Solución analítica de problemas de contorno. Ecuación de

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución analítica de problemas de contorno. Ecuación de"

Transcripción

1 Práctica 3 Soución anaítica de probemas de contorno. Ecuación de difusión En esta práctica estudiaremos agunos probemas asociados a a ecuación de difusión. En primer ugar resoveremos e probema genera de una varia finita con una fuente caorífica y condiciones de frontera variabes. En a segunda parte de a práctica estudiaremos as modificaciones a reaizar cuando as condiciones en a frontera dependen también de a derivada de a soución (frontera aisada o con intercambio de caor) Varia finita con fuentes de caor y condiciones de contorno no homogéneas La ecuación de caor para una varia finita con fuentes de caor y condiciones de contorno no homogéneas viene dada por t = 2 T a2 + Q(x, t), 2 <x<, t>, con as condiciones de contorno T (,t)=f 1 (t), T(, t) =f 2 (t), y a condición inicia T (x, ) = g(x). 33

2 Para resover este probema hemos visto que a soución T (x, t) se descompone en dos funciones T (x, t) =u(x, t)+t 3 (x, t) donde T 3 (x, t) =f 1 (t)+ x (f 2(t) f 1 (t)) y u(x, t) es soución de siguiente probema con distinta función fuente pero condiciones de frontera nuas u t = 2 u a2 + R(x, t), <x<, t>, 2 (R(x, t) =Q(x, t) 3 ) con as condiciones de contorno t u(,t)=, u(, t) =, y a condición inicia u(x, ) = g(x) T 3 (x, ). Para resover este segundo probema hemos visto que a soución u(x, t) se descompone en dos funciones u(x, t) =T 1 (x, t)+t 2 (x, t) donde T 1,T 2 tienen condiciones de frontera nuas. T 1 (x, t) es soución de a ecuación homogénea (sin fuentes) y condiciones iniciaes no nuas dadas por 1 t = 2 T 1 a2, 2 con as condiciones de contorno T 1 (,t)=, T 1 (, t) =, y a condición inicia T 1 (x, ) = u(x, ). De o estudiado en teoría, sabemos que ( nπx ) ( ( nπa ) ) 2 T 1 (x, t) = a n sen exp t e imponiendo a condición inicia obtenemos os coeficientes a n = 2 ( nπx ) u(x, ) sen dx., 34

3 T 2 (x, t) es soución de a ecuación no homogénea (con fuentes) y condiciones iniciaes nuas dada por 2 t = 2 T 2 a2 + R(x, t), 2 con as condiciones de contorno T 2 (,t)=, T 2 (, t) =, y a condición inicia T 2 (x, ) =. De o estudiado en teoría, sabemos que ( t ( ( nπa ) ) ) 2 ( nπx ) T 2 (x, t) = q n (τ) exp (t τ) dτ sen donde as funciones q n (t) se obtienen de a función fuente R(x, t) ( nπx ) R(x, t) = q n (t) sen, esto es q n (t) = 2 ( nπx ) R(x, t) sen dx. Con todo esto, a soución de probema viene dado por T (x, t) =T 1 (x, t)+t 2 (x, t)+t 3 (x, t)., Resumen: agoritmo de cácuo: De igua manera a como se hizo en e tema anterior para e probema de ondas, nos construimos e siguiente agoritmo (se puede obtener fácimente modificando igeramente e agoritmo de a práctica anterior). Definir os parámetros a, y as funciones f 1 (t),f 2 (t),g(x),q(x, t) T 3 (x, t) =... R(x, t) =... u(x, ) =... a n =... T 1 (x, t) =... q n (t) =... T 2 (x, t) =... T (x, t) = T 1 (x, t)+t 2 (x, t)+t 3 (x, t) 35

4 3.2. Fronteras aisadas En os probemas de transmisión de caor es interesante estudiar probemas en os que aguno de os extremos de dominio está aisado. Supongamos, por ejempo, que se quiere estudiar a distribución de temperaturas en una región comprendida en e intervao [,], suponiendo que e extremo situado en x = está aisado térmicamente. Esta condición se expresa (, t) =. Así, veamos cómo se puede anaizar e siguiente probema t = 2 T a2, 2 con as condiciones de contorno y a condición inicia T (,t)=, (, t) =, T (x, ) = f(x). Para resover este probema se utiiza e método de separación de variabes probando una soución de a forma con o que egamos a a ecuación Se tiene T (x, t) =X(x)P (t), 1 a 2 P P = X X = λ. X + λx =, (3.1) con as condiciones X() =, X () =. (3.2) La soución genera de a ecuación (3.1) es de a forma ( ) ( ) X(x) =A cos λx + B sen λx. Las condiciones de contorno (3.2) impican que A =, λb cos( λ) =. 36

5 Los autovaores son pues (( ) ) 2 2n 1 π λ n = 2, n =1, 2,... y as autofunciones (( ) ) 2n 1 πx X n (x) = sen 2. Para a parte tempora se tiene a ecuación P n(t)+ ( ) 2 (2n 1)π a P n (t) =, 2 cuya soución es de a forma ( ( ) 2 a(2n 1)π P n (t) =a n exp t) 2. Tenemos pues que a soución de probema viene dada por ( ( ) 2 ( ) a(2n 1)π (2n 1)πx T (x, t) = a n exp t) sen 2 2, donde os coeficientes a n se obtienen a partir de a condición inicia a n = 2 ( ) (2n 1)πx f(x) sen dx Intercambio de caor en a frontera En situaciones más reaistas se tiene transferencia de caor en os extremos de dominio. En este caso si consideramos e extremo correspondiente a x =, se tendrán que imponer condiciones de a forma ht (, t)+ (, t) =, donde h es un coeficiente de transferencia de caor. Veamos cómo se resueven os probemas de este tipo. 37

6 Consideremos e probema t = 2 T a2, 2 con as condiciones de contorno y a condición inicia T (,t)=, (, t) = ht (, t), T (x, ) = f(x). De igua manera que antes, por separación de variabes 1 P a 2 P = X X = λ. se ega a que a soución genera para X(x) es X(x) =A cos( λx)+b sen( λx). (3.3) Las condiciones de contorno son ahora de a forma X() =, X () = hx(). De a condición, X() = obtenemos A = y de a segunda condición se deduce a siguiente ecuación B λ cos( λ) = hb sin( λ), o sea, tan( λ λ) = h. Tomando β = λesta ecuación se expresa tan(β) = β h. (3.4) Esto es, para que a función T (x, t) =P (t)x(x) cumpa as condiciones de frontera, éstas deben de imponerse a a función X(x) dada en (3.3), y eo impica que A =yλsóo puede tomar un número discreto de vaores, λ n, n =1, 2,..., taes que sean soución de (3.4). Si, por ejempo, dibujamos as curvas y = tan(x) ey = x, obtenemos a gráfica mostrada en a Figura

7 Figura 3.1: Raíces de a ecuación (3.4) para h = =1. Observamos que a ecuación (3.4) tiene una sucesión de raíces positivas β 1,β 2,... Como tenemos que haaras numéricamente, necesitamos conocer dónde se encuentran aproximadamente. A partir de a figura vemos que a raíz, β n se encuentra en e intervao [π(2n 1)/2,πn], (y cerca de extremo izquierdo de intervao). Las siguientes instrucciones nos permiten definir un vector cuyas componentes sean estas raíces. resu:=findroot[tan[x]==-x,{x,pi(2n-1)/2+1/n,pi(2n-1)/2,pi*n}] rega:=fatten[resu] bet[n_]=x/. rega; Con e FindRoot, e cero n-ésimo o empezamos a buscar a partir de punto de partida x = 1π(2n 1) + 1 y e decimos que se encuentra dentro de 2 n intervao β n [ 1 π(2n 1),nπ]. Resutados simiares se obtienen si dibujamos 2 as curvas y = tan(x) ey = x para os correspondientes vaores de h y. h Viendo a gráfica, se observa que e número de ceros seguirá siendo e mismo. Habrá una raíz en cada intervao, β [(2n 1)π, 2nπ], aunque tomarán vaores igeramente distintos. Los autovaores serán ( ) 2 βn λ n =. Como funciones espaciaes se toman (a constante B se puede absorver dentro de a función P (t)) ( ) ( ) βn X n (x) = sen λn x = sen x. Se puede comprobar que estas funciones satisfacen una reación de ortogonaidad de a forma ( ) ( ) ( ) βn βn sen x sen x dx = δ n,m sen 2 βn x dx. (3.5) 39

8 Para comprobar as regas de ortogonaidad, podemos definir a función ort[n_,m_]:=nintegrate[sin[bet[n]*x]*sin[bet[m]*x],{x,,1}] y observar que éstas se cumpen. Para e caso anterior (se corresponde con e caso h = = 1) se tiene, por ejempo In[]:= ort[1,3] Out[]= *1^(-17) In[]:= ort[3,3] Out[]= Para a parte tempora se tiene a ecuación ( ) 2 P n(t)+a 2 βn P n (t) =, cuya soución es de a forma ( ( ) 2 aβn P n (t) =a n exp t). Por tanto, asoución viene dada por ( ( ) 2 ( ) aβn βn T (x, t) = a n exp t) sen x donde os coeficientes a n se obtienen a partir de a condición inicia, haciendo uso de a reación de ortogonaidad (3.5). a n = 1 ( sen2 β n x ) dx ( ) βn f(x) sen x dx. (3.6), 4

9 3.4. Ejercicios 1. Suponed que un modeo simpe para obtener a distribución de temperatura en una habitación de 1 metros de profundidad a a que una de sus paredes e da e So es T t =3 2, t 24, x 1, 2 con as condiciones de contorno ( ) πt T (,t)=2 5sin, T(1,t)=2, 12 y a condición inicia T (x, ) = 2. a) Dibujar con e Manipuate a distribución de temperatura para t [, 1] utiizando 1 autofunciones. b) Dibujar a variación de temperatura en x =8yt [, 1]. c) Haar T (5, 4) con 15 autofunciones. Suponiendo que éste es e vaor exacto, haar e error absouto cometido a cacuar este vaor con 2 y con 6 autofunciones. 2. Dado e probema t = 1 2 T 2, x 1, t >, 2 con as condiciones de contorno y a condición inicia T (,t)=, (1,t)=,2T (1,t), T (x, ) = 4x 3 1 x2. a) Comprobad que se satisface a reacin de ortogonaidad (3.5) para os 3 primeros autovaores (para os vaores de h y de probema). b) Dibujad a distribucin de temperatura para t [, 2]. 41

Solución analítica de problemas de contorno. Ecuación de ondas

Solución analítica de problemas de contorno. Ecuación de ondas Práctica 2 Soución anaítica de probemas de contorno. Ecuación de ondas 2.1. Ecuación de ondas 1D: Vibraciones forzadas de una cuerda finita con extremos móvies La ecuación de ondas para una cuerda finita

Más detalles

5.1. Soluciones de EDP s de coeficientes constantes

5.1. Soluciones de EDP s de coeficientes constantes Práctica 5 Ecuaciones en derivadas parciaes En esta práctica veremos cómo es posibe utiizar e programa Mathematica para resover agunos tipos de ecuaciones en derivadas parciaes. Revisaremos también agunas

Más detalles

SOLUCIONES. <, >: H H C (x, y) ; <x, y>

SOLUCIONES. <, >: H H C (x, y) ; <x, y> 1. Teoría Ingeniero Industria Curso 99\ Asignatura: Transformadas Integraes y Ecuaciones en Derivadas Parciaes. Test sobre e Método de Separación de Variabes. 7 de Noviembre de 1999. SOLUCIONES (a) Qué

Más detalles

u (0,x)=f(x) ; u u (t, 0) = u (t, l) =0 t>0

u (0,x)=f(x) ; u u (t, 0) = u (t, l) =0 t>0 Capítuo 1 Un Examen Resueto Se presenta a continuación un examen resueto que se puso en a convocatoria de febrero de curso /1. Durante este curso se impartieron todos os temas de temario excepto e útimo.

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

Método de separación de variables

Método de separación de variables Método de separación de variabes José Rodear y Andrés Encinas Departamento de Matemática Apicada III Notas preparadas para as asignaturas Ecuaciones Diferenciaes de tercer curso de as tituaciones de Ingeniero

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

Guía 3: Teoría de pertubaciones tiempo independiente

Guía 3: Teoría de pertubaciones tiempo independiente Pontificia Universidad Catóica de Chie Facutad de Física FIZ 0 Mecánica Cuántica Profesor: Max Bañados Ayudantes: Arie Norambuena ainoramb@ucc Guía 3: Teoría de pertubaciones tiempo independiente 3 de

Más detalles

Matemáticas III Tema 7 Ecuaciones en derivadas parciales (EDPs)

Matemáticas III Tema 7 Ecuaciones en derivadas parciales (EDPs) Matemáticas III Tema 7 Ecuaciones en derivadas parciales (EDPs) Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons

Más detalles

Para qué se utiliza? Integración por el método de Monte Carlo. El método de Monte Carlo. Cálculo de integrales definidas

Para qué se utiliza? Integración por el método de Monte Carlo. El método de Monte Carlo. Cálculo de integrales definidas Para qué se utiiza? Integración por e método de Monte Caro Patricia Kisbye FaMAF 31 de marzo, 29 Es un método que utiiza números aeatorios para cacuar numéricamente expresiones matemáticamente compejas

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 4. Series de Fourier. 4.1 Serie de Fourier Vamos a intentar representar algunas funciones por su serie de Fourier de senos. Tomamos

Más detalles

GUIA 10. Series de Fourier. 1. Revisión sobre el espacio euclideo R n

GUIA 10. Series de Fourier. 1. Revisión sobre el espacio euclideo R n GUIA 1 Series de Fourier A finaes de sigo XVIII Jan Baptiste Joseph Fourier (1768-183) descubrió un método que permite aproximar funciones periódicas mediante combinaciones ineaes de funciones trigonométricas

Más detalles

Aplicación del Método de Separación de Variables a la Resolución de EDPs

Aplicación del Método de Separación de Variables a la Resolución de EDPs Capítuo 6 Apicación de Método de Separación de Variabes a a Resoución de EDPs En os capítuos anteriores hemos desarroado todas as herramientas necesarias para poder apicar e método de separación de variabes

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 2009-2010 Tema 11: Introducción

Más detalles

Problemas Lineales de Contorno

Problemas Lineales de Contorno Probemas Lineaes de Contorno ( J.J. Anza, J. Abizuri, C. Bastero, M. Martínez-Nebreda) INTRODUCCIÓN Hasta e momento se han estudiado ecuaciones diferenciaes de segundo orden ineaes de a forma: y" + p(x)

Más detalles

CAPÍTULO 5. ECUACIÓN DE MOVIMIENTO CON PEQUEÑAS OSCILACIONES, PEQUEÑAS VARIACIONES DE LONGITUD Y SIN AMORTIGUAMIENTO.

CAPÍTULO 5. ECUACIÓN DE MOVIMIENTO CON PEQUEÑAS OSCILACIONES, PEQUEÑAS VARIACIONES DE LONGITUD Y SIN AMORTIGUAMIENTO. CAPÍTULO 5.Ecuación de movimiento con pequeñas osciaciones, pequeñas variaciones de ongitud y sin amortiguamiento. CAPÍTULO 5. ECUACIÓN DE MOVIMIENTO CON PEQUEÑAS OSCILACIONES, PEQUEÑAS VARIACIONES DE

Más detalles

problemas de EDII (r) 2011 y + = 2 e y

problemas de EDII (r) 2011 y + = 2 e y problemas 1 1 Resolver (si es posible) los siguientes problemas de Cauchy: 3 2 y + = 5 (2y ) y + =2y (, 0)= 3 (1, y)=0 y = y y (, 1)= y + = 2 e y ( 1, y)=0 y +3y 2 = 2 y +6y4 y y +(2y ) = (, 1)= 2 (, 1)=0

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 003-004. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 6: Ecuaciones en derivadas parciales. 6.1 Series de Fourier

Más detalles

CÁLCULO III. Problemas

CÁLCULO III. Problemas CÁLCULO III. Problemas Grado en Ingeniería en Tecnologías Industriales Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 4 MÉTODO DE SEPARACIÓN DE VARIABLES 19 4.

Más detalles

Práctica 1. Continuidad Ejercicios resueltos

Práctica 1. Continuidad Ejercicios resueltos Práctica 1. Continuidad Ejercicios resueltos 1. Estudiar la continuidad de los campos escalares definidos por f(x, y) = x y x 2 + y 2 g(x, y) = x2 y x 2 + y 4 h(x, y) = x y2 x 2 + y 4 para todo (x, y)

Más detalles

r r a) Clasificar el sistema x = Ax en función del parámetro r R.

r r a) Clasificar el sistema x = Ax en función del parámetro r R. Examen Final de Ecuaciones Diferenciales Fecha: 15 de junio de 2012 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Queremos dibujar el croquis de un sistema lineal 2D y realizar

Más detalles

Modelos en EDPs. Damián Ginestar Peiró. Departamento de Matemática Aplicada Universidad Politécnica de Valencia. Curso

Modelos en EDPs. Damián Ginestar Peiró. Departamento de Matemática Aplicada Universidad Politécnica de Valencia. Curso Modelos en EDPs Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2008-2009 (UPV Modelos en EDPs Curso 2008-2009 1 / 67 Programa 1 Ecuaciones hiperbólicas

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 9- Tema : Series de Fourier

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax.

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax. Examen Final de Ecuaciones Diferenciales Fecha: 7 de junio de 013 3 Problemas (7.5 puntos) Tiempo total: horas 30 minutos Problema 1 [.5 puntos]. Consideramos la matriz A = α 1 0 1 α 0, α R, 0 0 cuyos

Más detalles

Reglas de derivación Sumas, productos y cocientes. Tema 4

Reglas de derivación Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, su significado analítico y sus interpretaciones geométrica y física, pasamos a desarrollar las reglas básicas para el cálculo de derivadas

Más detalles

Para qué se utiliza? Integración por el método de Monte Carlo. Cálculo de integrales definidas. El método de Monte Carlo

Para qué se utiliza? Integración por el método de Monte Carlo. Cálculo de integrales definidas. El método de Monte Carlo Para qué se utiiza? Integración por e método de Monte Caro Patricia Kisbye FaMAF 1 de abri, 28 Es un método que utiiza números aeatorios para cacuar numéricamente expresiones matemáticamente compejas y

Más detalles

Ecuaciones Diferenciales y Métodos Numéricos

Ecuaciones Diferenciales y Métodos Numéricos NOMBRE...Número... Ecuaciones Diferenciales y Métodos Numéricos 3 er Curso I. Caminos. Ecuaciones en Derivadas Parciales Examen Parcial: 7-XII-2006 Observaciones: Escribir exactamente la solución donde

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señaes Estabiidad Entrada-Saida de Sistemas LE Autor: Dr. Juan Caros Gómez Estabiidad de Sistemas Lineaes Estacionarios BIBO Estabiidad BIBO: Bounded Input Bounded Output (Entrada

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

(x + 3) 2 (y (x)) 2 dx, x + 3 ln(5) Solución: Comenzamos construyendo el funcional. F (x, y, p) = (x + 3) 2 p 2 λy 2

(x + 3) 2 (y (x)) 2 dx, x + 3 ln(5) Solución: Comenzamos construyendo el funcional. F (x, y, p) = (x + 3) 2 p 2 λy 2 UNIVERSIDAD DE GRANADA Modelos Matemáticos II. 5 de mayo de 016 EJERCICIO 1. Se considera el funcional definido en F[y] (x + 3 (y (x dx, D { y C 0 [, ] C0(, 1 tal que ( } (y(x 1 π dx 1, sen ln(x + 3 y(x

Más detalles

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0 CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo

Más detalles

La pendiente de una línea recta es la variación de y que corresponde a una unidad de variación de x

La pendiente de una línea recta es la variación de y que corresponde a una unidad de variación de x MEDICINA 2013 -- teórico práctico 04 -- Derivadas Pendiente de una recta-repaso Ya sabemos que las gráficas de las funciones que llamamos tipo ax+b a las que algunos libros llaman lineales son siempre

Más detalles

1. Se considera el siguiente problema isoperiméétrico: calcular el mínimo relativo del funcional. xy (x) 2 dx,

1. Se considera el siguiente problema isoperiméétrico: calcular el mínimo relativo del funcional. xy (x) 2 dx, GRADO EN MATEMÁTICAS UNIVERSIDAD DE GRANADA Modelos Matemáticos II de julio de 4 Curso 3/4 Se considera el siguiente problema isoperiméétrico: calcular el mínimo relativo del funcional en el espacio D

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello

1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello 1. Enunciados 1.1. Primer ejercicio Sea f(x := e x, x R. 1. Se trata en primer lugar de calcular la transformada de Fourier F[f]. Para ello a Asegurar que existe probando que la función f es absolutamente

Más detalles

Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx.

Práctica 8. f n (x) = sea la mejor aproximación (en media cuadrática) de la función f(x) = 1 en (0, 2). (x 2 a b cos x c sen x) 2 dx. MATEMATICA 4 er Cuatrimestre de 25 Práctica 8. a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge a cero en media cuadrática. b) Verificar que

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1) CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de

Más detalles

La energía cinética de un sistema constituido por dos masas m A y m B cuyas coordenadas son x A, y A, z A y x B, y B, z B, respectivamente, es:

La energía cinética de un sistema constituido por dos masas m A y m B cuyas coordenadas son x A, y A, z A y x B, y B, z B, respectivamente, es: 1 EL ROTOR RÍGIDO E rotor rígido es un sistema formado por dos cuerpos A y B unidos por una barra sin masa, de argo R, y girando en cuaquier dirección pero con e centro de masa fijo. La energía cinética

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales

Lista de ejercicios # 3. Sistemas de ecuaciones diferenciales UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 207 Uso de operadores Lista de ejercicios # 3 Sistemas de ecuaciones diferenciales (3PII206

Más detalles

Apéndice B APÉNDICE B: PROPIEDADES DE TENSORES DE SEGUNDO RANGO

Apéndice B APÉNDICE B: PROPIEDADES DE TENSORES DE SEGUNDO RANGO Apéndice B APÉNDICE B: PROPIEDADES DE TENSORES DE SEGUNDO RANGO B1 Descomposición invariante de espacio 2 E E grupo O(n) de as transformaciones ortogonaes divide e espacio vectoria de os tensores cartesianos

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

PRÁCTICA 9. TRANSFORMADA DE FOURIER

PRÁCTICA 9. TRANSFORMADA DE FOURIER PRÁCTICA 9. TRANSFORMADA DE FOURIER Ejercicio. Teorema de la integral de Fourier: sea f una función casi continua en todo intervalo finito del eje x tal que existe la f(x) dx ; sea f (x) la función definida

Más detalles

El método de Discretización en Varias Variables

El método de Discretización en Varias Variables Artícuo Revista digita Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vo., N o. Agosto Diciembre 200. E Método de... Bibiografía E método de Discretización en Varias Variabes Ir

Más detalles

CIRCUITOS MAGNÉTICOS Ejercicios resueltos

CIRCUITOS MAGNÉTICOS Ejercicios resueltos Circuitos magnéticos Ejercicios resuetos _Rev2010 1 Reaizado por Ing. Pabo Morcee de Vae CIRCUITOS MAGNÉTICOS Ejercicios resuetos 1. Ejempos de resoución de circuitos magnéticos Se presentan agunos ejempos

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo

Más detalles

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1 Ejercicio Considerando la recta R que pasa por los puntos A = (; 0; ) y B = (2; ; 5) y el punto P = (2; ; ), hallar la ecuación implícita del plano π que es perpendicular a la recta R y contiene al punto

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

Ecuación de calor: Solución con el método de separación de variables y serie de medio rango de Fourier *

Ecuación de calor: Solución con el método de separación de variables y serie de medio rango de Fourier * Universidad de San Carlos Departamento de Matemática Facultad de Ingeniería s septiembre/211 Matemática Aplicada 2N Ecuación de calor: Solución con el método de separación de variables y serie de medio

Más detalles

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes

[0.6 p.] b) Resolver la EDO lineal no homogénea de primer orden a coeficientes constantes Fecha: 25 de junio de 2 Problema [2 puntos] Conviene recordar los problemas Depósito de salmuera y Grandes Lagos En los primeros apartados se preparan algunos cálculos previos [4 p] a) Resolver la EDO

Más detalles

Trigonometría del círculo. Sección 5.3

Trigonometría del círculo. Sección 5.3 Trigonometría de círcuo Sección 5.3 Un círcuo con centro en e origen de un sistema de coordenadas rectanguares y con radio igua a 1 se ama un círcuo unitario. Side 6.3 - Si e punto (x,y) pertenece a círcuo

Más detalles

Ecuación unidimensional de la Onda

Ecuación unidimensional de la Onda ESPO Ing. Roberto Cabrera V. DEMOSTRACIÓN DE A SOUCIÓN DE A ECUACIÓN DE A ONDA Consideraremos ahora las vibraciones transversales de una cuerda extendida entre dos puntos, x = y x =. El movimiento se produce

Más detalles

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables.

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables. Empezaremos el curso introduciendo algunos conceptos básicos para el estudio de funciones de varias variables, que son el objetivo de la asignatura: Funciones escalares de dos y tres variables. Conjuntos

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico , Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 5. Diferencias finitas para la ecuación de ondas. 5.1 Resolviendo la ecuación de ondas Vamos a resolver la ecuación de ondas utilizando

Más detalles

Práctica 8 Series de Fourier

Práctica 8 Series de Fourier MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge

Más detalles

Lectura 8 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 8 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 43 Lectura 8 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 Ecuaciones Diferenciales Ordinarias Método de elementos finitos para problemas de contorno 2 / 43 Para introducir

Más detalles

Espacios de Hilbert. Capítulo Una Primera Aproximación al Método de Separación de Variables

Espacios de Hilbert. Capítulo Una Primera Aproximación al Método de Separación de Variables Capítuo 3 Espacios de Hibert Uno de os objetivos de este curso es presentar métodos generaes que nos permitan resover a menos as ecuaciones de caor, ondas Lapace así como EDPs ineaes de segundo orden con

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

Soluciones analítico-numéricas de ecuaciones en derivadas parciales con retardo. Elia Reyes Salguero

Soluciones analítico-numéricas de ecuaciones en derivadas parciales con retardo. Elia Reyes Salguero Souciones anaítico-numéricas de ecuaciones en derivadas parciaes con retardo Eia Reyes Saguero Departamento de Matemática Apicada TESIS DOCTORAL SOLUCIONES ANALÍTICO-NUMÉRICAS DE ECUACIONES EN DERIVADAS

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I(1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Ecuaciones Diferenciales Matemáticas

Más detalles

Capítulo II. Función de supervivencia y tablas de mortalidad.

Capítulo II. Función de supervivencia y tablas de mortalidad. Capítuo II. Función de supervivencia y tabas de mortaidad. 2.1 Función de supervivencia. A considerar a supervivencia humana en os estudios demográficos e amado modeo biométrico (epresión matemática que

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

Dinámica del Punto sobre Curva

Dinámica del Punto sobre Curva Dinámica de Punto sobre Curva Índice 1. Teoría genera de a Dinámica de Punto sobre Curva 2 1.1. Introducción................................... 2 1.2. Curva isa.................................... 2 1.2.1.

Más detalles

Multiplicadores de Lagrange

Multiplicadores de Lagrange Funciones de R n en R 1 Multiplicadores de Lagrange Para entender el método de los multiplicadores de Lagrange ilustraremos las ideas con un ejemplo Ejemplo Sea f : R 2 R dada por fx, y) = x + 1) 2 + y

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles

Selectividad Matemáticas II septiembre 2014, Andalucía

Selectividad Matemáticas II septiembre 2014, Andalucía Selectividad Matemáticas II septiembre 14, Andalucía Pedro González Ruiz 17 de septiembre de 14 1. Opción A Problema 1.1 Sabiendo que lím x cos(3x) e x +ax xsen(x) Sea l el límite pedido. Tenemos: es finito,

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

Continuidad de funciones reales y vectoriales de variable vectorial

Continuidad de funciones reales y vectoriales de variable vectorial Capítulo 6 Continuidad de funciones reales y vectoriales de variable vectorial 6.1. Introducción Hasta el momento hemos estudiado funciones reales de variable real, es decir, funciones de la forma f :

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

2. Método de separación de variables

2. Método de separación de variables APUNTES DE AMPIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TEECOMUNICACIONES Elaborados por Arturo de Pablo, Domingo Pestana y José Manuel Rodríguez 2. Método de separación de variables 2.1. Separación

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior

MATEMÁTICAS II. Práctica 3: Ecuaciones diferenciales de orden superior MATEMÁTICAS II Práctica 3: Ecuaciones diferenciales de orden superior DEPARTAMENTO DE MATEMÁTICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 En esta

Más detalles

c) Dibujar la gráfica del potencial U(x), las curvas de nivel de la energía E(x, v) y un croquis aproximado del sistema.

c) Dibujar la gráfica del potencial U(x), las curvas de nivel de la energía E(x, v) y un croquis aproximado del sistema. Fecha: 13 de enero de 212 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Este problema es bastante conceptual, con pocos cálculos. Se pide claridad en la exposición y justificar

Más detalles

Equilibrio de fases en sistemas mul2componentes. Dr. Abel Moreno Cárcamo Ins3tuto de Química, UNAM /

Equilibrio de fases en sistemas mul2componentes. Dr. Abel Moreno Cárcamo Ins3tuto de Química, UNAM / Equiibrio de fases en sistemas mu2componentes Dr. Abe Moreno Cárcamo Ins3tuto de Química, UNAM carcamo@unam.mx / abe.moreno@mac.com DIAGRAMAS DE FASE DE SISTEMAS DE DOS COMPONENTES Un sistema de dos componentes

Más detalles

Ecuaciones Diferenciales Ordinarias III. Soluciones en serie entorno a puntos ordinarios y singulares regulares: Método de Frobenius

Ecuaciones Diferenciales Ordinarias III. Soluciones en serie entorno a puntos ordinarios y singulares regulares: Método de Frobenius Apuntes de Ecuaciones Diferenciaes Ordinarias III Souciones en serie entorno a puntos ordinarios y singuares reguares: Método de Frobenius Octavio Mioni Definiciones. Puntos Ordinarios y Singuares Reguares

Más detalles

Problemas Tema 7 El método de separación de variables

Problemas Tema 7 El método de separación de variables Ingeniero Industrial Transformadas Integrales y Ecuaciones en Derivadas Parciales Curso 21/11 J.A. Murillo) 5. Sea el siguiente problema de condiciones de contorno homogéneas para la ecuación de Klein-Gordon,

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

Examen Ordinario (10 puntos) 3

Examen Ordinario (10 puntos) 3 Examen Ordinario puntos de junio de 5 Fundamentos de Matemáticas { x x x Sean hx = x x x x+x fx = x+ x, si x Domh x, si x / Domh a Obtener el dominio, la continuidad las asíntoras de f. Está acotada la

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Cálculo Numérico III Curso 2010/11

Cálculo Numérico III Curso 2010/11 Cálculo Numérico III Curso 2010/11 Problemas del Tema 1 1. Sean {x 0, x 1,..., x n } IR con x i x j si i j. Hoja de problemas - Parte I a) Hallar el polinomio de grado n que interpola a la función en los

Más detalles

Indica, sin realizar las operaciones, qué tipo de expresión decimal tienen estos números.

Indica, sin realizar las operaciones, qué tipo de expresión decimal tienen estos números. Números reaes EJERCICIOS 00 Indica, sin reaizar as operaciones, qué tipo de expresión decima tienen estos números. a) c) e) 0 60 b) 0 d) f) 6 6 a) Decima exacto d) Periódico puro b) Periódico puro e) Decima

Más detalles

Teoremas de Taylor. Capítulo 7

Teoremas de Taylor. Capítulo 7 Capítulo 7 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor. Por

Más detalles

Ejercicios resueltos de cálculo Febrero de 2016

Ejercicios resueltos de cálculo Febrero de 2016 Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:

Más detalles

MÉTODO DE NEWTON-RAPHSON

MÉTODO DE NEWTON-RAPHSON Universidad Autónoma de Estado de Méico MÉTODO DE NEWTON-RAPHSON Este método, e cua es un método iterativo, es uno de os más usados y efectivos. A diferencia de método de bisección, e método de Newton-Raphson

Más detalles

Teorema de la Función Implícita (f : R R)

Teorema de la Función Implícita (f : R R) Funciones de R n en R 1 Teorema de la Función Implícita f : R R) Teorema 1. Considere la función y = fx). Sea x 0, y 0 ) R 2 un punto tal que F x 0, y 0 ) = 0. Suponga que la función F tiene derivadas

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior 1 Ecuaciones diferenciales lineales de orden mayor que 1 Una ecuación diferencial lineal (en adelante ecuación lineal) de orden

Más detalles

DILATACIÓN TÉRMICA DE SÓLIDOS

DILATACIÓN TÉRMICA DE SÓLIDOS DILATACIÓN TÉRMICA DE SÓLIDOS.- Objetivo: Cácuo de a diatación inea de varios sóidos; por ejempo: acero, auminio, etc..- Principio: Se determina a diatación inea de varios sóidos eevando su temperatura

Más detalles