y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. = 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. = 0"

Transcripción

1 Formulrio EL-470 Señle y Sitem / EL-470 Modelo de Sitem Ecuel de Ingenierí Electrónic Intituto Tecnológico de Cot Ric Prof.: Dr. Pblo Alvrdo Moy M α n = αm+ α en(a ± B) = en(a) co(b) ± co(a) en(b) co (A) = ( + co(a)) en en(a) en(b) = (co(a B) co(a + B)) co(a) α n = α, α < co(a ± B) = co(a) co(b) en(a) en(b) (A) = ( co(a)) co(b) = (co(a B) + co(a + B)) en(a) co(b) = (en(a B) + en(a + B)) ( ) A en = ( co(a)) co e jω = co(ω) + j en(ω) co(ω) = ejω + e jω Decompoición en funcione imétric tn(a) = en(a)/ co(a) ( ) A = ( + co(a)) en(ω) = ejω e jω j f(t) = f e (t) + f o (t), f e (t) = f e ( t), f o (t) = f o ( t) f(t) + f( t) f(t) f( t) f e (t) = f o (t) = Mpeo Círculo centrdo en z 0 y rdio r: z z 0 = r Rect meditriz egmento entre y b: z = z b Mpeo linel: w = αz + β Mpeo de inverión: w = /z Mpeo bilinel: w = z + b cz + d = λ + µ αz + β, Derivción complej λ = /c, µ = bc d, α = c, β = cd Pr f(z = x + jy) = u(x, y) + jv(x, y). Ecucione de Cuchy Riemnn f (z) u x = v y, u y = v x Funcione conjugd u(x, y) y v(x, y) i cumplen Ec. Cuchy-Riemnn. Función rmónic: u(x, y) + u(x, y) = 0 x y Mpeo conforme: f (z), f (z) 0 c P. Alvrdo Uo excluivo ITCR Verión de junio de 08

2 Poicione del círculo unitrio z = Im{z} +j +j +j 5π 6 π 4 50 π 0 5 j π π 45 +j 0 π 4 +j π 6 +j π π Re{z} j 7π 6 j 5π 4 0 j π π j 5π 0 7π 4 j π 6 j j Integrle z n dz = xn+ n + ; n e z dz = ez en(z) dz = co(z) co(z) dz = en(z) in (z) dz = z 4 en(z) ln(z) dz = z(ln z) z z dz = ln z ze z dz = ez (z ) z en(z) dz = [en(z) z co(z)] z co(z) dz = [co(z) z en(z)] co (z) dz = z + 4 en(z) c P. Alvrdo Uo excluivo ITCR Verión de junio de 08

3 Serie Rdio de convergenci R y rzón de D Alembert pr (z z 0 ) n Serie de Tylor: f(z) = f (n) (z 0 ) n! Serie de Lurent: f(z) = c n (z z 0 ) n Reiduo: = n= (m )! lím z z 0 { } d m dz [(z z 0) m f(z)] m n z n : R = lím e z = + z! + z! +... zn n! +... ; z < en z = z z! + z5 5!... + ( )n z n+ (n + )! +... ; z < co z = z! + z4 zn... + ( )n 4! (n)! +... ( z 0 ) n pr z z (z z n= 0 ) n 0 > z 0 = z (z z 0 ) n pr z z ( z 0 ) n+ 0 < z 0 ; z < n Integrción complej Teorem de l integrl de Cuchy: f(z) dz = 0 i f (z) dentro y obre C. C f(z) Fórmul de l integrl de Cuchy: C (z z 0 ) dz = f (n) (z n+ 0 ) πj n! n Teorem del reiduo: f(z) dz = πj Serie de Fourier C b Producto interno u k (t), x(t) = u k (t)x(t) dt x(t) = c k u k (t) con {u k k Z} un be funcionl ortogonl, c k C. k= i= (i) Generlizd: c k = u k(t), x(t) u k (t) Fourier exponencil complej (pr funcione periódic de periodo ). Fourier coenoidl x(t) = x(t) = c 0 + k= c k e jω 0kt c k = t0 + e jω0kt x(t) dt c k co(ω 0 kt + θ k ) c k = c k, θ k = c k, k > 0 k= t 0 n n+ c P. Alvrdo Uo excluivo ITCR Verión de junio de 08

4 Fourier enoidl x(t) = 0 + k co ω 0 kt + b k en ω 0 kt k= k= k = t0 + x(t) co ω 0 kt dt = c k co(θ k ) b k = t 0 t0 + t 0 x(t) en ω 0 kt dt = c k en(θ k ) Propiedde de l Serie de Fourier (periodo, ω 0 = π/ ) Propiedd Señl en el tiempo Coeficiente x(t) x (t) x (t) c k c k c k Linelidd α x (t) + α x (t) α c k + α c k Simetrí pr x(t) = x( t) c k = Tp c k IR Simetrí impr x(t) = x( t) c k = j c k jir Función rel x(t) IR c k = c k Deplzmiento temporl x(t τ) e jω0kτ c k Conjugción x (t) c k Inverión en el tiempo x( t) c k Eclmiento en el tiempo x(αt), α > 0 c k Convolución periódic x (τ)x (t τ) dτ c k c k Multiplicción x (t)x (t) c l c k l Diferencición Integrción Relción de Prevl dx(t) dt t x(t) dt, c 0 = 0 t0 + l= jkω 0 c k c k jkω 0 t 0 x(t) dt = 0 Tp 0 x(t) co(ω 0 kt) dt k= x(t) en(ω 0 kt) dt c k 4 c P. Alvrdo Uo excluivo ITCR Verión de junio de 08

5 Trnformd de Fourier Trnformd direct: X(jω) = Trnformd inver: x(t) = π Algun Trnformd de Fourier x(t)e jωt dt X(jω)e jωt dω Nombre Señl en el tiempo Trnformd Trnformción x(t) = X(jω)e jωt dω X(jω) = x(t)e jωt dt π Impulo unitrio δ(t) Eclon unitrio u(t) jω + πδ(ω) Impulo rectngulr [u(t t τ 0) u(t t 0 τ)] e jω(t 0+ τ ) (ωτ/) Exponencil e t u(t), Re{} > 0 + jω Exponencil por rmp e t tu(t), Re{} > 0 ( + jω) Lplcin e t, Re{} > 0 + ω Exponencil complej e jω 0t πδ(ω ω 0 ) Contnte c πcδ(ω) Función periódic c k e jkω 0t πc k δ(ω kω 0 ) Función muetred k= k= x(kt )δ(t kt ) k= c k = X T T (jω 0 k); ω 0 = π T X(jω jkω 0 ); ω 0 = π T k= Impulo guino σ ( σ) t π e e (ωσ) π Seno en(ω 0 t) j [δ(ω ω 0) δ(ω + ω 0 )] Coeno co(ω 0 t) π [δ(ω ω 0 ) + δ(ω + ω 0 )] Pr l función periódic x(t) e ume que X T (jω) e l trnformd de Fourier de un único periodo de x(t). c P. Alvrdo Uo excluivo ITCR Verión de junio de 08 5

6 Propiedde de l Trnformd de Fourier Propiedd Señl en el tiempo Trnformd x(t) X(jω) x (t) X (jω) x (t) X (jω) Linelidd α x (t) + α x (t) α X (jω) + α X (jω) Simetrí pr x(t) = x( t) Simetrí impr x(t) = x( t) j 0 X(jω) IR x(t) co(ωt) dt 0 x(t) en(ωt) dt X(jω) jir Función rel x(t) IR X(jω) = X ( jω) Dulidd X(jt) πx( ω) Deplzmiento temporl x(t τ) e jωτ X(jω) Deplzmiento en frecuenci e jω0t x(t) X(jω jω 0 ) Modulción co(ω 0 t)x(t) 0) + X(jω + jω 0) Conjugción x (t) X ( jω) Inverión en el tiempo x( t) X( jω) ( ) jω Eclmiento en el tiempo x(t) X Convolución Multiplicción Diferencición Integrción Relción de Prevl x (τ)x (t τ) dτ x (t)x (t) dx(t) dt d n x(t) dt n tx(t) t x(t) dt X (jω)x (jω) π X (jω) X (jω) jωx(jω) (jω) n X(jω) j d dω X(jω) X(jω) + πx(0)δ(ω) jω x(t) dt = X(jω) dω π 6 c P. Alvrdo Uo excluivo ITCR Verión de junio de 08

7 Trnformd de Lplce Bilterl: X() = x(t)e t dt Inver: x(t) = πj Propiedde de l Trnformd Bilterl de Lplce σ+j σ j X()e t d Propiedd Señl en el tiempo Trnformd ROC x(t) X() R x (t) X () R x (t) X () R Linelidd α x (t) + α x (t) α X () + α X () R R Función rel x(t) IR X() = X ( ) R Deplzmiento temporl x(t τ) e τ X() R Deplzmiento en e 0t x(t) X( 0 ) R + 0 Conjugción x (t) X ( ) R Inverión en el tiempo x( t) X( ) R ( ) Eclmiento en el tiempo x(t) X R/ Convolución x (t) x (t) X ()X () R R Diferencición dx(t) dt X() R d n x(t) n X() R dt n d tx(t) d X() R t Integrción x(τ) dτ X() R {σ > 0} Trnformd Bilterle de Lplce de funcione elementle Señl Trnformd ROC Señl Trnformd ROC δ(t) todo u(t) u( t) tn (n )! u( t) e t u( t) tn (n )! et u( t) [co(ω 0 t)]u(t) [e t co(ω 0 t)]u(t) σ < 0 σ > 0 t n (n )! u(t) n σ > 0 σ < 0 e t u(t) n σ > t n σ < (n )! et u(t) ( ) n σ > σ < δ(t τ) e τ todo ( ) n ω 0 σ > 0 [en(ω + ω0 0 t)]u(t) σ > 0 + ω0 σ > [e t ω 0 en(ω ( ) + ω0 0 t)]u(t) σ > ( ) + ω0 d n dt n δ(t) n todo c P. Alvrdo Uo excluivo ITCR Verión de junio de 08 7

8 Trnformd Unilterl de Lplce: X() = x(t)e t dt 0 Propiedde de l Trnformd Unilterl de Lplce Propiedd Señl en el tiempo Trnformd ROC x(t) = x(t)u(t) X() R x (t) = x (t)u(t) X () R x (t) = x (t)u(t) X () R Linelidd α x (t) + α x (t) α X () + α X () R R Función rel x(t) IR X() = X ( ) R Deplzmiento temporl x(t τ), τ > 0 e τ X() R Deplzmiento en e 0t x(t) X( 0 ) R + 0 Conjugción x (t) X ( ) R ( ) Eclmiento en el tiempo x(t), > 0 X R/ Convolución x (t) x (t) X ()X () R R Diferencición dx(t) dt X() x(0 ) R d n Diferencición múltiple dt x(t) n n X() n n i x (i ) (0 ) d Diferencición en tx(t) d X() R t Integrción x(τ) dτ X() R {σ > 0} 0 Teorem de vlor inicil x(0 + ) lím X() Teorem de vlor finl lím x(t) lím X() t 0 Trnformd Unilterle de Lplce de funcione elementle Señl Trnformd ROC Señl Trnformd ROC δ(t) todo t n (n )! t n (n )! et co(ω 0 t) e t co(ω 0 t) i= σ > 0 e t n σ > 0 σ > σ > δ(t τ), τ > 0 e τ todo ( ) n ω 0 σ > 0 en(ω + ω0 0 t) σ > 0 + ω0 σ > e t ω 0 en(ω ( ) + ω0 0 t) σ > ( ) + ω0 d n dt n δ(t) n todo 8 c P. Alvrdo Uo excluivo ITCR Verión de junio de 08

9 Trnformd z Propiedde de l trnformd z bilterl. Propiedd Dominio n Dominio z ROC Notción x[n] = X(z)z n X(z) = x[n]z n R = {z r < z < r} πj C n= x[n] X(z) R x[n] X(z) R Linelidd x[n] + x[n] X(z) + X(z) por lo meno R R Deplzmiento en n x[n k] z k X(z) R \{0} i k > 0 y R \{ } i k < 0 Ecldo en z α n x[n] X(α z) α r < z < α r Reflexión en n x[ n] X(z ) < z < r r Conjugción x [n] X (z ) R Prte rel Re{x[n]} (z )] Incluye R Prte imginri Im{x[n]} [X(z) + X [X(z) X (z )] Incluye R Derivción en z nx[n] z dx(z) dz r < z < r Convolución x[n] x[n] X(z)X(z) Por lo meno R R Teorem del vlor inicil Si x[n] e cul x[0] = lím z Propiedde de l trnformd z unilterl. Notción x[n] = X(z)z n X(z) = x[n]z n R = {z z > r} πj Retrdo temporl x[n k], k > 0 z k X(z) + Adelnto temporl x[n + k], k > 0 z k X(z) Teorem del vlor finl lím n C k n= k x[n] = lím z x[ n]z n k R \ {0} x[n]z k n R (z )X(z) c P. Alvrdo Uo excluivo ITCR Verión de junio de 08 9

10 Trnformd z bilterl de lgun funcione comune Señl x[n] Trnformd z, X(z) ROC δ[n] Plno z u[n] n u[n] n n u[n] ( n )u[ n ] n( n )u[ n ] co(ω 0 n)u[n] en(ω 0 n)u[n] n co(ω 0 n)u[n] n en(ω 0 n)u[n] z z > z z > z ( z ) z > z z < z ( z ) z < z co ω 0 z co ω 0 + z z > z en ω 0 z co ω 0 + z z > z co ω 0 z co ω 0 + z z > z en ω 0 z co ω 0 + z z > Trnformd z unilterl de lgun funcione comune Señl x[n] Trnformd z, X(z) ROC δ[n] Plno z z z > n z z > n n co(ω 0 n) en(ω 0 n) n co(ω 0 n) n en(ω 0 n) z ( z ) z > z co ω 0 z co ω 0 + z z > z en ω 0 z co ω 0 + z z > z co ω 0 z co ω 0 + z z > z en ω 0 z co ω 0 + z z > 0 c P. Alvrdo Uo excluivo ITCR Verión de junio de 08

λ = a/c, µ = bc ad, α = c 2, β = cd y, u y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. Función armónica: 2 u(x, y)

λ = a/c, µ = bc ad, α = c 2, β = cd y, u y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. Función armónica: 2 u(x, y) Formulario EL-470 Modelo de Sitema Ecuela de Ingeniería Electrónica Intituto Tecnológico de Cota Rica Prof.: Dr. Pablo Alvarado Moya M α n = αm+ α en(a ± B) = en(a) co(b) ± co(a) en(b) co (A) = ( + co(a))

Más detalles

Procesado con Sistemas Lineales Invariantes en el Tiempo

Procesado con Sistemas Lineales Invariantes en el Tiempo Procesado con Sistemas Lineales Invariantes en el Tiempo March 9, 2009 Sistemas Lineales Invariantes en el Tiempo (LTI). Caracterización de los sistemas LTI discretos Cualquier señal discreta x[n] puede

Más detalles

Formulario. sinc(x) = sin(πx) πx Relación entre senoidales y exponenciales complejas

Formulario. sinc(x) = sin(πx) πx Relación entre senoidales y exponenciales complejas 1 1.1. Repaso matemático Formulario z = x + jy = x 2 + y 2 e jθ = me jθ = m(cos(θ) + j sin(θ)); θ = arctan x y b a e f f = e f(b) e f(a) sinc(x) = sin(πx) πx N 1 n=0 α n = N α = 1 1 α N 1 α α 1 b a δ(x)f(x)dx

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero. IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-0 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 0 Examen Final Total de Puntos: 99 Puntos obtenidos:

Más detalles

Tema 9. Transformada de Fourier. Prof. William La Cruz Bastidas

Tema 9. Transformada de Fourier. Prof. William La Cruz Bastidas Tema 9. Transformada de Fourier Prof. William La Cruz Bastidas 28 de junio de 2002 Tema 9 Transformada de Fourier A continuación introduciremos el concepto de transformada de Fourier continua. De ahora

Más detalles

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo.

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. 2015-2016 Tema 3. Análisis de Fourier de tiempo continuo 2015-2016 1 / 32 Índice 1 de señales de tiempo continuo Ejemplos de transformadas

Más detalles

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero. IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 0 Examen Final Total de Puntos: 9 Puntos obtenidos:

Más detalles

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n (

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n ( La transformada Z Sistemas Lineales Tema 5. La Transformada Z Las señales exponenciales discretas de la forma z n con z = re jω son autosoluciones de los sistemas LTI. Para una entrada x[n] = z0 n la salida

Más detalles

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota:

IE TEC. Total de Puntos: 71 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Intituto Tecnológico de Cota Rica Ecuela de Ingeniería Electrónica EL-70 Modelo de Sitema Profeore: Dr. Pablo Alvarado Moya, Ing. Gabriela Ortiz León, M.Sc. I Semetre, 007 Examen de Suficiencia

Más detalles

Transformada Z. Diego Milone. Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL

Transformada Z. Diego Milone. Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL Transformada Z Diego Milone Muestreo y Procesamiento Digital Ingeniería Informática FICH-UNL 26 de abril de 2012 Organización de la clase Introducción Revisión: transformada de Laplace Motivación de la

Más detalles

Tema 4: Transformada de Fourier

Tema 4: Transformada de Fourier c Luis Vielva, Grupo de Tratamiento Avanzado de Señal. Dpt. Ingeniería de Comunicaciones. Universidad de Cantabria. Señales y sistemas. Tema 4: Transformada de Fourier. OpenCourseWare p. 1/65 Tema 4: Transformada

Más detalles

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.

No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero. IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 0 Examen Final Total de Puntos: 85 Puntos obtenidos:

Más detalles

Señales y sistemas, 2 o Curso (tiempo: 4h) Apellidos: Nombre: v(t) = sin(4πt). πt. f(t) = e t2 /(2σ 2),

Señales y sistemas, 2 o Curso (tiempo: 4h) Apellidos: Nombre: v(t) = sin(4πt). πt. f(t) = e t2 /(2σ 2), E.T.S.I.I. y de Telecomunicación, UC Ingeniería de Telecomunicación 13 de septiembre de 2004 Apellidos: Nombre: DNI: Firma: Señales y sistemas, 2 o Curso (tiempo: 4h) P1 P2 P3 P4 P5 T 1. Resuelve los siguientes

Más detalles

Formulario Procesamiento Digital de Señales

Formulario Procesamiento Digital de Señales Formulario Procesamiento Digital de Señales M n=0 n=0 α n = αm+ α ( α n =, a < ( α sen(a ± B = sen(a cos(b ± cos(a sen(b (3 cos(a ± B = cos(a cos(b sen(a sen(b (4 cos (A = ( + cos(a (5 sen (A = ( cos(a

Más detalles

TEMA2: Fundamentos de Señales y Sistemas

TEMA2: Fundamentos de Señales y Sistemas TEMA2: Fundamentos de Señales y Sistemas Contenidos del tema: Modelos de sistemas lineales en tiempo continuo: Dominio del tiempo Dominio de la frecuencia, polos y ceros. Representación de señales continuas:

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA ANALISIS DE SISTEMAS Y SEÑALES TAREA. TRANSFORMADAS LAPLACE, FOURIER, Z ALUMNOS: CRUZ NAVARRO JESUS ALBARRÁN DÍAZ KARLA GRUPO: 4 SEMESTRE:

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Tema 6: Transformadas de Laplace y z

Tema 6: Transformadas de Laplace y z c Luis Vielva, Grupo de Tratamiento Avanzado de Señal. Dpt. Ingeniería de Comunicaciones. Universidad de Cantabria. Señales y sistemas. Tema 6: Transformadas de Laplace y z. OpenCourseWare p. 1/121 Tema

Más detalles

Preguntas de 33 Problema 1 de 17 Problema 2 de 18 Problema 3 de 15 Problema 4 de 15

Preguntas de 33 Problema 1 de 17 Problema 2 de 18 Problema 3 de 15 Problema 4 de 15 IE TEC Carné: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-47 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 7 Examen Final Total de Puntos: 98 Puntos obtenidos:

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

Tema 3: Series de Fourier

Tema 3: Series de Fourier c Luis Vielva, Grupo de Tratamiento Avanzado de Señal. Dpt. Ingeniería de Comunicaciones. Universidad de Cantabria. Señales y sistemas. Tema 3: Series de Fourier. OpenCourseWare p. 1/49 Tema 3: Series

Más detalles

Funciones ortogonales y series de Fourier

Funciones ortogonales y series de Fourier TEMA 4 Funciones ortogonles y series de Fourier Ls series e integrles de Fourier constituyen un tem clásico del Análisis Mtemático. Desde su prición en el siglo XVIII en el estudio de ls vibrciones de

Más detalles

Análisis de Señales y Sistemas Lineales

Análisis de Señales y Sistemas Lineales Análisis de Señales y Sistemas Lineales Apuntes de clasetema IV Función de Transferencia Ing A Osman Universidad de Carabobo Facultad de Ingeniería Escuela de Telecomunicaciones Departamento de Señales

Más detalles

Muestreo de señales en tiempo continuo

Muestreo de señales en tiempo continuo Muestreo de señales en tiempo continuo Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 L trnformd de Lplce 6.4.3 Segund propiedd de trlción Et propiedd permitirá reolver ecucione diferencile donde prezcn funcione dicontinu. Pr entenderl e conveniente introducir un función con

Más detalles

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace SISTEMAS LINEALES Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace 2 de octubre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones

Más detalles

Tema 5. La Transformada Z. Indice:

Tema 5. La Transformada Z. Indice: Indice: La Transformada Z Convergencia de la Transformada Z Propiedades de La Transformada Z La Transformada Z inversa Método de la División Directa Método de Descomposición en Fracciones Parciales. Prof.

Más detalles

Sistemas Lineales. Examen de Junio SOluciones

Sistemas Lineales. Examen de Junio SOluciones . Considere la señal xt) sinπt) Sistemas Lineales Examen de Junio 22. SOluciones a) Obtenga su transformada de Fourier, X), y represéntela para 7π. b) Calcule la potencia y la energía de xt). c) Considere

Más detalles

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z Procesamiento Digital de Señales Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Definición

Más detalles

Señales y sistemas. Segundo curso de Ingeniería de Telecomunicación Universidad de Cantabria 4 de febrero de 2002

Señales y sistemas. Segundo curso de Ingeniería de Telecomunicación Universidad de Cantabria 4 de febrero de 2002 Señales y sistemas. Segundo curso de Ingeniería de Telecomunicación Universidad de Cantabria 4 de febrero de 2002 1. Suponga un sistema LTI cuya entrada x(t) y salida y(t) están relacionadas mediante la

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Tratamiento Digital de Señales TEMA 2 : DFT (I)

Tratamiento Digital de Señales TEMA 2 : DFT (I) Tratamiento Digital de Señales TEMA 2 : DFT (I) Universidade de Vigo ETSE Telecomunicación CONTENIDOS 1. Repaso de conceptos asociados con la TF 2. Formulación de la DFT 3. Propiedades de la DFT 4. Métodos

Más detalles

Señales y Sistemas de Tiempo Discreto

Señales y Sistemas de Tiempo Discreto Capítulo Señales y Sistemas de Tiempo Discreto Una señal es cualquier magnitud que sufre variaciones que contienen información de cualquier tipo, matemáticamente se representan por funciones de una o más

Más detalles

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n(

Si conocemos x(n) y obtenemos la salida del sistema podemos determinar la respuesta al impulso del sistema obteniendo en primer lugar H(z) con: = n( 58 Funciones de transferencia de sistemas LTI Como ya conocemos la salida de un sistema LTI en el tiempo (en reposo) para una secuencia de entrada x(n) se podía obtener como la convolución de esa secuencia

Más detalles

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-4701 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 006 Examen de Reposición Total de Puntos:

Más detalles

Transformada z. 5.1 Funciones en tiempo discreto

Transformada z. 5.1 Funciones en tiempo discreto Capítulo 5 Transformada z La transformada z es a los sistemas en tiempo discreto lo que la transformada de Laplace es a los sistemas en tiempo continuo. Ambas representan herramientas para el análisis

Más detalles

Apuntes Transformada de Laplace (MAT023)

Apuntes Transformada de Laplace (MAT023) Apunte Trnformd de Lplce (MAT3 Segundo emetre de Verónic Gruenberg Stern Vivin Arnd Núñez. Introducción L trnformd de Lplce e un ejemplo de un operdor. Ete oper obre un función, produciendo otr función.

Más detalles

INTEGRACIÓN DE FUNCIONES COMPLEJAS SOBRE CURVAS

INTEGRACIÓN DE FUNCIONES COMPLEJAS SOBRE CURVAS INTEGRCIÓN DE FUNCIONES COMPLEJS SOBRE CURVS. Curvs de clse C trozos en R n Recordemos que un curv prmetrizd de clse C en R n es un plicción : [, b] R n de clse C, donde, b R, < b, tl que (t) 0 pr todo

Más detalles

TEMA4: Implementación de Filtros Discretos

TEMA4: Implementación de Filtros Discretos TEMA4: Implementación de Filtros Discretos Contenidos del tema: El muestreo y sus consecuencias Relaciones entre señales y sus transformadas: Especificaciones de filtros continuos y discretos Aproximaciones

Más detalles

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca

Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Universidad Tecnológica Nacional Facultad Regional Bahía Blanca INTRODUCCION AL PROCESAMIENTO DIGITAL DE SEÑALES Cátedra: Técnicas Digitales III Profesor: Mag. Guillermo R. Friedrich Octubre 2002 Indice

Más detalles

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 005 Examen Final Total de Puntos: 80 Puntos

Más detalles

Transformada de Laplace

Transformada de Laplace Capítulo 4 Transformada de Laplace La Transformada de Laplace es la herramienta de preferencia en el análisis de sistemas lineales e invariantes en el tiempo. Se le atribuye a Pierre-Simon de Laplace (749

Más detalles

Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García

Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García TEOÍA DE CÁLCULO I Pr Grdos en Ingenierí Cpítulo 4: Integrción en un vrible Domingo Pestn Glván José Mnuel Rodríguez Grcí 1 TEMA 4. Integrción en un vrible 4.1 Cálculo de primitivs Preliminres - Geométricmente,

Más detalles

Álgebra Lineal Análisis vectorial Cálculo Ecuaciones diferenciales Matemáticas

Más detalles

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema ANÁLISIS DE SISTEAS LINEALES 1. odeldo de item SISTEA Reliz FUNCIÓN Poee ESTRUCTURA Preent COPORTAIENTO Figur 1.1: Definición de Sitem Sitem: Un item reliz un función, poee un etructur y preent un comportmiento.

Más detalles

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo.

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. 205-206 Tema 3. Análisis de Fourier de tiempo continuo 205-206 / 23 Índice Introducción 2 Respuesta de sistemas LTI a exponenciales

Más detalles

PRÁCTICA 9. TRANSFORMADA DE FOURIER

PRÁCTICA 9. TRANSFORMADA DE FOURIER PRÁCTICA 9. TRANSFORMADA DE FOURIER Ejercicio. Teorema de la integral de Fourier: sea f una función casi continua en todo intervalo finito del eje x tal que existe la f(x) dx ; sea f (x) la función definida

Más detalles

Tema 7: Procesos Estoca sticos

Tema 7: Procesos Estoca sticos Tema 7: Procesos Estoca sticos Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Definición 2 Caracterización Estadística 3 Estadísticos 4 Estacionariedad 5 Ergodicidad 6 Densidad Espectral de Potencia

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

Tema 1. Introducción a los conceptos básicos de señales y sistemas. Parte 1. Señales

Tema 1. Introducción a los conceptos básicos de señales y sistemas. Parte 1. Señales Tema. Introducción a los conceptos básicos de señales y sistemas. Parte. Señales Señales y Sistemas 05-06 Señales y Sistemas Tema. Parte. Señales 05-06 / 6 Índice Introducción Definiciones básicas Tipos

Más detalles

La Distribución Wigner

La Distribución Wigner Análisis Tiempo Frecuencia IIE 1 Facultad de Ingeniería Universidad de la República May 18, 217 IIE (Facultad de Ingeniería) Análisis Tiempo Frecuencia May 18, 217 1 / 21 Outline 1 La Distribución Wigner

Más detalles

Dominio de la frecuencia: Conceptos básicos

Dominio de la frecuencia: Conceptos básicos Dominio de la frecuencia: Conceptos básicos Lección 06.1 Dr. Pablo Alvarado Moya CE5201 Procesamiento y Análisis de Imágenes Digitales Área de Ingeniería en Computadores Tecnológico de Costa Rica I Semestre,

Más detalles

Tema III: Análisis de circuitos mediante la transformada de Fourier

Tema III: Análisis de circuitos mediante la transformada de Fourier Tema III: Análisis de circuitos mediante la transformada de Fourier Planteamiento del problema... 65 Determinación de los coeficientes de Fourier... 68 Procedimiento general... 68 Ejemplo... 69 Casos particulares...

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Series de Fourier. Dr. Ing. Leonardo Rey Vega. Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires.

Series de Fourier. Dr. Ing. Leonardo Rey Vega. Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires. Series de Fourier Dr. Ing. Leonardo Rey Vega Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires Agosto 2013 Señales y Sistemas (66.74 y 86.05) Series de Fourier 1/35

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

1. Muestreo de Sistemas Continuos. 1. Muestreo de Sistemas Continuos 1

1. Muestreo de Sistemas Continuos. 1. Muestreo de Sistemas Continuos 1 . Muestreo de Sistemas Continuos. Muestreo de Sistemas Continuos.. Secuencias 4.2. Sistema Discreto 5.3. Ecuaciones en Diferencias 6.4. Secuencia de Ponderación de un Sistema. 7.5. Estabilidad 9.6. Respuesta

Más detalles

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2)

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2) SISTEMAS LINEALES Tema 4. Análisis de Fourier para Señales y Sisemas de Tiempo Coninuo (Sesión ) 18 de noviembre de 010 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 4 Conenidos. Relación con la ransformada

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x. INTEGRALES IMPROPIAS Hst hor hemos estudido l integrl de Riemnn de un función f cotd y definid en un intervlo cerrdo y cotdo [, ], con., Ahor generlizmos este concepto.. Integrl de un función cotd, definid

Más detalles

Electromagnetismo I. +q" #2q" d" 2d"

Electromagnetismo I. +q #2q d 2d Electromgnetismo I Semestre: 215-2 Prof. Alejndro Reyes Corondo Ayud. Crlos Alberto Mciel Escudero Ayud. Christin Esprz López Solución l Tre 4 Solución por Christin Esprz López 1.- Problem: (2pts Clcul

Más detalles

Propiedades de la Transformada de Laplace

Propiedades de la Transformada de Laplace Propiedade de la Tranformada de Laplace W. Colmenare Univeridad Simón Bolívar, Departamento de Proceo y Sitema Reumen En eto apunte demotramo alguna de la propiedade de la tranformada de Laplace y hacemo

Más detalles

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática 6.003: Señales y sistemas Otoño 2003 Examen final Martes 16 de diciembre de 2003 Instrucciones: El examen consta

Más detalles

SEÑALES Y SISTEMAS Clase 13

SEÑALES Y SISTEMAS Clase 13 SEÑALES Y SISTEMAS Clase 13 Carlos H. Muravchik 19 de Abril de 2018 1 / 27 Habíamos visto: 1. Sistemas lineales con entradas aleatorias. 2. Introducción a la Transformada de Fourier Y se vienen: Repaso

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Análisis de Señles en Geofísic 6 Clse Fcultd de Ciencis Astronómics y Geofísics, Universidd Ncionl de L Plt, Argentin Trnsformd Integrl de Fourier Recordemos que un función f( t), definid en un dominio

Más detalles

Definición 7.1 (Serie de Fourier) Se llama serie de Fourier de una función f(x) en el intervalo [ π, π] a: (a n cos nx + b n sen nx) ( ) n=1

Definición 7.1 (Serie de Fourier) Se llama serie de Fourier de una función f(x) en el intervalo [ π, π] a: (a n cos nx + b n sen nx) ( ) n=1 Tem 7 Series de Fourier Nuestro principl objetivo es introducir ls series de Fourier. Ésts surgieron históricmente l resolver por el método de seprción de vribles un problem de contorno de ecuciones en

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) x D INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst

Más detalles

CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier

CAPITULO 9. TRANSFORMADA DE FOURIER Transformada de Fourier CAPITULO 9. TRANSORMADA DE OURIER 9.. Transformada de ourier Sea una función definida en un intervalo finito y desarrollable en serie de ourier, por tanto, la podemos representar como una superposición

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y fx) y el eje OX desde y f x f x un punto hst

Más detalles

La Integral Multiplicativa

La Integral Multiplicativa Universidd del Pís Vsco Mtemátic Aplicd y Estdístic L Integrl Multiplictiv Jun-Miguel Grci Extrcto: Se nliz l relción de l integrl multiplictiv de Volterr con l derivd logrítmic y los sistems diferenciles

Más detalles

Matemáticas Empresariales I. Extensiones de la Integral

Matemáticas Empresariales I. Extensiones de la Integral Mtemátics Empresriles I Lección 9 Extensiones de l Integrl Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 19 Integrles impropis - Definición Definición Integrl

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Métodos Matemáticos de la Física 2 Transformaciones Integrales

Métodos Matemáticos de la Física 2 Transformaciones Integrales Método Matemático de la Fíica 2 Tranformacione Integrale L. A. Núñez * Centro de Atrofíica Teórica, Departamento de Fíica, Facultad de Ciencia, Univeridad de Lo Ande, Mérida 5, Venezuela y Centro Nacional

Más detalles

Análisis Matemático para Estadística. Hoja 1

Análisis Matemático para Estadística. Hoja 1 Análisis Matemático para Estadística. Hoja Funciones de variable compleja. Teoremas básicos.. Describe el conjunto de puntos del plano complejo que cumplen la ecuación: (a) Im(z + 5i) = ; (b) Re(z + 3

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

PRÁCTICAS DE REGULACIÓN AUTOMÁTICA

PRÁCTICAS DE REGULACIÓN AUTOMÁTICA PRÁCTICAS DE REGULACIÓN AUTOMÁTICA RAMÓN PIEDRAFITA MORENO INGENIERÍA DE SISTEMAS Y AUTOMÁTICA EDITORIAL KRONOS Rmón Piedrfit Moreno ª Edición: Septiembre de 999 ISBN 84-8850-8-8 Depóito Legl Z-343-99

Más detalles

Series de funciones e integral de Lebesgue Curso 14/15 Grupo A

Series de funciones e integral de Lebesgue Curso 14/15 Grupo A Curso 14/15 Grupo A Frncisco José Freniche Ibáñez Modificdo el 16 de octubre de 2014 Primer prte 1. Sucesiones y series de funciones Se estudin propieddes de funciones f definids como límites o sums de

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

Teorema del punto fijo Rodrigo Vargas

Teorema del punto fijo Rodrigo Vargas Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

Examen de Admisión a la Maestría 1 de Julio de 2015

Examen de Admisión a la Maestría 1 de Julio de 2015 Exmen de Admisión l Mestrí 1 de Julio de 215 Nombre: Instrucciones: En cd rectivo seleccione l respuest correct encerrndo en un círculo l letr correspondiente. Puede hcer cálculos en ls hojs que se le

Más detalles

Clase 2. Herramientas de representación tiempo frecuencia IIE. May 2, 2017

Clase 2. Herramientas de representación tiempo frecuencia IIE. May 2, 2017 Clase 2 Herramientas de representación tiempo frecuencia IIE 1 Facultad de Ingeniería Universidad de la República May 2, 2017 IIE (Facultad de Ingeniería) Herramientas de representación tiempo frecuenciamay

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2

0 x+2y=1. x+(a+4)y+(a+1)z=0 -(a+2)y +(a 2 +3a+2)z=a+4. a+1 a 2 +3a ± ±2 JUNIO DE 8. PROBLEMA A. Estudi el siguiente sistem de ecuciones lineles dependiente del prámetro rel resuélvelo en los csos en que es comptible: x+ x+(+4)+(+)z (+) +( +3+)z+4 (3 PUNTOS) Aplicmos el método

Más detalles

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA

IX. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA DE LA FÍSICA Índice 1. Símolos del lenguje mtemático 2. Álger 3. Geometrí 4. Trigonometrí 5. Cálculo vectoril 6. Cálculo diferencil 2 1 Símolos del lenguje mtemático = es igul, equivle x 0 incremento de

Más detalles

Anexo 1.2 Modelación Matemática de

Anexo 1.2 Modelación Matemática de ELC-333 Teorí de Control Anexo. Modelción Mtemátic de Sitem Fíico Prof. Frncico M. Gonzlez-Longtt fglongtt@ieee.org http://www.gielec.org/fglongtt/teoricontroli.html TEORÍA DE COTROL Ejemplo de Modelción

Más detalles