PROBLEMAS DE OPOSICIONES MADRID (25/06/2010)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE OPOSICIONES MADRID (25/06/2010)"

Transcripción

1 DEIMOS OPOSICIONES A PROFESORES DE SECUNDARIA Y DIPLOMADOS EN ESTADÍSTICA DEL ESTADO C.I.F. B C/ Guzmá el Bueo, 5, º Izda. (Metro : Islas Filipias y Mocloa) MADRID editorial@deimos-es.com PROBLEMAS DE OPOSICIONES MADRID (5/06/00) PROBLEMA. a) Dado u triágulo ABC de águlos agudos, hállese u puto P tal que la suma de sus distacias a los vértices A, B y C sea la meor posible. b) Sobre los lados del triágulo ABC se forma triágulos equiláteros BCA, CAB y ABC costruidos hacia fuera del mismo. Demuestre que los segmetos rectilíeos AA, BB y CC so iguales, que cocurre e u mismo puto y que forma etre sí águlos de 60º. Este problema figura resuelto e la págia 6 del [Vol. ] de Problemas de Oposicioes de Editorial Deimos. Puede cosultarse tambié las págias 6 y 6 del mismo volume. Solució: a) Deotemos por g el giro de cetro B y águlo 60º, y sea D ga, como se idica e la figura. Obsérvese que el triágulo ABD es equilátero, pues BA BD y el águlo e el vértice B mide 60º. Ahora, para cualquier puto P deotamos Q gp, co lo que tambié el triágulo PBQ es equilátero, pues BP BQ y el águlo e el vértice B mide 60º. Como los giros preserva la distacia, PA QD, lo que juto co lo aterior os D Q A dice que la suma de distacias de P a los vértices A, B y C vale = 60º P d P PA PB PC DQ QP PC B C que es la logitud de líea quebrada de la figura. E cosecuecia, el puto P para el que esta catidad es míima es aquél para el que esta líea quebrada es ua recta. Por tato, habrá que tomar P sobre la recta r C que ue C y D.

2 Veamos qué más codicioes ha de cumplir el puto P, para lo que aalizamos la siguiete figura, e la que P ya está situado sobre la recta r C. La clave radica e observar que puesto que los giros preserva águlos y el D Q = 60º A P triágulo PBQ es equilátero, se tiee APB DQB 80º PQB 0º B C Como ADB 60º, por ser el triágulo ABD equilátero, resulta que APB ADB 0º 60º 80º luego los águlos co los que se ve el segmeto AB desde D y P so suplemetarios. Esto supoe que P perteece a la circuferecia que pasa por A, B y D. Esta circuferecia corta a la recta r C que ue C co D e los putos D y P, luego P rc D es el puto buscado. b) E la costrucció aterior, deotamos D C. Hemos probado que el puto P que miimiza la suma de distacias a los vértices A, B y C perteece a la recta r C que ue C co C. Más aú, se ha demostrado que dicha suma de distacias vale d P CC. Como los roles de los vértices del triágulo de partida so itercambiables deducimos que, co las otacioes de este apartado, el puto P tambié perteece a las rectas r A y r B que ue A co A y B co B. Esto proporcioa ua costrucció alterativa del puto P, pues P ra rc, y e particular prueba que los segmetos AA, BB y CC so cocurretes. Además demuestra ua de las igualdades pedidas e este apartado ya que, por simetría, A AA BB CC d P. Por último, recordemos que e a) se probó que APB 0º, luego ra, rb BPA 60º. Por la misma razó, r, r r, r 60º, como queríamos probar. A C B C C B A P C B OBSERVACIÓN Si se llama f a la fució que asiga a cada puto del plao e el que se sitúa el triágulo ABC la suma de sus distacias a los vértices A, B y C, la costrucció precedete muestra que si todos los águlos del triágulo ABC so meores que 0º, eiste u puto P e el iterior del triágulo

3 que miimiza la restricció de f al iterior del triágulo. Resulta, además, que e este puto se alcaza el míimo de f e todo el plao. Este puto recibe el ombre de puto de Fermat. Si embargo, cabría pregutarse qué sucedería si alguo de los águlos, digamos el águlo e A, es mayor o igual que 0º. Si se repite e este caso la costrucció aterior se obtiee como solució, bie u puto Q eterior a la regió ecerrada por el triágulo, bie el propio A. E cualquiera de ambos casos, se comprueba que la fució f es míima e A, por lo que A es el puto solució del problema. PROBLEMA. Se cosidera la ecuació a) Calcule sus raíces., dode es u úmero etero positivo. 0 b) Demuestre que, para y, se cumple la igualdad: cos cos cos c) Aplicació: Halle el valor del producto se se se Este problema, e esecia, ha sido propuesto e varias covocatorias ateriores. Puede cosultarse las págias 99 y 00 del [Vol. ] y 45, 45, 454, 554 y 555 del [Vol. ] de Problemas de Oposicioes de Editorial Deimos. Solució: a) Las solucioes e el campo complejo de la ecuació so las raíces -ésimas de la ki/ ki/ uidad, a saber, los úmeros complejos e e, para k 0,,,,. Obsérvese que para k 0 y k, se obtiee las raíces reales y, y que las raíces complejas restates puede agruparse e parejas de raíces cojugadas etre sí, por ser, para cada k,, : e e e e e k i/ i k i/ k i/ k i/ b) Segú lo obteido e el apartado a), el poliomio se descompoe e mediate: k i/ k i/ k i/ e e e k0 k k k k Agrupado ahora segú las parejas de raíces cojugadas como se idicó e a), podemos escribir:

4 k i/ k i/ k i/ ki/ e e e e k k Como es aterior queda: e e e e cos, el producto ki/ ki/ ki/ ki/ k y de aquí se cocluye que, si : k cos k k cos k c) Tomado ahora límites cuado e ambos miembros de la igualdad se obtiee: Para el primer miembro, co la ayuda de la Regla de L Hôpital: lim lim Para el segudo, como es cos cos se se, resulta: k k k k k k k k lim cos cos cos se k k k k k se k Si ahora igualamos el valor de ambos límites, se obtiee: k se, es decir, k k k se k y como es se 0 para cada k,,,, resulta que: k k se 4

5 PROBLEMA. Se tiee tres bolsas coteiedo bolas umeradas,,,,. Se etrae al azar ua bola de cada bolsa y sea, y, z los úmeros de las bolas etraídas. Halle la probabilidad de que y z. Este problema figura resuelto e la págia 7 del [Vol. ] y e la 85 del [Vol. ] de Problemas de Oposicioes de Editorial Deimos. Tambié ha sido propuesto e Murcia 006. ª solució El espacio muestral asociado a este eperimeto es el cojuto de teras ordeadas yz,, tales que yz,,,,,, de modo que el úmero de casos posibles del eperimeto es card. Para determiar el úmero de casos favorables a que sea y z, cosidérese que, por lo proto, debe ser z,,, y que, para cada uo de estos valores z, el par y, sólo puede ser alguo de los z pares, z,, z,, z,. Siedo así, el úmero total de casos favorables es: z z La probabilidad que se pide es etoces: p y z ª solució Segú el teorema de la probabilidad total, la probabilidad de que sea y z puede obteerse como la suma: p y z pz kp y z/ zk pz kp yk k k () Para k es evidete que p y 0, mietras que si k,,, teiedo e cueta la idepedecia de las variables aleatorias e y, es: k k p yk p j, ykj p jpy k j j j Como las variables, y, z so uiformes, p j py kj pz k, así es que: k k k p yk j j 5

6 Sustituyedo e () se obtiee la probabilidad pedida, que es: k p y z pz kp yk k k k k OBSERVACIÓN Bajo otra iterpretació, puede pesarse que la probabilidad pedida es la de que el úmero que figura e ua cualquiera de las bolas etraídas sea la suma de los úmeros que figura e las otras dos bolas. Co esta suposició, el suceso cuya probabilidad se pide es el cojuto: A,, :, dode ijk,,,, co ij k. i j k Como ya se ha dicho ateriormete, el úmero de casos favorables al suceso es ; que será el mismo úmero de casos favorables a los sucesos y, y por lo tato: pa. PROBLEMA 4. Sea f ua fució real de variable real, f,tal que f lim e 0 Calcule razoadamete f 0, f 0 y f 0. Este problema figura resuelto e la págias 44, 44 y 44 del [Vol. 4] de Problemas de Oposicioes de Editorial Deimos. Solució: Para que el límite del euciado tega setido debe ser, e u etoro reducido del orige, b bla. Así, si se tiee e cueta que, para cada a 0, es a e, podemos f 0 escribir dicho límite como: f L f lim L 0 e lim lime e 0 0 f de dode se deduce: 6

7 y de aquí es imediato que f L lim L lim 0 0 f f L lim L lim f o lo que es equivalete, f lim 0, lo que a su vez supoe que f lim 0 0 E cosecuecia, por la cotiuidad de f, se tiee y, segú esto, f f 0 lim f lim f f 0 f f 0 lim lim Para el cálculo de f 0, recurrimos a la fórmula de Mac-Lauri. Por ser f, para cada eiste c compredido etre 0 y tal que: f 0 f 0 f c 0!!! f f Como es f 0 f0 0, resulta, para cada 0 : y etoces f f 0 f c!! f f 0 f c lim L lim L 0 0!! Si reparamos ahora e que los ifiitésimos L z y z so equivaletes cuado z 0 y e que lim 0 f c f 0 por ser c y f, el límite aterior puede escribirse como: f 0 f c f 0 f c lim L lim 0!! 0!! 7

8 f 0 f c f 0 f 0 f 0 lim 0 0!!!! y de aquí que f

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010)

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010) Academia DEIMOS OPOSIIONES A PROFESORES DE SEUNDARIA Y DIPLOMADOS EN ESTADÍSTIA DEL ESTADO.I.F. B409770 / Ferádez de los Ríos 75, º Izda. (Metro : Mocloa) 669 64 06 805 MADRID www.academiadeimos.es academia@academiadeimos.es

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

X Olimpiada Matemática Valencia 1999

X Olimpiada Matemática Valencia 1999 X Olimpiada Matemática Valecia 999 Fase Autoómica Valecia año 999. CATEGORÍA 4-6 AÑOS PROBLEMA. Números. Halla u úmero de cuatro cifras que cumpla las siguietes codicioes: La suma de los cuadrados de las

Más detalles

Examen Madrid 23 de Junio de 2018

Examen Madrid 23 de Junio de 2018 Exame Madrid de Juio de 08 Academia DEIMOS Oposicioes: a) Matemáticas Secudaria. b) Diplomados e Estadística del Estado. 669 64 06 MADRID www.academiadeimos.es http://academiadeimos.blogspot.com.es academia@academiadeimos.es

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Seminario de problemas Curso Hoja 12

Seminario de problemas Curso Hoja 12 Semiario de problemas Curso 014-15 Hoja 1 78. Resolver el siguiete sistema de ecuacioes dode x, y, z so reales positivos: x y z 8 x 1 y 4 z 9 10 Solució: E la figura CDE, EFG, GHA y ABC so triágulos rectágulos

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones LIII Olimpiada matemática Española (Cocurso Fial) Euciados y Solucioes. Determia el úmero de valores distitos de la expresió dode {,,..., 00}. +, Solució. Sumado y restado al umerador se obtiee a + + +

Más detalles

TALLER DE TALENTO MATEMÁTICO 23 de octubre de 2015

TALLER DE TALENTO MATEMÁTICO 23 de octubre de 2015 TALLER DE TALENTO MATEMÁTICO 23 de octubre de 2015 ESTHER GARCÍA (IES RÍO GÁLLEGO) ROLEMAS DE OOSICIÓN DEL CUERO DE ROFESORES DE ENSEÑANZA SECUNDARIA ROUESTOS EN TRIUNALES DE MADRID EN 2002, 2008 y 2010

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

DESIGUALDADES. 1. Desigualdad de Cauchy-Schwarz. Para todo a 1,a 2,...,a n,b 1,b 2,...,b n números reales se cumple que:

DESIGUALDADES. 1. Desigualdad de Cauchy-Schwarz. Para todo a 1,a 2,...,a n,b 1,b 2,...,b n números reales se cumple que: DESIGUALDADES E las olimpiadas de matemáticas es frecuete la aparició de problemas cosistetes e la demostració de determiadas desigualdades. Auque o existe ua estrategia geeral para resolver los problemas

Más detalles

d) 2:00 p.m. y 10º C e) 2:00 a.m. y 30º C

d) 2:00 p.m. y 10º C e) 2:00 a.m. y 30º C Prueba Aptitud Académica. Modelo 4. CNU Veezuela 006. Trascrita y resuelta Tels: 046-59965, 044-64, 04-090 Caracas, Veezuela.. Para dos úmeros reales x, y o ambos ulos, se defie la operació @ etre ellos

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) Portal Fueterrebollo Cocurso Primavera Matemáticas: NIVEL IV (BACHILLERATO). CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Co las letras de la palabra NADIE podemos formar 10 palabras

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

Ejercicio 44 Calcula el volumen limitado por la superficie z = 1+2x+3y y los cuatro lados verticales del rectángulo D = [1, 2] [0, 1]. (x + y)dxdy.

Ejercicio 44 Calcula el volumen limitado por la superficie z = 1+2x+3y y los cuatro lados verticales del rectángulo D = [1, 2] [0, 1]. (x + y)dxdy. BLOQUE II Itegració múltiple Ejercicio 44 Calcula el volume limitado por la superficie z = x3y y los cuatro lados verticales del rectágulo = [, ] [0, ]. Ejercicio 45 Sea = {(x, y) R : 0 x, x y x }. Calcular

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

Soluciones de los problemas de la HOJA 2B

Soluciones de los problemas de la HOJA 2B ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Igeiería Idustrial (GITI/GITI+ADE) Igeiería de Telecomuicació (GITT/GITT+ADE) CÁLCULO Curso 5-6 Solucioes de los

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

Reserva Primera de 2017 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

Reserva Primera de 2017 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Reserva Primera de 017 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A 17_mod3_EJERCICIO 1 (A) 4-3 0 Sea las matrices A = y B = 1-1 0 1. (1 puto) Calcule A + B 3. (1 5 putos)

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual Tema I : Fucioes reales de variable real. Límites y cotiuidad 1. La recta real : itervalos y etoros. 2. Fucioes reales de variable real. 3. Fucioes elemetales y sus gráficas. 4. Límites de fucioes reales

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS Clausura algebraica y úmeros complejos CLAUSURA ALGEBRAICA Y NÚEROS COPLEJOS. Itroducció Nos pregutamos Porqué o podemos resolver ciertas ecuacioes poliómicas e u determiado campo de úmeros?. Geeralmete,

Más detalles

Sesión de Preparación de Olimpiada Matemática.

Sesión de Preparación de Olimpiada Matemática. Sesió de Preparació de Olimpiada Matemática 6 de Diciembre de 06 Ferado Mayoral Desigualdades (y Poliomios y otras fucioes) (I) -Alguas desigualdades básicas ) x 0 para cualquier x R La igualdad sólo se

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II

CALCULO DIFERENCIAL E INTEGRAL II CALCULO DIFERENCIAL E INTEGRAL II TEMA 5 (Última modificació 8-7-015) TEOREMA DEL VALOR MEDIO TEOREMA DEL VALOR MEDIO O DE LAGRANGE O DE LOS INCREMENTOS FINITOS PARA FUNCIONES DE UNA VARIABLE INDEPENDIENTE.

Más detalles

Ejercicios Matemáticas I Pendientes 1 BCT

Ejercicios Matemáticas I Pendientes 1 BCT Ejercicios Matemáticas I Pedietes BCT ª Parte Uidad 7 Álgebra. Dado el poliomio P( ) = + k 5, calcula el valor de k para que el valor umérico del poliomio e = sea.. Halla u poliomio de tercer grado cuyo

Más detalles

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de junio de n n 2 + 2

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de junio de n n 2 + 2 Liceciatura e Matemáticas Solucioes del exame fial de de juio de Ejercicio. a) Calcular el ite de la sucesió b) Estudiar la covergecia de la serie Solució. a) Pogamos A + el ite de la sucesió A B + + +

Más detalles

QUÉ SON LOS POLÍGONOS? ELEMENTOS DE UN POLÍGONO

QUÉ SON LOS POLÍGONOS? ELEMENTOS DE UN POLÍGONO Las matemáticas so u juego: Figuras plaas: S. CEIP Mauel Siurot (La Palma del Cdo.) QUÉ SON LOS S? So figuras plaas formadas por ua líea poligoal cerrada y su iterior. Cualquier figura plaa que esté formada

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Unidad 4 Ecuaciones de segundo grado. 1 EJERCICIOS PARA ENTRENARSE

Unidad 4 Ecuaciones de segundo grado. 1 EJERCICIOS PARA ENTRENARSE Uidad Ecuacioes de segudo grado. Escribe co ua icógita los siguietes datos: EJERCICIOS PARA ENTRENARSE a U úmero su cuadrado. b U úmero su raíz cuadrada. c Los cuadrados de dos úmeros cosecutivos. d Los

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 200 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U establecimieto poe a la veta tres tipos de camisas A, B y C. Se sabe que la razó etre los

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4 E.T.S.I. Idustriales y Telecomuicació Curso 010-011 Tema : Fucioes reales de ua variable real Cálculo de derivadas Calcular la derivada primera de las siguietes fucioes: 1. y 5 1 6 6 y 5 ( ) (6 ) 5 5 5

Más detalles

Unidad 5 Figuras planas 1

Unidad 5 Figuras planas 1 Uidad 5 Figuras plaas 1 PÁGINA 89 ACTIVIDADES INICIALES 1 Qué etiedes par perímetro y área de ua figura plaa? Perímetro: La logitud de la líea que defie su cotoro que se calcula mediate suma de las logitudes

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Colisiones Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2014 (Colisiones Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

SOLUCIONES DICIEMBRE 2017

SOLUCIONES DICIEMBRE 2017 Págia 1 de 1 SOLUCIONES DICIEMBRE 017 AUTOR: Rafael Martíez Calafat. Profesor jubilado de Matemáticas Diciembre 1: De cuátas formas se puede obteer ua suma de 361 utilizado úmeros de uo o dos dígitos distitos

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

IES Fco Ayala de Granada Modelo 5 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 5 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 2015 OPCIÓN A SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 015 OPCIÓN A EJERCICIO 1 (A) Sea las matrices A = 1 0, B = 1 1 1 y C = 1 1 3 (1 5 putos) Resuelva la ecuació A X + B X = C. (1 5 putos) Calcule A 4

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas PROBLEMAS E MATEMÁTICAS Cálculo Primero de Ciecias Químicas FACULTA E CIENCIAS QUÍMICAS epartameto de Matemáticas Uiversidad de Castilla-La Macha Cálculo Sucesioes y series uméricas Sucesioes y series

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

UN SISTEMA DINAMICO DISCRETO

UN SISTEMA DINAMICO DISCRETO UN SISTEMA DINAMICO DISCRETO Luis Arturo Polaía Q. Uiversidad Surcolombiaa Neiva. lapola@usco.edu.co RESUMEN Iicialmete e este trabajo se obtiee ua sucesió de estimacioes del lado del decágoo regular iscrito

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS º BCT DPTO DE MATEMÁTICAS T4: NÚMEROS COMPLEJOS - LOS NÚMEROS COMPLEJOS.- INTRODUCCIÓN: LAS ECUACIONES DE º GRADO CON SOLUCIONES IMPOSIBLES Desde el siglo XVI al XVIII llamaro la ateció, por la forma de

Más detalles

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 207 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 2017

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 207 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 2017 EBAU Juio 07 Matemáticas aplicadas a las ciecias sociales e Murcia EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 07 OBSERVACIONES IMPORTANTES:

Más detalles

CAPÍTULO VII TEORÍA DE ECUACIONES

CAPÍTULO VII TEORÍA DE ECUACIONES TEORÍA DE ECUACIONES 99 CAPÍTULO VII TEORÍA DE ECUACIONES 7. INTRODUCCIÓN Sea la ecuació racioal etera de grado p p p... p Cuyos coeficietes se supodrá racioales. p Cualquier valor de que aula a f() se

Más detalles

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496.

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496. GRADO GESTIÓN AERONÁUTICA: EXAMEN ESTADÍSTICA TEÓRICA 9 de Eero de 015. E-7. Aula 104 1.- La fució de desidad de ua variable aleatoria es: a b 0 f() 0 e el resto sabiedo que 1 P 1 0,1666. Determiar a y

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m OBTENCIÓN DE FACTORES DE LA FORMA x m b), DE UN POLINOMIO DE GRADO m Ricardo Alberto Idárraga Idárraga Uiversidad de Caldas TEOREMA Método para hallar factores de la forma x m b), com N, m, yb C, de u

Más detalles

MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS

MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS Matematika spayol yelve emelt szit 06 ÉRETTSÉGI VIZSGA 006 május 9 MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA EXAMEN ESCRITO DE BACHILLERATO DE NIVEL SUPERIOR JAVÍTÁSI-ÉRTÉKELÉSI

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles