No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular

Tamaño: px
Comenzar la demostración a partir de la página:

Download "No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular"

Transcripción

1 Repaso: Propiedades fudametales del Valor absoluto: x 0 x = 0 x = 0 xy = x y x + y x + y x = x x y = 0 x = y x y x z + z y x y x y No egatividad Defiició positiva Propiedad multiplicativa Desigualdad triagular Simetría Idetidad de idisceribles Desigualdad triagular Preservació Desigualdades: a x < y y < x < y b x > y y < xóx < y Itervalos: Sea F u campo ordeado. (a) x, y F defiimos u itervalo cerrado como el cojuto a, b = x F a x b} (b) x, y F defiimos u itervalo cerrado como el cojuto Pricipio de Iducció Matemática: a, b = x F a < x < b} Dada ua proposició P. Se tiee que P es válida para toda que está e los aturales si: p(1) es verdadera para toda k que está e los aturales, p(k) p(k+1) etoces IN, p() es verdadera. Pricipio de iducció Completa:

2 Supoga que está e los aturales y para toda que está e los aturales, p() es ua proposició verdadera acerca de si: p ( 0 ) es verdadera. para toda k que está e los aturales tal que p(k) p(k+1) 0, p() es verdadera. Números Racioales: Q= {x F Ǝ m, ZZ 0 y x= m } Ejercicio de la Tarea 1: Dado el siguiete cojuto y sus operacioes defiidas, determiar si es campo o o: a) F= {(x,y) x,y IR} (x,y) +(u,v) = (x+u,y+v) (x,y) * (u,v) = ( xu,yv) Ojo: (x,y) * (u,v) = xu + yv (x,y) * (u,v) = ( xu,yv) Si se ocupa la defiició de F co las siguietes operacioes: (x,y) +(u,v) = (x+u,y+v) (x,y) * (u,v) = xu + yv F o es campo ya que o cumple M. Si se ocupa la defiició de F como tal, es decir co las defiicioes dadas: (x,y) +(u,v) = (x+u,y+v) (x,y) * (u,v) = ( xu,yv) F es campo ya que cumple todo. (Se pidió como ejercicio, ver que era u campo) Ojo : las demostracioes se debe hacer de forma geeral y o utilizado úicamete ciertos úmeros para comprobar los axiomas. Ejercicio.

3 Demuestre que x, y IR +, se satisface: 1 x +1 y xy) Teemos que: x y 0 x y x y 0 x² xy + y² 0 Etoces x² + y² xy etoces sumado xy de ambos lados teemos: x + y xy x + y xy (1) x + y xy Sacamos raíz de ambos lados: x + y >= xy xy Etoces: xy xy = 1 x+y x +1 y Ejercicio 3. Supogamos que 5 Q y demuestre que + 5 Q. xy xy x + y x²y² xy Supoemos que + 5 Q ( + 5)² Q Q ( 10) Q 10 Q! + 5 Q. Ejercicio. Dados dos úmeros reales, demostrar: 1) Si los dos úmeros so racioales, su suma y su producto sigue siedo racioales:

4 Es evidete que P q Y PP qq Q. + P q = Pq +P q qq Q. ) Si uo es racioal y el otro es irracioal su suma y producto so irracioales : Si a Q, etoces P q = p q + a ó P q = p q P (a), etoces a = q + p q ó a = qp pq a Q! 3) Qué ocurre si los dos úmeros so irracioes? S i los dos úmeros so irracioales o podemos afirmar ada del resultado como se puede ver e los siguietes ejemplos: (1 + ) + =1 Q + = Q Lo mismo ocurre co el producto. Ejercicio 5. Demostrar que etre dos úmeros racioales diferetes siempre hay otro racioal. Demostrar que etre ellos tambié hay u irracioal. Idicació: Utilizar que es irracioal. Sea a< b, a, b Q, el úmero a+b Q y está etre los dos puesto que a < a + b < b Siempre Ǝ tal que < b a y por lo tato

5 a< a + < b Dode a + Q. Ejercicio 6. Demostrar que etre dos úmeros irracioales existe siempre u úmero racioal. Sea a<b, a, b o está e Q, si a y b tiee diferete sigo etoces a<0<b y 0 Q. Supogamos que a y b tiee el mismo sigo, cosideramos solo el caso 0<a<b puesto que los demás casos so equivaletes. Expresado a y b e forma decimal obteemos: a = a 0 + a a b = b 0 + b b Dode a i yb i dode i =0, 1,,... so eteros o egativos. Si a 0 < b 0 etoces a < b o < b y b 0 esta e Q Si a 0 = b 0, sea i esta e los aturales, el primer valor para el cual a i < b i Sea: c = a 0 + a a b i 10 i Q Etoces a<c<b Ejercicio 7. Demostrar que es irracioal. Por Pitágoras teemos que la hipoteusa de u triagulo de lados 1 es. Todo úmero atural puede escribirse de la forma k ó de la forma k+1. Los úmeros aturales: k so pares (k)² es par

6 k+1 so impares (k+1)² es impar (k)² = k² = (k²) (k+1)² = k² +k+1 = (k² +k) +1 Supoemos que Q, es decir, que existe u umero atural p, q tal que p q = Podemos supoer que p y q o tiee igú divisor comú puesto que se podría empezar simplificado para elimiar los divisores comues: p² = q² Esto demuestra que p² es par y e cosecuecia p debe ser par; es decir, p=k para algú umero atural k. Etoces: P² =k² = q² De modo que: k² = q² Por lo tato q² es par y e cosecuecia q es par. Así pues, so pares tato p como q e cotradicció co el hecho de que p y q o tiee divisores comues. Por lo tato hemos demostrado que o existe igú umero racioal x tal que x²= Por lo tato raíz de es irracioal. Ejercicio 8. Demostrar que es u úmero racioal = a b Elevado al cuadrado ambos térmios teemos: Multiplicamos b² obteiedo: = a b b = a

7 Descompoiedo e factores primos: b = a Como teemos a dos como múltiplo de b y como estamos tratado ua igualdad supoemos por lo tato a tambié debe ser múltiplo de para que se pueda cumplir la igualdad etoces a tedrá que ser u úmero tal que a=k, reemplazamos esto e la igualdad: Es racioal. Ejercicio 9. (Iducció) Verifique si la formula es verdadera:! Dode! = (-1)(-)...(1) Verificamos para =1 1 Es valido Verificamos para = = Es valido Verificamos para =3 3! = 6 3 = 8 Es valido Verificamos para =! = = 16 No se cumple. Por lo tato es falsa la expresió. b = k b = k b = k Ejercicio 9. Verificar si la Proposició es verdadera por medio de la iducció matemática

8 =, perteeciete a los aturales (*) (i) 1= Por lo tato 1 satisface la proposició (*) (ii) Supogamos valida la proposició (*) para k perteeciete a los Naturales, es decir supogamos que: (iii) k k k =. (Hipótesis de iducció). Demostremos que k - 1 tambié satisface la proposició (*), es decir, demostremos que: k+(k+1) = k+1 k+. Demostració: ( k)+(k+1) = k k+1 + (k+1) = k k+1 + k+1 = k+1 k+ Luego la proposició (*) es verdadera perteeciete a los aturales. Ejercicio 10. Verificar si la Proposició es verdadera por medio de la iducció matemática i=1 i 3 = +1 (i) Verificamos para = 1 i=1 i 3 = i=1 1 1 = 1() i=1 1= = 1 (ii) Supogamos valido para = k (Hipótesis de iducció) k i=1 i 3 = k k+1 (iii) Por demostrar valido para = k+1

9 k+1 i=1 i 3 = k+1 k+1+1 se reemplaza termio igual al de arriba = k+1 k+ (esto se debe demostrar) = k k+1 k+1 i=1 i 3 k = i 3 + k i=1 + k = (k+1) ( k + (k+1)) = (k+1) ( k +(k+1) ) = (k+1) ( k +k+) ) = k + 1 k +

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N. Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

Soluciones de la relación de ejercicios del TEMA 1

Soluciones de la relación de ejercicios del TEMA 1 1 Solucioes de la relació de ejercicios del TEMA 1 1. Demuestraqueelcojutoformadoporlosúmerosprimosesifiito. Aprovechamos este ejercicio para hacer uso de las llamadas demostracioes por reducció al absurdo.

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Los números irracionales

Los números irracionales Los úmeros irracioales Los úmeros irracioales E las matemáticas de la Educació Secudaria Obligatoria se preseta los úmeros irracioales como aquellos que o so racioales, es decir, aquellos que o se puede

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

NUMEROS REALES CLASIFICACIÓN DE LOS NÚMEROS. Reales, R

NUMEROS REALES CLASIFICACIÓN DE LOS NÚMEROS. Reales, R NUMEROS REALES El cuerpo de los úmeros reales esta formado por todo el cojuto de úmeros que hemos estado viedo e los distitos cursos ateriores; por ejemplo, el cuerpo de los úmeros racioales, irracioales,

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas.

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas. Más sobre límites de sucesioes Sucesioes parciales. Sucesioes moótoas. E u artículo aterior habíamos hablado de las sucesioes de úmeros reales y del cocepto de límite de ua sucesió. Tambié, e otro artículo,

Más detalles

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos Departameto de Matemáticas Guía Iducció Matemática Objetivos: Eteder el pricipio del bue orde Realizar demostracioes matemáticas por medio del pricipio de iducció matemática El pricipio del bue orde: iducció

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 12.4. Raíces de la uidad Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Itroducció al Álgebra 08-1 Importate: Visita regularmete http://www.dim.uchile.cl/~algebra.

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Marco Teórico n = i = 2. Deducción: Si la serie se suma dos veces de la siguiente forma:

Marco Teórico n = i = 2. Deducción: Si la serie se suma dos veces de la siguiente forma: Uiversidad de Sa Carlos de Guatemala Teoría de Cojutos Estudiate: Roald Oliverio Chubay Gallia -6 de mayo 0- Marco Teórico Para el presete texto se deduce alguas expresioes y luego se demuestra, para otras

Más detalles

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009 Uiversidad Simó Bolıvar. Departameto de Matemáticas puras y aplicadas. Autoevaluació No. MA25 Eero 2009 I. Evaluació Teórica.. Diga la defiició de ua sucesió covergete, la defiició de ua sucesió divergete

Más detalles

Tutorial MT-b3. Matemática Tutorial Nivel Básico. Potencia y Raíces

Tutorial MT-b3. Matemática Tutorial Nivel Básico. Potencia y Raíces 14568901456890 M ate m ática Tutorial MT-b Matemática 006 Tutorial Nivel Básico Potecia y Raíces Matemática 006 Tutorial Potecias y raíces Marco teórico: Potecias 1. Defiició: Ua potecia es el resultado

Más detalles

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas.

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas. ANÁLISIS MATEMÁTICO BÁSICO. PROPIEDADES DE LAS SUCESIONES. U tipo importate de sucesioes so las llamadas sucesioes moótoas. Defiició.. a: Ua sucesió de úmeros reales ( ) = se llama moótoa creciete si +

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

Notas en Desigualdades versión 0.1. Leonardo Urbina

Notas en Desigualdades versión 0.1. Leonardo Urbina Notas e Desigualdades versió 0. Leoardo Urbia leoardourbia@gmail.com Marzo de 006 Prólogo Estas otas so u primer acercamieto al tópico de desigualdades dirigido a aquellos participates de olimpíadas de

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Convergencia de variables aleatorias

Convergencia de variables aleatorias Capítulo Covergecia de variables aleatorias El objetivo del presete capítulo es estudiar alguos tipos de covergecia de variables aleatorias. Iiciaremos co la defiició de los distitos modos de covergecia...

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( )

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( ) CONGRUENCIAS ENTERAS Carl Friedrich Gauss (1777 1855) ARITMÉTICA MODULAR Defiició Sea m, a, b. a es cogruete co b módulo m si y sólo si ma b. a b (mód m) La relació de cogruecia es ua relació de equivalecia:

Más detalles

FUNCIÓN SUMA DE LAS CIFRAS DE UN NÚMERO NATURAL UNIVERSIDAD NACIONAL ABIERTA CENTRO LOCAL ARAGUA. Trino G. Vivas Méndez RESUMEN

FUNCIÓN SUMA DE LAS CIFRAS DE UN NÚMERO NATURAL UNIVERSIDAD NACIONAL ABIERTA CENTRO LOCAL ARAGUA. Trino G. Vivas Méndez RESUMEN FUNCIÓN SUMA DE LAS CIFRAS DE UN NÚMERO NATURAL UNIVERSIDAD NACIONAL ABIERTA CENTRO LOCAL ARAGUA RESUMEN El siguiete trabajo trata sobre el estudio de la fució suma de las cifras de u úmero atural, la

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1 Guía: Propiedades de las potecias SGUICM00MT11-A17V1 TABLA DE CORRECCIÓN PROPIEDADES DE LAS POTENCIAS Ítem Alterativa Dificultad Estimada 1 C Media D Media D Media 4 B Media 5 D Compresió Media 6 E Compresió

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II)

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II) Semaa 0 [/24] 2 de mayo de 2007 Sadwich de sucesioes Semaa 0 [2/24] Límites y Orde. Teorema Sea u ) y w ) sucesioes covergetes a u y w, respectivamete. Si 0 tal que para 0 se cumple que etoces u w. u w

Más detalles

A continuación describimos las propiedades fundamentales de estas operaciones (m, n, p representan números naturales cualesquiera):

A continuación describimos las propiedades fundamentales de estas operaciones (m, n, p representan números naturales cualesquiera): Capítulo Números reales.. Sistemas uméricos... Números aturales: pricipio de iducció Los úmeros, 2, 3,..., recibe el ombre de úmeros aturales. Co ellos se realiza dos operacioes, la suma de úmeros aturales

Más detalles

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1 Biomio de Newto I Itroducció al Biomio de Newto (para expoete etero y positivo ZZ + ) Teorema Sea: x; a 0 y ZZ + (x + a) = Desarrollado los iomios: C x -.a 0 (x + a) 1 = x + a (x + a) = x + xa + a (x +

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Teorema del binomio y su demostración por inducción matemática

Teorema del binomio y su demostración por inducción matemática Teorema del biomio y su demostració por iducció matemática Objetivos. Demostrar el teorema del biomio usado la iducció matemática y la fórmula recursiva para los coeficietes biomiales. Requisitos. Coeficietes

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

Sesión de Preparación de Olimpiada Matemática.

Sesión de Preparación de Olimpiada Matemática. Sesió de Preparació de Olimpiada Matemática 6 de Diciembre de 06 Ferado Mayoral Desigualdades (y Poliomios y otras fucioes) (I) -Alguas desigualdades básicas ) x 0 para cualquier x R La igualdad sólo se

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Idice: Señales periódicas. Aálisis de Simetría Simetría Par Simetría Impar Simetría de Media Oda Simetría de Cuarto de Oda Señales Ortogoales Prof. Raquel Frías Aálisis de Señales 1 1. Señales Periódicas

Más detalles

Medida de Probabilidad

Medida de Probabilidad Medida de Probabilidad Memo Garro Resume E este artículo etramos de lleo e el estudio del cocepto de medida de probabilidad. Para llegar a él seguiremos dos camios complemetarios: e primer térmio, partiremos

Más detalles

Álgebra I Práctica 2 - Números Naturales e Inducción

Álgebra I Práctica 2 - Números Naturales e Inducción FCEyN - UBA - Verao 07 Sumatoria Álgebra I Práctica - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria: (a) + + 3 + 4 +... + 00 (b) + + 4 + 8 + 6 +...

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades:

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades: Aritmética Itroducció Bautizo: Decimos a divide a b (a factor de b, a es divisor de b, b es múltiplo de a, b es divisible por a) si existe u etero c tal que b=ac Lo aterior se simboliza como a b, e caso

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander Rudimetos 5: Teorema del Biomio Profesor Ricardo Satader Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

Sesión 8 Series numéricas III

Sesión 8 Series numéricas III Sesió 8 Series uméricas III Defiició Serie de Potecias Si a 0, a, a,, a so úmeros reales y x es ua variable, ua expresió de la forma a x, se llama Serie de Potecias. Lo abreviaremos co SP. Alguos ejemplos

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

CONTEO. 1. Principios básicos

CONTEO. 1. Principios básicos CONTEO BASADO EN EL LIBRO NOTAS DE ÁLGEBRA DE ENZO GENTILE. Pricipios básicos El Pricipio de Adició Si se puede realizar ua acció A de formas distitas, y se puede realizar ua acció B de m formas distitas,

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas.

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas. 1. Itegral defiida: área compredida etre dos curvas. Uo de los grades logros de la geometría clásica fue el cálculo de áreas y volúmees de figuras como triágulos, esferas o coos mediate ua fórmula. E esta

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO HOJA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añade estas fórmulas al formulario, juto co la lista de los

Más detalles

Números de Bernoulli y su Relación con la Función Zeta de Riemann

Números de Bernoulli y su Relación con la Función Zeta de Riemann Números de Beroulli y su Relació co la Fució Zeta de Riema Jua Camilo Torres Chaves Mayo 9 de 26 Resume Itroducimos los úmeros de Beroulli y demostramos alguas de sus propiedades más importates. Usamos

Más detalles

CAPÍTULO VII TEORÍA DE ECUACIONES

CAPÍTULO VII TEORÍA DE ECUACIONES TEORÍA DE ECUACIONES 99 CAPÍTULO VII TEORÍA DE ECUACIONES 7. INTRODUCCIÓN Sea la ecuació racioal etera de grado p p p... p Cuyos coeficietes se supodrá racioales. p Cualquier valor de que aula a f() se

Más detalles

CÁLCULO INTEGRAL APUNTES SERIES

CÁLCULO INTEGRAL APUNTES SERIES UN I V E R S I D A D MA Y O R FA C U LT A D DE IN G E N I E R Í A SE G U N D O SE M E S T R E 0 CÁLCULO INTEGRAL AUNTES SERIES CRITERIOS. Criterio del -ésimo térmio para la divergecia Si la serie a coverge,

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

Definición Elemental de la función exponencial

Definición Elemental de la función exponencial Defiició Elemetal de la fució epoecial Luis Areas-Carmoa February 6, 20 El propósito de estas otas es dar ua defiició elemetal de la epoecial y demostrar sus propiedades pricipales utilizado sólo coceptos

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos.

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos. UNIDAD 1: NÚMEROS RACIONALES. Este primer apartado es repaso de coceptos que ya coocemos, pero es bueo que lo tegamos. 1.1 NÚMEROS ENTEROS. OPERACIONES CON NÚMEROS ENTEROS. Clasificació de los úmeros:

Más detalles

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Definición 1 Sean A y B dos conjuntos, una función de A en B, es una ley que asocia a cada elemento a de A, un único elemento b de B.

Definición 1 Sean A y B dos conjuntos, una función de A en B, es una ley que asocia a cada elemento a de A, un único elemento b de B. Chapter 1 Los Números Eteros 1.1 Itroducció E este capítulo os dedicaremos al estudio de los úmeros eteros los cuales so el puto de partida de toda la teoría de úmeros. Estudiaremos ua serie de propiedades

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) f(x) f(a) f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado y=f tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010 Sucesioes 6º Ig, Mat A - Liceo Nº 3 - Profs.:Sergio Weiberger - Marcelo Valezuela 200 Itroducció: Así como f es ua fució y f(x) = 2x es la image de cada x, dode f(0) = 0 y f(3) = 6, e ua sucesió la aotaremos:

Más detalles