaca? Solució. Llamamos : elegir ura, B : sacar bola blaca =,2 (es ua partició del espacio muestral) P B P B P P B P Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 2

7 Teorema de Bayes (763) Sea (,, P) u espacio de probabilidad y sea ua partició de co P( ) > 0, para cualquier atural. Sea B u suceso cualquiera de. etoces Demostració. P B P P B P P B P B prob. cod. P P B B teor. prob. comp. P PB P B teor. prob. total. P P B P B P Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 3 Ejemplo. Se tiee dos uras, la primera co 0 bolas blacas y 5egras y la seguda co 5 blacas y 0 egras. Si se saca ua bola al azar y resulta ser blaca, cuál es la probabilidad de que se haya sacado de la ura? Solució. Llamamos : elegir ura, B : sacar bola blaca =,2 (es ua partició del espacio muestral) P B P B P PB PB P PB P P B P Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 4

8 4.3. Idepedecia de Sucesos Sea (,, P) u espacio de probabilidad y sea co P() > 0. La ocurrecia de puede alterar la probabilidad de ocurrecia de cualquier otro suceso B. Puede ocurrir los siguietes casos.. Si P (B )) P (B) El suceso B depede del suceso i. Si P (B )> P (B) El suceso favorece al suceso B ii. Si P (B )< P (B) El suceso desfavorece al suceso B 2. Si P (B )= P (B) El suceso B es idepediete del suceso Teorema de Caracterizació de Idepedecia Sea co P() > 0. U suceso B es idepediete de siipb P PB Bid P B ] PB PB PB PB P P hip. ] P B P P B P B P P B P B Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 5 Corolario. Si dos sucesos y B tiee probabilidades de ocurrecia distitas de cero, etoces, es idepediete de B sii B es idepediete de La relació de idepedecia es simétrica Proposició. Si y B so idepedietes, etoces. y B so idepedietes 2. y B so idepedietes 3. y B so idepedietes Demostració. Bid. P B P P B P P B P P B P P B Bid 2. P B P B P B P B P B P B P P B P Bid 3. P B P P B P P B P P B P P B Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 6

9 Defiició. Idepedecia dos a dos Dado u espacio probabilístico (,, P) y ua clase de sucesos U o vacía, diremos que sus sucesos so idepedietes di dos a dos si, BU, B, y B so idepedietes Defiició. Idepedecia mutua Dado u espacio probabilístico (,, P) y ua clase de sucesos U o vacía, diremos que sus sucesos so mutuamete (completamete o totalmete) idepedietes o simplemete idepedietes si para toda subcolecció fiita de sucesos distitos de U se verifica i i i 2 k k i i 2 ik ij P P Nota. Idepedecia mutua implica dos a dos pero o el recíproco j Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 7 Ejemplo. Se laza dos dados y se cosidera los sucesos: : salir impar el primero B: salir impar el segudo C: la suma de los resultados es impar Probar qelos que scesosso sucesos so dos a dos idepedietes pero o so mtamete mutuamete idepedietes. Solució. P PB PC 2 P B P(,),(,3),(,5),(3,),(3,3),(3,5),(5,),(5,3),(5,5) P PB 4 P C P (,2),(,4),(,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6) (3 (3 (3 (5 (54)(56) P P B 4 P B C P C B P B P P B Idepedietes dos a dos 22 PBC0 PPBPC No so mutuamete idepedietes 8 Dpto. Estadística e I.O. Prof. Jua Eloy Ruiz Castro 8

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1 Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas.

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas. Más sobre límites de sucesioes Sucesioes parciales. Sucesioes moótoas. E u artículo aterior habíamos hablado de las sucesioes de úmeros reales y del cocepto de límite de ua sucesió. Tambié, e otro artículo,

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

CÁLCULO DE PROBABILIDADES :

CÁLCULO DE PROBABILIDADES : CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

PROBABILIDAD. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles que pueden producirse.

PROBABILIDAD. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles que pueden producirse. PROAILIDAD 1.- EXPERIMENTOS ALEATORIOS De forma geeral podemos distiguir etre experimetos determiistas y experimetos aleatorios. Las leyes de la física, de la química y de otras ciecias os provee de ecuacioes

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Resolución N 2. Axiomas de Probabilidades. Ejercicios Resueltos. Profesor: Iván Rapaport Z. Auxiliar: Abelino Jiménez G.

Resolución N 2. Axiomas de Probabilidades. Ejercicios Resueltos. Profesor: Iván Rapaport Z. Auxiliar: Abelino Jiménez G. Resolució N 2 Axiomas de Probabilidades Profesor: Ivá Rapaport Z Auxiliar: Abelio Jiméez G Ejercicios Resueltos 1 Cierta efermedad se trasmite e forma geética de los padres a los hijos, del siguiete modo:

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

CAPITULO 1. Teorema del Binomio

CAPITULO 1. Teorema del Binomio CAPITULO 1 Teorema del Biomio Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes que ivolucre u úmero fiito

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios.

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios. Scietia et Techica Año IV, No 39, Septiembre de 2008 Uiversidad Tecológica de Pereira ISSN 0122-1701 459 PROPIEDADES DE LA MATRIZ Properties of the matrix EN UNA CADENA DE MARKOV i a Markov chai RESUMEN

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N. Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006 Ma34a Prob. y Proc. Estocásticos 29 de Juio, 2006 Resume No. 3 Prof. Cátedra: M. Kiwi Prof. Auxiliares: A. Cotreras, R. Cortez 1. Distribució Cojuta de Variables Aleatorias (coti. Defiició 1 [Variables

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

Tema 12: IDEA DE PROBABILIDAD

Tema 12: IDEA DE PROBABILIDAD Tema 12: IDEA DE PROBABILIDAD 1.- Experimetos aleatorios U experimeto se llama aleatorio cuado se cooce todos los posibles resultados del mismo, pero o puede predecirse cuál de ellos se producirá e ua

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Juegos Matemáticos Una Sucesión Matemática Curiosa A Curious Mathematical Sequence

Juegos Matemáticos Una Sucesión Matemática Curiosa A Curious Mathematical Sequence Juegos Matemáticos Ua Sucesió Matemática Curiosa A Curious Mathematical Sequece Marco Viicio Vásquez Beral Revista de Ivestigació Volume IV, Número 1, pp. 141 148, ISSN 174-0410 Recepció: 9 Abr 13; Aceptació:

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 6)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 6) IES Fco Ayala de Graada Sobrates de 01 (Modelo 6 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 01 (MODELO 6) OPCIÓN A EJERCICIO 1_A Ua empresa vede tres artículos diferetes

Más detalles

Notas de Combinatoria Daniel Penazzi

Notas de Combinatoria Daniel Penazzi Notas de Combiatoria Daiel Peazzi El Pricipio de Adició: Si se puede realizar ua acció A de formas distitas, y se puede realizar ua acció B de m formas distitas, y A y B so excluyetes, etoces el úmero

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

PROBABILIDAD Y ESTADÍSTICA MAT-041 GUIA Nº2 PROBABILIDADES

PROBABILIDAD Y ESTADÍSTICA MAT-041 GUIA Nº2 PROBABILIDADES UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA MAT-041 GUIA Nº2 PROBABILIDADES Profesor: Sr. Patricio Videla Jiméez. 1. Ua empresa fabricate de televisores

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 4 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 4 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 006 (Modelo 4 ) Solució Germá-Jesús Rubio Lua EJERCICIO _A OPCIÓN A - ( putos) Sea las matrices A=, B=. Calcule A - (B A t ). - 0 4 3 0 x ( putos) Resuelva y clasifique

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 3 1. a) Mostrar que los siguietes cojutos

Más detalles

1. SUCESIONES Y SERIES

1. SUCESIONES Y SERIES 1. SUCESIONES Y SERIES Objetivo: El alumo aalizará sucesioes y las series para represetar fucioes por medio de series de potecias 1.1 Defiició se sucesió. Límite y covergecia de ua sucesió qué es ua sucesió?

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

Matemáticas 1º Bachillerato CCNN. Tema 8:Probabilidad

Matemáticas 1º Bachillerato CCNN. Tema 8:Probabilidad Tema 8:Probabilidad 0.- Itroducció 1.- Experimetos Aleatorios 2.- Espacio Muestral 3.- Sucesos 4.- Frecuecias 5.- Probabilidad 6.- Regla de Laplace 7.- Probabilidad Codicioada 8.- Sucesos Idepedietes 9.-

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 0/0/0 Tema : Series Criterios de Covergecia La preguta que os plateamos es la siguite: Si hacemos que N etoces la suma N k= a k, tiee u límite? Existe alguas formas de averiguarlo, a pesar

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Raices de Polinomios. Jorge Eduardo Ortiz Triviño

Raices de Polinomios. Jorge Eduardo Ortiz Triviño Raices de Poliomios Jorge Eduardo Ortiz Triviño jeortizt@ual.edu.co http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles