Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia."

Transcripción

1 INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser justificadas acordes con los conceptos establecidos, para una mejor comprensión han de construir los dibujos y diagramas de cuerpo libre donde sea necesario y el problema así lo amerite, además del desarrollo paso a paso de los problemas de aplicación de conceptos dados. 1. TRABAJO-ENERGÍA-POTENCIA. 1.1 Resumen (Conceptos y ecuaciones importantes). Trabajo (W): magnitud escalar dado por el desplazamiento de un cuerpo cuando sobre el se aplica una fuerza paralela a este. ( ) Trabajo por una fuerza variable (Aplicado en cuerpos elásticos, resortes, etc.) ; Elongación, constante de elasticidad del cuerpo elástico. Energía: capacidad que tiene un cuerpo para realizar trabajo. Energía cinética ( ): capacidad que tiene un cuerpo de realizar trabajo en función de su movimiento: Energía potencia ( ): capacidad que tiene un cuerpo de realizar trabajo en función de su posición. Energía potencia elástica: trabajo efectuado por una fuerza de resorte. Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia. Energía mecánica: es la suma de la energía cinética más la potencial. Conservación de la energía mecánica: la energía no se crea ni se destruye solo se conserva. Potencia ( ) trabajo efectuado en la unidad de tiempo, es decir rapidez con que se hace un trabajo. 1.2 Cuestionario. 1. Un estudiante que se gana un poco de dinero durante el verano empuja una podadora de pasto por un prado horizontal con una fuerza constante de 250 N, que forma un ángulo de 30 hacia abajo respecto a la horizontal. Que distancia empuja la podadora al efectuar 1,44x10 3 julios? 2. Un proyectil de masa m = 1kg, se lanza desde el origen de un sistema de coordenadas, con rapidez v0 = 100ms 1, formando un ángulo α = 37 o con la horizontal. Si se desprecia la resistencia del aire, calcule: a. La energía mecánica del proyectil después del lanzamiento. b. El trabajo realizado por la fuerza neta que actúa sobre el proyectil, desde que se lanza hasta que adquiere la altura máxima. c. La energía cinética del proyectil en el punto de impacto contra el suelo. 3. Un fragmento rocoso de 30 gr., expulsado por un volcán, viaja inicialmente a 500 m/seg., penetra 12 cm., en una pared rocosa. a. cuál es el trabajo realizado por la pared para parar el fragmento?. b. Asuma que la fuerza de la pared sobre el fragmento es constante y calcule su valor. 4. Dos equipos de estudiantes tiran de una cuerda en un juego. El equipo A está ganando, ya que la cuerda se mueve en su dirección a una velocidad constante de 0,01 m/seg. La tensión en la cuerda vale 4000 N. Qué potencia desarrolla el equipo A? 5. Una partícula está sometida a una fuerza que varia con la posición, como se ve en la figura. Encuentre, el trabajo realizado por la fuerza sobre la partícula cuando se mueva. a. De x = 0 a x = 5 metros b. De x = 5 a x = 10 metros c. De x = 10 a x = 15 metros d. Cuál es el trabajo total realizado por la fuerza sobre la distancia de x = 0 a x = 15 metros 6. Hallar la potencia que desarrolla el motor mostrado para que levante al bloque de 20 N con velocidad constante en 2 s una altura de 4 m.

2 7. Un bloque de N de peso resbala por el plano inclinado sin rozamiento como se muestra. a. Calcular el trabajo realizado por cada fuerza. b. Calcular el trabajo neto realizado sobre el bloque; para un desplazamiento de 0,1 m. 8. El cuerpo de 1 kg se suelta de A recorriendo el plano inclinado 60º con la horizontal y de superficie lisa hasta el punto B. Luego recorre el tramo rugoso BC deteniéndose en C. Hallar L si se sabe que, (g = 10 m/s 2 ). 9. Un cuerpo se desliza hacia abajo sobre un plano inclinado liso, partiendo de una altura ho, con respecto al piso. Cuál de los siguientes gráficos representa cualitativamente el trabajo W que realiza el peso del cuerpo en función de la altura h? [0 < h < ho]. Justifica tu respuesta. 10. Una carreta de 200 kg se encuentra sobre una carretera horizontal y recta. Calcular el trabajo realizado en los siguientes casos a. Empujamos con una fuerza de 100 N y la carreta no se mueve. b. La jalamos con una fuerza de 200N paralela a la carreta y se mueve 10 m. c. La jalamos con una fuerza de 200N formando un ángulo de 30 con la horizontal y la carreta se mueve 20m. 11. La fuerza que actúa sobre una partícula varía, como muestra la figura. Encuentre el trabajo hecho por la fuerza cuando la partícula se mueve (a) desde x = 0 hasta x = 4.0 m, (b) desde x = 4.0 m hasta x = 8 m, y (c) desde x = 0 hasta x = 10 m. 12. Una partícula de 0.6 kg tiene una velocidad de 2 m/s en el punto A y una energía cinética de 7.5 J en B Cuál es a. Su energía cinética en A? b. Su velocidad en B? c. El trabajo total realizado sobre la partícula cuando se mueve de A a B? 2. Cantidad de movimiento-choques 2.1 Resumen (Concepto y ecuaciones importantes). La cantidad de movimiento ( ): de una partícula es un vector que se define como el producto de la masa del cuerpo que se mueve y la velocidad que lleva. La cantidad de movimiento lineal total ( ): de un sistema es la suma vectorial de las cantidades de movimiento de las partículas individuales. Segunda ley de Newton en términos de la cantidad de movimiento (Para una partícula) Conservación de la cantidad de movimiento lineal: en ausencia de una fuerza externa neta, la cantidad de movimiento lineal total de un sistema se conserva. Teorema de impulso-cantidad de movimiento: relaciona el impulso que actúa sobre un cuerpo, con el cambio en su cantidad de movimiento. Condiciones para un choque elástico:

3 Condiciones para un choque inelástico: ( ) ( ) 2.2 Cuestiones. ( ) ( ) 1. En fútbol americano, un hombre de línea casi siempre tiene más masa que un corredor. a. Un hombre de línea siempre tendrá mayor cantidad de movimiento lineal que un corredor? Por qué? b. Quién tiene mayor cantidad de movimiento lineal, un corredor de 75 kg que corre a 8,5 m/s o un hombre de línea de 120 kg que corre a 5,0 m/s? 2. En el billar, una bola impacta sobre una banda tal como muestra la figura. Calcular la pendiente del ángulo θ. A consecuencia de la colisión los carros quedan pegados y con velocidad CERO. Cuál es el valor de la velocidad V? 7. Un jugador de béisbol utiliza una maquina lanzadora para ayudarse a mejorar su promedio de bateo. Coloca la máquina de 50 kg. Sobre un estanque congelado, como se puede ver en la figura 9.2. La máquina dispara horizontalmente una bola de béisbol de 0,15 kg. Con una velocidad de 36 m/seg. Cuál es la velocidad de retroceso de la máquina esferas A y B de igual masa realizan un choque elástico tal como muestra la figura determinar la velocidad de cada esfera después del choque. Hacia donde se dirigen ambas esferas después del choque? 8. Un automóvil de 1500 kg. De masa choca contra un muro, como se ve en la figura. Si el choque dura 0,15 seg. Encuentre el impulso debido a este y la fuerza promedio ejercida sobre el automóvil? 4. El proyectil de 10 kg y V = 20 m/s se incrusta en el bloque de M = 90 kg. Calcular la velocidad del sistema después del choque. 9. Se dispara una bala de 0,01 kg de masa contra un péndulo balístico de 2 kg de masa, la bala se incrusta en el péndulo y éste se eleva 0,12 m medidos verticalmente, cuál era la velocidad inicial de la bala? 5. Si la energía se conserva, hallar las velocidades después del choque en (m/s) 6. Un carro de juguete de masa 3 kg que viaja rectilíneamente con velocidad constante de 10 m/s choca frontalmente con otro carro de 2 kg de masa que viaja con una velocidad V como muestra la figura. 10. Dos esferas de acero, de igual radio y masas 700 y 300 gr se mueven sobre un plano horizontal con velocidades 6 y 4m/s. Cuáles serán sus velocidades después del choque si se movían en el mismo sentido, Cuáles serán si se mueven en sentidos contrarios? 11. Una bala de 2g que se mueve a 538m/seg golpea un trozo de madera de 0,25kg en reposo sobre una mesa sin roce la bala se incrusta en la madera y el sistema continua moviéndose. a. Encuentre la rapidez del sistema después de la colisión b. Encuentre la energía cinética del sistema combinado después de la colisión c. Cuánta energía cinética perdió la bala?

4 12. Una pelota de billar de 200 gr se mueve con una velocidad de 6 m/s impactando a otra de igual masa que se encuentra en reposo, adquiriendo una velocidad de 10 m/s. Determinar la velocidad de la primera pelota si: a. luego de impactar regresa en sentido contrario b. luego de impactar regresa en sentido el mismo sentido 13. Un obrero empuja un carro de 600 Kg aumentando su velocidad desde 5 m/s hasta 10 m/s en 6segundos. Calcular: a. Cantidad de movimiento lineal inicial b. Cantidad de movimiento lineal final. c. Variación de la cantidad de movimiento. d. Impulso que recibe el carro. e. Fuerza media que ejerció el Obrero. 14. Un cuerpo con energía cinética Ec verifica un choque perfectamente inelástico con un segundo cuerpo de igual masa, inicialmente en reposo. la energía cinética del conjunto después del choque es: a. 0, b. Ec/4, c. Ec/2, d. Ec, e. 2Ec. 15. Se dispara un obús de 1 kg con velocidad de 400 m/s, con un cañón de 100 kg. Cuál es la magnitud de la velocidad de retroceso del cañón? a) 0, b) 2 m/s c) 4 m/s d) 5 m/s e) 40 m/s 3. SÓLIDOS Y FLUIDOS. 3.1 Resumen. Concepto y ecuaciones importantes. Deformación de solidos elásticos. Esfuerzo: medida de la fuerza que causa deformación. Deformación: medida relativa del cambio de forma causado por un esfuerzo. Un módulo de elasticidad: es la razón entre el esfuerzo y la deformación. Módulo de Young: Módulo de corte: Módulo volumétrico: Presión: es la fuerza aplicada sobre la unidad de superficie. Principio de Pascal: la presión aplicada a un fluido encerrado o confinado en un recipiente se trasmite sin merma a todos los puntos del fluido y a las paredes del recipiente. Ecuación presión profundidad (para un fluido incompresible a densidad constante). Principio de Arquímedes: un cuerpo sumergido total o parcialmente en un fluido experimenta una fuerza de flotación igual en magnitud al peso del volumen de fluido desplazado. Fuerza de flotación: Un objeto flota en un fluido si la densidad media del objeto es menor que la densidad del fluido ( ). Si la densidad media del objeto es mayor que la densidad del fluido, el objeto se hundirá ( ), y si la densidad del fluido es igual a la densidad del objeto, el objeto estará en equilibrio a cualquier profundidad en el fluido ( ). Para un fluido ideal, el flujo es: Constante. Irrotacional. No viscoso. Incompresible. Ecuaciones que describen un fluido ideal. Gasto (tasa de flujo):

5 Ecuación de continuidad: Ecuación de Bernoulli: Con: La ecuación de Bernoulli es una expresión de la conservación de energía para un fluido. 3.2 Cuestionario. El principio de Arquímedes establece que: Un cuerpo total o parcialmente sumergido en un fluido recibe de éste una fuerza vertical hacia arriba llamada Empuje, igual al peso del fluido desalojado. 1. En un recipiente que contiene 20cm3 de agua se introducen alternativamente 4 cuerpos como se muestra en las figuras: El cuerpo sumergido que recibe mayor empuje es: a. 1 b. 2 c. 3 d En la figura 3, el volumen desalojado por el cuerpo es igual a: a. El volumen de la parte emergente del cuerpo b. El volumen de la parte sumergida del cuerpo c. El volumen total del cuerpo d. El volumen inicial del líquido 3. En la figura 4, el cuerpo se sumerge completamente porque: a. a. La densidad del cuerpo es mayor que la densidad del agua. b. b. La densidad del agua es mayor que la densidad del cuerpo c. c. El peso del cuerpo es mayor que la fuerza de empuje d. d. El volumen desalojado por el cuerpo es el mayor de todos. 4. Un bloque de madera de altura L se sumerge en agua tal como muestra la figura. La gráfica del empuje (E) en función de la profundidad (P) a la que se sumerge el bloque es: 5. Si el bloque queda sumergido la tercera parte de su volumen, puede asegurarse que a. La densidad del bloque es igual a la densidad del agua b. La densidad del bloque es 1/3 de la densidad del agua c. El empuje sobre el bloque es menor que su peso d. El empuje sobre el bloque es mayor que su peso En una tubería de diámetro d fluye agua. En los puntos 1, 2, 3 y 4 se ponen tubos manométricos separados una misma distancia L, como se muestra en la figura: 6. De acuerdo con la gráfica, la presión es menor en el punto: a. 1 b. 2 c. 3 d Un bloque de madera y una masa de plomo de 1Kg se coloca en un recipiente y se llena de agua hasta el borde. (Fig. 1.) La masa de 1Kg se levanta en el agua por medio de un alambre delgado y cuando se hace esto, el nivel de agua baja un poco (Fig. 2.). La masa de agua se coloca ahora sobre el bloque de madera, que permanece flotando, sosteniendo al mismo tiempo la masa. Cuando el plomo se coloca sobre la madera y flota, sucede que:

6 a. Un poco de agua rebosará el recipiente b. El nivel de agua subirá exactamente hasta el borde como antes c. El nivel de agua subirá, pero no alcanzará el borde d. El nivel de agua no variará El esquema representa un gato hidráulico en el que el diámetro del pistón 2 es el doble del diámetro del pistón Si en el pistón 1 se aplica una fuerza F1 la presión en el líquido es: a. Mayor sobre el pistón 1 que sobre el pistón 2. b. Mayor sobre el pistón 2 que sobre el pistón 1. c. Igual sobre el pistón 2 que sobre el pistón 1 d. Exactamente el doble sobre el pistón 2 que sobre el pistón La fuerza obtenida en el pistón 2 con respecto a la aplicada en el pistón 1 es: a. F2 = F1 b. F2 = 4F1 c. F2 = 2F1 d. F2 = ½F1 10. Este resultado se encuentra porque la fuerza F1 se debió multiplicar por la razón: a. De la áreas de los pistones (A2/A1) b. De los diámetros de los pistones (d2/d1) c. De los diámetros de los pistones (d1/d2) d. De las presiones sobre los pistones (P1/P2) 11. Si con la prensa anterior se desea levantar un auto de 1000kg, el operario deberá aplicar una fuerza de: a. 2500N b N c. 5000N d. 1000N 12. El recipiente de la forma mostrada en la figura contiene agua. La presión es mayor en el punto: a. B b. C c. D d. Igual en todos los puntos 13. Calcula la presión que ejerce un elefante sobre el suelo, si su masa es de 3000 kg y la huella de cada una de sus patas es aproximadamente, un círculo de 15 cm de radio. Compare el resultado con la presión que ejerce una chica de 55 kg que se apoya sobre la punta de uno de sus pies en una sección de ballet, si la superficie en que se apoya la chica es aproximadamente 11 cm2. Observa a la vista de los resultados quien ejerce mayor presión. 14. Una varilla de hierro de 4 m de longitud y 0,5 cm² de sección recta se alarga 1 mm cuando se suspende de ella una masa de 225 kg. Calcular el módulo de elasticidad del hierro a. 17,6 x N/m² b. 11,6 x N/m² c. 27,6 x N/m² d. 57,6 x N/m² 15. Una varilla elástica de 3,5 m de longitud y 1,5 cm² de sección se alarga 0,07 cm al someterla a una fuerza de tracción de 300 Newton. Calcular el esfuerzo, la deformación unitaria y el módulo de Young E del material de dicha varilla. a. Esfuerzo = 100 N/cm², Deformación = 0,002, Módulo = N/cm² b. Esfuerzo = 20 N/cm², Deformación = 0,0045, Módulo = N/cm² c. Esfuerzo = 2000 N/cm², Deformación = 0,2, Módulo = N/cm² d. Esfuerzo = 200 N/cm², Deformación = 0,0002, Módulo = N/cm² 16. Un recipiente cerrado que contiene líquido incompresible está conectado al exterior mediante dos pistones, uno pequeño de área A1 = 1cm 2, y uno grande de área A2 = 100cm 2 como se ve en la figura 2. Ambos pistones se encuentran a la misma altura. Cuando se aplica una fuerza F = 100N hacia abajo sobre el pistón pequeño. Cuanta masa m puede tener un cuerpo capaz de ser levantado por el pistón grande? 17. Una gata hidráulica tiene dos pistones de diámetro 1 y 5 cm Cuál es la fuerza necesaria en el pistón pequeño para que el grande levante un objeto de 10 N? 18. En el extremo inferior de una varilla de acero de 1 m de longitud y 0,5 cm de diámetro se cuelga una carga de 50 Newton de peso. Calcular aproximado el alargamiento de la citada varilla tomando como módulo de Young del material el valor de 3,2 x 10 6 N/cm² a. 2x10-3 cm b. 8x10-3 cm c. 7x10-3 cm d. 9x10-3 cm 19. Un pedazo de metal pesa N en el aire y N cuando se le sumerge en el agua. Cuál es la densidad del metal? dar su respuesta en (kg/m 3 ) g = 10 m/s 2.

7 20. Los émbolos A, B y C tienen un área de 5 cm 2, 60 cm 2 y 70 cm 2 respectivamente; si F = 50 N, determine el valor total de (R + Q). "El verdadero buscador crece y aprende, y descubre que siempre es el principal responsable de lo que sucede." Bucay, Jorge Germán Isaac Sosa Montenegro Octubre 11 de 2012.

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

po= FO. t (2) La cantidad del lado derecho recibe el nombre de impulso de la fuerza para el intervalo t =t f t i.

po= FO. t (2) La cantidad del lado derecho recibe el nombre de impulso de la fuerza para el intervalo t =t f t i. IMPULSO po 1.1 Qué es el impulso mecánico? El impulso de una fuerza F es gual al cambio en el momento de la partícula. Supongamos que una fuerza F actúa sobre una partícula y que esta fuerza puede variar

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

Tema 4. Sistemas de partículas

Tema 4. Sistemas de partículas Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción

Más detalles

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

Energía. Preguntas de Opción Múltiple.

Energía. Preguntas de Opción Múltiple. Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A. Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza

Más detalles

MOMENTO LINEAL OBJETIVOS

MOMENTO LINEAL OBJETIVOS MOMENTO LINEAL OBJETIVOS Comprender el significado físico de momento lineal o cantidad de movimiento como medida de la capacidad de un cuerpo de actuar sobre otros en choques. ( movimientos unidimensionales)

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

TRABAJO Y ENERGÍA - EJERCICIOS

TRABAJO Y ENERGÍA - EJERCICIOS TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía

Más detalles

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde

Más detalles

Módulo 3: Fluidos. Fluidos

Módulo 3: Fluidos. Fluidos Módulo 3: Fluidos 1 Fluidos Qué es un fluido? En Física, un fluido es una sustancia que se deforma continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea. Es decir,

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5 -Un aro metálico de masa despreciable se encuentra sujetado, mediante hilos, por los tres dinamómetros, tal como se muestra en la figura. partir de la representación de la lectura de los tres instrumentos:

Más detalles

Capítulo 2 Energía 1

Capítulo 2 Energía 1 Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd 1 Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. uánto trabajo realiza la fuerza F en el bloque? Slide 1 / 31 mfd cero Fd F/d

Más detalles

F Podemos imaginarnos ejemplos en que ocurra esto: donde es el ángulo formado por la fuerza. y el desplazamiento.

F Podemos imaginarnos ejemplos en que ocurra esto: donde es el ángulo formado por la fuerza. y el desplazamiento. 1-TRABAJO: En el lenguaje ordinario, al emplear el término trabajo nos referimos a todo aquello que supone un esfuerzo ya sea físico o mental y que, por tanto, produce cansancio. Sin embargo, el concepto

Más detalles

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS TRJO Y ENERGI: FUERZS NO CONSERVTIVS Determinar (atendiendo a los conceptos de trabajo y energía, es decir, sin utilizar la 2ª ley de Newton) la aceleración que alcanza un bloque de masa m al bajar por

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

Tema 7 : Trabajo, Energía y Calor

Tema 7 : Trabajo, Energía y Calor Tema 7 : Trabajo, Energía y Calor Esquema de trabajo: 7. Trabajo. Concepto. Unidad de medida. 8. Energía. Concepto 9. Energía Cinética 10. Energía Potencial Gravitatoria 11. Ley de Conservación de la Energía

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Tema IV: Trabajo, Potencia y Energía

Tema IV: Trabajo, Potencia y Energía Problemas de Física º acillerato Tema IV: Trabajo, Potencia y nergía.- Una fuerza de 90N tira de un bloque, inicialmente en reposo que pesa 0 kg, situado en un plano inclinado 30º sobre la orizontal. La

Más detalles

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2 Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL 1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

FRICCIÓN TRABAJO Y POTENCIA.

FRICCIÓN TRABAJO Y POTENCIA. INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES

PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES MATERIAL - Dinamómetro de 1 N - Bolas de péndulo (3 al menos)

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

Unidad: Conservación de la energía y el momentum lineal

Unidad: Conservación de la energía y el momentum lineal Unidad: Conservación de la energía y el momentum lineal En esta unidad veremos como la conservación de la energía y el momentum lineal conducen a resultados sorprendentes en algunos experimentos. Seguramente

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

ENERGÍA Y MOVIMIENTO. Energía mecánica Energía y temperatura Ondas

ENERGÍA Y MOVIMIENTO. Energía mecánica Energía y temperatura Ondas Energía y temperatura Ondas ENERGÍA Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 De las situaciones

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Al desarrollar los cuestionarios, tener en cuenta los procesos desarrollados en clase, cada respuesta debe tener justificación.

Al desarrollar los cuestionarios, tener en cuenta los procesos desarrollados en clase, cada respuesta debe tener justificación. AREA DE CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL Asignatura: FÍSICA Curso DÉCIMO Bimestre SEGUNDO Fecha 4.03.11 Elaboró Prof. LUIS ALBERTO GONZÁLEZ VEGA Revisó Prof. CAROLINA CHAVEZ V. HACIA UN PENSAMIENTO

Más detalles

INTERCAMBIO MECÁNICO (TRABAJO)

INTERCAMBIO MECÁNICO (TRABAJO) Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3

Más detalles

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O. EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II) 1(7) Ejercicio nº 1 Se desea trasladar 40 m por una superficie horizontal un cuerpo de 12 kg tirando con una fuerza de 40 que forma un ángulo de 60º con la horizontal. Si el coeficiente de rozamiento vale

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 1 para el curso Mecánica I. Pág. 1 de 11 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica I Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

2-Trabajo hecho por una fuerza constante

2-Trabajo hecho por una fuerza constante TRABAJO POTENCIA Y ENERGIA 1-Trabajo y Energía En el lenguaje ordinario, trabajo y energía tienen un significado distinto al que tienen en física. Por ejemplo una persona sostiene una maleta; lo que estamos

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

Problemas de Energía Cinética, Energía Potencial y Conservación de Energía Mecánica

Problemas de Energía Cinética, Energía Potencial y Conservación de Energía Mecánica Problemas de Energía Cinética, Energía Potencial y Conservación de Energía Mecánica Ejemplos y ejercicios extraídos del texto Física para ingeniería y ciencia, Volumen 1, 3era. Edición. Ohanian y Markert,

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

Para el primer experimento: 10 hojas de papel tamaño carta u oficio cinta adhesiva. Para el segundo experimento: Una toma de agua (grifo) Una manguera

Para el primer experimento: 10 hojas de papel tamaño carta u oficio cinta adhesiva. Para el segundo experimento: Una toma de agua (grifo) Una manguera Muchas veces observamos a las aves volar y entendemos que lo hacen por su misma naturaleza, y en algunas ocasiones vemos a los aviones (aves de metal) que hacen lo mismo que las aves: también vuelan, pero

Más detalles

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 1: Fuerzas Programa analítico Medidas de una fuerza. Representación gráfica de fuerzas. Unidad de

Más detalles

Olimpiada Online de Física - OOF 2013

Olimpiada Online de Física - OOF 2013 1. La figura muestra una pieza metálica apoyada sobre une superficie horizontal. Respecto de la tercera ley de Newton, indique verdadero (V) o falso (F) según corresponda. I. El peso y la normal son fuerzas

Más detalles

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes Departamento de Física Universidad de Jaén INTRODUCCIÓN A LAS MÁQUINAS SIMPLES Y COMPUESTAS Aplicación a la Ingeniería de los capítulos del temario de la asignatura FUNDAMENTOS FÍSICOS I (I.T.MINAS): Tema

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones

Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones Cuando un fluido está en movimiento, el flujo se puede clasificar en dos tipos: a) Flujo estacionario o laminar si cada partícula de fluido sigue

Más detalles

Bloque II: Principios de máquinas

Bloque II: Principios de máquinas Bloque II: Principios de máquinas 1. Conceptos Fundamentales A. Trabajo En términos de la física y suponiendo un movimiento rectilíneo de un objeto al que se le aplica una fuerza F, se define como el producto

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es TRABAJO Y ENERGIA 1 TRABAJO Y ENERGIA La primera figura muestra un esquiador que partiendo del reposo desciende por una superficie uniforme Cuál será la velocidad del esquiador cuando llegue al final de

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,

Más detalles

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS

5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS 5. PÉRIAS E CARGA EN CONUCTOS CERRAOS O TUBERIAS 5. Perfiles de Velocidad: Laminar y Turbulento 5. Radio Hidráulico para Secciones no Circulares 5.3 Pérdidas Primarias y Secundarias 5.4 Ecuación de arcy

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

PROBLEMAS DE ELECTROSTÁTICA

PROBLEMAS DE ELECTROSTÁTICA PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales

Más detalles

Wilfrido Massieu G U I A D E E S T U D I O F I S I C A SEMESTRE: CUARTO ACADEMIA DE FISICA TURNO MATUTINO ELABORÓ: ARQ. MA. EUGENIA GONZÁLEZ SANDOVAL

Wilfrido Massieu G U I A D E E S T U D I O F I S I C A SEMESTRE: CUARTO ACADEMIA DE FISICA TURNO MATUTINO ELABORÓ: ARQ. MA. EUGENIA GONZÁLEZ SANDOVAL G U I A D E E S T U D I O F I S I C A II SEMESTRE: CUARTO ACADEMIA DE FISICA TURNO MATUTINO ELABORÓ: ARQ. MA. EUGENIA GONZÁLEZ SANDOVAL G U I A D E E S T U D I O F I S I C A II SEMESTRE: CUARTO COMPETENCIA

Más detalles

Capítulo 4. Elasticidad

Capítulo 4. Elasticidad Capítulo 4 Elasticidad 1 Ley de Hooke Cuando estiramos o comprimimos un muelle, la fuerza recuperadora es directamente proporcional al cambio de longitud x respecto de la posición de equilibrio: F = k

Más detalles

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1.

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. UNGS 1er semestre 009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. 1.- Un niño, de 00 N de peso, sube 10 m de altura con la ayuda de una escalera vertical. Halle el trabajo

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles