Integración de funciones reales de una variable real. 24 de octubre de 2014

Documentos relacionados
La Integral de Riemann

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

Cálculo integral de funciones de una variable

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

5. Integral y Aplicaciones

Grado en Biología Tema 3 Integración. La regla del trapecio.

El Teorema Fundamental del Cálculo

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

6.1 Sumas de Riemann e integral definida

Integral Definida. Tema Introducción. 6.2 Definición de Integral Definida

7.1. Definición de integral impropia y primeras propiedades

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

Integral de Riemann. Introducción a la integración numérica.

Integrales impropias

1. INTEGRALES DEFINIDAS E IMPROPIAS

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

7.1. Definición de la Integral de Riemann

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN Partición de un intervalo

Aplicaciones del cálculo integral

Integración en una variable. Aplicaciones

INTEGRACIÓN. CÁLCULO DE

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

Tema 4. Integración de Funciones de Variable Compleja

Notas de Integral de Riemann-Stieltjes

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

Tema 4: Integrales Impropias

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI

Aplicaciones de la integral

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

2. Cálculo de primitivas

CAPÍTULO XII. INTEGRALES IMPROPIAS

Introducción a la integración numérica

Resumen Segundo Parcial, MM-502

Integral Definida. Aplicaciones

Aplicaciones de la integral indefinida

TEMA 3. Integración de funciones reales de variable real.

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

Segunda Versión. Integración y Series. Tomo II

5.5 Integración numérica

10.1 Funciones integrables Teorema fundamental del Cálculo Ejercicios

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TRANSFORMADA DE LAPLACE

E.T.S. Minas: Métodos Matemáticos

TRABAJOS DE MATEMATICA

Relación entre el cálculo integral y el cálculo diferencial.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

Aplicaciones de la integral.

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

Aplicaciones de la derivada (II)

O(0, 0) verifican que. Por tanto,

4.1. El problema del cálculo de áreas

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CAPÍTULO 3 CÁLCULO INTEGRAL

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

Integración de Funciones

Curvas en el plano y en el espacio

CÁLCULO INTEGRAL EN VARIAS VARIABLES

Integración en el plano complejo

3.- Derivada e integral de funciones de variable compleja.

APUNTES DE MATEMÁTICAS

La Geometría de las Normas del Espacio de las Funciones Continuas

INTEGRALES IMPROPIAS

La integral de Riemann

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones.

Jorge Mozo Fernández Dpto. Matemática Aplicada

Clase del Miércoles 13 de Junio de 2012: Ecuaciones Integrales.

Tema 5. Trigonometría y geometría del plano

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

1. La derivada del producto de funciones derivables

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes Producto de un polinomio por una

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

LA INTEGRAL DEFINIDA Y SUS APLICACIONES

1. Introducción: longitud de una curva

Apuntes de Integración de funciones de una variable

5. INTEGRAL DE LÍNEA. 5.1 Introducción. 5.2 Curvas

Tema 9 Cálculo integral de funciones reales de variable real

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

Métodos de Integración I n d i c e

Para funciones reales de una variable real, toda función continua g : [a, b] R es la derivada de su integral indefinida f(x) = x

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra

EJERCICIOS DE GEOMETRÍA

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011)

Integración de Funciones de Varias variables

Coordinación de Matemática II (MAT022)

Sucesiones de Funciones

Formulario de integrales

INTEGRACIÓN NUMÉRICA

Los números racionales:

Capítulo 4 INTEGRACIÓN

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

7. Integrales Impropias

Estabilidad de los sistemas en tiempo discreto

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

Transcripción:

Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014

c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl de Riemnn Integrción numéric Integrción impropi Cálculo de áres y volúmenes Introducción ls ecuciones diferenciles

L integrl indefinid

c Dpto. de Mtemátics UDC L integrl indefinid Se f : I R Definición Se dice que F es un primitiv de f en I si F (x) = f (x), x I Teorem Si F y G son dos primitivs de un mism función f en un intervlo I, entonces, k R tl que F(x) = G(x) + k, x I En consecuenci, si conocemos un primitiv F de f, conocemos tods.

c Dpto. de Mtemátics UDC L integrl indefinid Definición Dd un función f : I R, se llm integrl indefinid de f l conjunto de tods ls primitivs de f, y se escribe: f (x)dx = { F / F (x) = f (x), x I } En consecuenci, si conocemos un primitiv F de f : f (x)dx = {F(x) + k, k R} Propiedd (linelidd de l integrl) [f (x) + g(x)] dx = f (x)dx + g(x) dx α f (x)dx = α f (x)dx, α R

c Dpto. de Mtemátics UDC Integrles inmedits f (x) m f (x)dx = 1 m + 1 f (x)m+1 + C, m 1 e f (x) f (x)dx = e f (x) + C f (x) dx = ln f (x) + C f (x) f (x) f (x)dx = f (x) ln [sinf (x)] f (x)dx = cosf (x) + C + C, > 0, 1 [cosf (x)] f (x)dx = sinf (x) + C

c Dpto. de Mtemátics UDC Integrles inmedits f (x) 1 + f (x) 2 dx = rctnf (x) + C f (x) dx = rcsinf (x) + C 1 f (x) 2 f (x) sin 2 dx = cotf (x) + C f (x) [tnf (x)] f (x)dx = ln cosf (x) + C f (x) cos 2 dx = tnf (x) + C f (x) [cotf (x)] f (x)dx = ln sinf (x) + C

c Dpto. de Mtemátics UDC Integrción por prtes u(x)v (x)dx = (uv)(x) v(x)u (x)dx o bien, udv = uv vdu Es conveniente cundo el integrndo es un producto de: polinomio y exponencil polinomio y seno o coseno exponencil y seno o coseno

c Dpto. de Mtemátics UDC Integrción por cmbio de vrible Sen: f : [,b] R integrble, ϕ : [α,β] R inyectiv, con derivd continu y tl que: ϕ ([α,β]) [,b] Entonces f (x)dx = f [ϕ(t)]ϕ (t)dt

L integrl de Riemnn

c Dpto. de Mtemátics UDC Sums de Riemnn Se un intervlo [, b] R y se f : [, b] R un función cotd. Definición Se llm prtición P de [,b] un conjunto de puntos {x 0,x 1,...,x n } que verific: = x 0 < x 1 < x 2 <... < x n 1 < x n = b Definición Dd un prtición P, denotmos M i = sup f (x) m i = ínf f (x) x i 1 x x i x i 1 x x i

c Dpto. de Mtemátics UDC Sums de Riemnn Definición Se llm sum superior de Riemnn de l función f reltiv l prtición P : U(P,f ) = n i=1 M i (x i x i 1 ) Definición Se llm sum inferior de Riemnn de l función f reltiv l prtición P : L(P,f ) = n i=1 m i (x i x i 1 )

c Dpto. de Mtemátics UDC

c Dpto. de Mtemátics UDC

c Dpto. de Mtemátics UDC Integrl de Riemnn Definición Dd un función f cotd, se dice que f es integrble en [,b] en el sentido de Riemnn si y sólo si: ε > 0, P prtición de [,b] tl que U(P,f ) L(P,f ) < ε. Se escribe f R[,b]. Interpretción geométric Si f es un función positiv en un intervlo [,b], su integrl de Riemnn, f (x)dx, represent el áre limitd por l curv y = f (x), el eje y = 0 y ls rects x = y x = b.

c Dpto. de Mtemátics UDC Teorem (de integrbilidd) Tod función continu en [,b] es integrble en [,b]. En consecuenci, tod función derivble es integrble. Tod función monóton y cotd en [,b] es integrble en [,b]. Tod función cotd en [,b] que present en dicho intervlo un número finito de puntos de discontinuidd, es integrble en [,b] Se f un función integrble en [,b] en el sentido de Riemnn, y tl que: m f (x) M, x [,b] Si g es continu en [m,m], entonces l función compuest g f es integrble en [,b].

c Dpto. de Mtemátics UDC Propiedd Sen f,g R[,b]. Entonces: f ± g R[,b] y cf R[,b], c R, y se cumple: fg R[,b] (f ± g)(x)dx = (cf )(x)dx = c f (x)dx ± g(x) dx f (x)dx Si < c < b, entonces f R[,c] y f R[c,b], y se verific: c f (x)dx = f (x)dx + f (x)dx c

c Dpto. de Mtemátics UDC Propiedd Sen f,g R[,b]. Si f g en [,b], entonces Si m f (x) M, x [,b], entonces f (x)dx g(x) dx m(b ) f (x)dx M(b ) f R[,b], y se cumple: f (x)dx f (x) dx

c Dpto. de Mtemátics UDC Teorem (fundmentl del cálculo) Se f R[,b]. Pr x b, se: x F(x) = f (t)dt. Entonces, F C [,b]. Además, si f es continu en [,b], entonces F es derivble en [,b] y F (x) = f (x), x [,b]. Tmbién puede enuncirse de l siguiente mner: Si f : I R es continu en I, entonces tiene primitivs en I; un de ells es l integrl definid F dd por: donde I es culquier. x F(x) = f (t)dt

c Dpto. de Mtemátics UDC Regl de Brrow Si f R[,b] y existe un primitiv F de f en [,b], entonces: f (x)dx = b F(x) = F(b) F() Teorem (Integrción por prtes) Si F y G son dos funciones derivbles en [,b], y se tiene: { F = f G en [,b] = g siendo f y g integrbles en [,b], entonces F(x)g(x)dx = F(b)G(b) F()G() f (x)g(x)dx

c Dpto. de Mtemátics UDC Teorem Se l función F dd por l integrl definid: (x) F(x) = f (t)dt (x) Entonces, l derivd de F con respecto x viene dd por: F (x) = f (b(x))b (x) f ((x)) (x)

Integrción numéric

c Dpto. de Mtemátics UDC Integrción numéric L integrl de un función no se clcul de form exct cundo sólo conocemos los vlores de l función en un número finito de puntos su primitiv no se expres en términos de funciones elementles ejemplos: f (x) = sinx x ; f (x) = e x2 su primitiv es muy costos de clculr o de evlur 1 ejemplo: f (x) = (x 8) x 2 4x 7

c Dpto. de Mtemátics UDC Integrción numéric. Fórmuls simples Fórmul del rectángulo: f (x)dx (b )f (x 0 ), x 0 [,b] En prticulr, si x 0 = +b 2, l fórmul se conoce como fórmul del punto medio o de Poncelet Fórmul del trpecio: f (x)dx b ( ) f () + f (b) 2 Fórmul de Simpson: f (x)dx b ( f () + 4 f ( + b ) 6 2 ) + f (b)

c Dpto. de Mtemátics UDC Integrción numéric. Fórmuls compuests 1. Se divide el intervlo de integrción en n subintervlos de igul longitud: x i = + ih (i = 0,1,...,n) con h = b n 2. Se proxim l integrl medinte un fórmul simple en cd subintervlo: n 1 xi+1 f (x)dx = f (x)dx i=0 x i Fórmul del punto medio compuest: n 1 f (x)dx h Fórmul del trpecio compuest: f (x)dx h 2 i=0 ( n 1 f (x 0 ) + 2 f ( x i + x i+1 ) 2 i=1 ) f (x i ) + f (x n )

Integrción impropi

c Dpto. de Mtemátics UDC Integrción impropi Definición L integrl condiciones siguientes: f (x)dx se dice impropi si se d l menos un de ls el intervlo (,b) no es cotdo f no está cotd en (,b) Ls integrles impropis se clsificn en: 1. integrles de primer especie: (,b) no cotdo, f cotd en (,b) 2. integrles de segund especie: (,b) cotdo, f no cotd en (,b) 3. integrles de tercer especie: (,b) no cotdo, f no cotd en (,b)

c Dpto. de Mtemátics UDC Integrles impropis de primer especie Se f : (,b] R integrble en [m,b], f (x)dx = lím m m b. Se define: m f (x)dx si el límite existe. Si el límite es finito, se dice que l integrl es convergente.

c Dpto. de Mtemátics UDC Integrles impropis de primer especie De form similr, si f : [,+ ) R es integrble en [,M], M, se define + f (x)dx = si el límite existe. Por último, se define + f (x)dx = lím M + M f (x)dx + f (x)dx + f (x)dx + Si l integrl f (x)dx existe, su vlor es independiente de R.

c Dpto. de Mtemátics UDC Integrles impropis de segund especie Se f : (,b] R tl que lím (x) = ±. Si f es integrble en [t,b], x +f t (,b], entonces se define si el límite existe. f (x)dx = lím f (x)dx t + t De form nálog, si f : [,b) R es tl que lím (x) = ± y f es x b f integrble en [,t], t [,b), entonces se define si el límite existe. t f (x)dx = lím f (x)dx t b Si el límite es finito, se dice que l integrl es convergente.

c Dpto. de Mtemátics UDC Integrles impropis de segund especie c Si lím f (x) = ±, con c (,b), y existen f (x)dx y f (x) dx, entonces x c c se define c f (x)dx = f (x)dx + f (x)dx c

c Dpto. de Mtemátics UDC Integrles impropis de tercer especie Son integrles en un intervlo no cotdo de un función no cotd en un número finito de puntos del intervlo. Ejemplo L integrl 0 1 x dx se reduce los csos nteriores de l siguiente form: 0 1 x dx = 1 1 0 x dx }{{} 2 especie + 1 1 x dx }{{} 1 especie

Cálculo de áres y volúmenes

c Dpto. de Mtemátics UDC Áre de superficies plns Sen ls funciones f,g : [,b] R integrbles. Entonces el áre A limitd por ls curvs y = f (x), y = g(x) y ls rects x = y x = b está dd por: A = f (x) g(x) dx Cso prticulr: Si g(x) = 0, entonces A = f (x) dx.

El volumen del cuerpo se puede obtener de form similr prtir de ls áres de ls secciones producids por plnos perpendiculres l eje OY en el intervlo [,b]. c Dpto. de Mtemátics UDC Volumen de un sólido Supongmos un sólido que, l ser cortdo por un plno perpendiculr l eje OX, pr cd x [,b], produce un sección de áre A(x). El volumen del sólido comprendido entre x = y x = b es: V = A(x) dx

c Dpto. de Mtemátics UDC Volumen de un sólido de revolución Al girr el grfo de f : [,b] R lrededor del eje OX, se obtiene un sólido cuyo volumen es: V = π f (x) 2 dx

Ecuciones diferenciles

c Dpto. de Mtemátics UDC Clsificción de ls ecuciones diferenciles 1. Ecuciones diferenciles ordinris 1.1 Ecuciones diferenciles ordinris de primer orden Ecuciones diferenciles seprbles o en vribles seprds Ecuciones diferenciles lineles Otros tipos: homogénes, excts, de Bernoulli,... 1.2 Ecuciones diferenciles ordinris de orden superior Ecuciones diferenciles lineles Ecuciones diferenciles lineles con coeficientes constntes Ecuciones diferenciles lineles con coeficientes vribles Ecuciones diferenciles no lineles 2. Ecuciones en derivds prciles

c Dpto. de Mtemátics UDC Ecución diferencil ordinri de primer orden Definición Un ecución diferencil ordinri (e.d.o.) de primer orden es un ecución de l form y = f (x,y) donde l incógnit es l función y = y(x). Definición El problem: hllr y = y(x) solución de { y = f (x,y) se llm problem de vlor inicil. y(x 0 ) = y 0

c Dpto. de Mtemátics UDC Aplicción: enfrimiento de un plc Problem: Un plc metálic se h clentdo hst un tempertur T 0 y se h depositdo en un recinto cerrdo un tempertur constnte T. Si T = 20 o C y T 0 = 80 o C, cuál es l tempertur de l plc después de t minutos? Ley de enfrimiento de Newton: Cundo l diferenci de temperturs entre un cuerpo y su medio mbiente no es demsido grnde, l vrición en el tiempo del clor trnsferido hci el cuerpo o desde el cuerpo es proporcionl l diferenci de l tempertur entre el cuerpo y el medio externo. Si Q(t): clor trnsferido hci o por l plc después de t minutos dq : vrición de clor trnsferido dt entonces dq = k(t T ) dt donde k es un constnte cuyo vlor se determin prtir de los dtos del problem.

c Dpto. de Mtemátics UDC Aplicción: propgción de un virus informático Problem: En un red de ordendores se propg un virus informático. L velocidd de infección es proporcionl l número de equipos infectdos y l número de equipos sin infectr: dn = kn(p N) dt Suponiendo que l red tiene P = 1000 equipos, el virus prte de uno de ellos y l cbo de 2 minutos hy 10 equipos infectdos, queremos clculr el número de equipos infectdos en cd instnte.

c Dpto. de Mtemátics UDC Ecuciones diferenciles en vribles seprds L ecución diferencil y = f (x,y) dy dx = f (x,y) se dice seprble o en vribles seprds si f (x,y) = g(x) h(y) Pr resolverl, seprmos ls vribles e integrmos: dy dx = g(x) h(y) h(y)dy = g(x)dx h(y)dy = g(x)dx Not: L constnte de integrción se clcul imponiendo un condición del tipo y(x 0 ) = y 0 (condición inicil).

c Dpto. de Mtemátics UDC Ecuciones diferenciles lineles de primer orden Un ecución diferencil linel de primer orden es un ecución de l form y + p(x)y = q(x) Multiplicndo los dos miembros de l ecución por µ(x) tl que µ(x)(y (x) + p(x)y(x)) = (µ(x)y(x)) e integrndo, se ve que l solución es de l form ( ) y(x) = µ(x) 1 µ(x)q(x)dx + C Se puede comprobr que µ(x) = e p(x) dx