6. Métodos para resolver la ecuación completa.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "6. Métodos para resolver la ecuación completa."

Transcripción

1 GRADO DE INGENIERÍA AEROESPACIAL. CURSO Métodos ara resolver la ecuación comleta. Dedicamos esta sección a ver dos métodos que nos ermiten hallar una solución articular de la ecuación comleta y + Py ( ) + Qy ( ) = R ( ). El rimero de ellos se llama el método de variación de los arámetros y lo odremos alicar siemre que conozcamos dos soluciones linealmente indeendientes de la ecuación homogénea asociada. El segundo de ellos se conoce como método de los coeficientes indeterminados y se uede alicar cuando la ecuación es de coeficientes constantes y la función R( ) es de un tio articular que más adelante detallaremos. OBSERVACIÓN. A veces es más cómodo descomoner la ecuación no homogénea en varias ecuaciones diferenciales con términos indeendientes más simles. Esta descomosición se basa en el siguiente resultado. PROPOSICIÓN (PRINCIPIO DE SUPERPOSICIÓN). Suongamos que y ( ) es una solución articular de la ecuación y + P y + Q y = R y que y ( ) es una solución articular de otra ecuación y + P y + Q y = R, entonces la función suma y + y es solución de la ecuación y + P y + Q y = R + R. El método de variación de arámetros. El rimer método que vemos ara resolver la ecuación lineal de segundo orden comleta, llamado método de variación de los arámetros, es válido ara ecuaciones de la forma y + Py ( ) + Qy ( ) = R ( ) y requiere, como aso revio, el conocimiento de la solución general cy + cy de la corresondiente ecuación homogénea. Suongamos que los coeficientes c y c de la solución general cy + cy de la ecuación homogénea ueden variar (de ahí el nombre del método) y buscamos una solución articular de la ecuación comleta de la siguiente forma: y = v y + v y, donde v ( ) y v ( ) son dos funciones desconocidas que debemos determinar. Para ello imonemos que la función y ( ) verifique la ecuación comleta y + Py ( ) + Qy ( ) = R ( ). Necesitamos, or tanto, calcular reviamente la rimera y segunda derivada de la función y ( ). Al derivar una vez obtenemos que la rimera derivada viene dada or y = v y + v y + v y + v y. Por conveniencia, como comrenderemos más adelante, imondremos que v y + v y = 0 en el intervalo I. Por tanto, y = v y + v y. De esta forma, si volvemos a derivar, la derivada segunda es y = v ( y ) + v( y ) + v ( y ) + v( y ). Con estas derivadas calculadas, odemos ya sustituirlas en la ecuación lineal ara obtener que R = y + P y + Q y = v y + v y + v y + v y + P ( v y + v y ) + Q ( v y + v y ) = v ( y + P y + Q y ) + v ( y + P y + Q( y ) ) + v y + v y = v y + v y.

2 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. De esta forma, las derivadas de las funciones v ( ) y v ( ) son soluciones del siguiente sistema v y + v y = 0, Puesto que las dos soluciones de la ecuación homogénea son linealmente indeendientes, su determinante wronskiano es distinto de cero en todos los untos del in- v y + v y = R. tervalo I. Si ahora usamos la regla de Cramer ara resolver el sistema anterior, obtenemos como y R y R soluciones v = y v =, donde W( ) denota el determinante wronskiano de y ( ) e y ( ). En consecuencia, obtenemos que las funciones v ( ) y v ( ) W W buscadas son y R y R v = d y v. = d Finalmente, la solución articular obtenida es W W y R ( ) y R ( ) y = y d+ y d. W W EJEMPLO. Vamos a alicar el método de variación de los arámetros ara calcular una solución articular de la ecuación y + y =. En este caso la ecuación auiliar de la ecuación homogénea es sen m + = 0 y tiene or raíces m = i y m = i. Por tanto, dos soluciones linealmente indeendientes de la ecuación homogénea son y = sen e y cos. = El determinante wronskiano de estas dos soluciones es W( ) =. Alicando lo anterior obtenemos que y R cos ( ) y v = d = d = log sen W sen y R v = d = d =. W Puesto que buscamos una única solución articular no es necesario tener en cuenta las constantes de integración. Llegamos finalmente a que la solución articular es y = sen log(sen ) cos. El método de los coeficientes indeterminados. Si la ecuación tiene coeficientes constantes, eiste un método que ermite hallar una solución articular de la ecuación comleta y + y + qy = R cuando la función R( ) es un olinomio, una eonencial, un seno, un coseno o una combinación de sumas y roductos de tales funciones. La razón es que las derivadas de una de estas combinaciones vuelven a ser funciones del mismo tio, así que lo que se lantea es buscar como solución articular una combinación adecuada con coeficientes indeterminados que se calculan imoniendo que la función verifique la ecuación. EJEMPLO. Para hallar una solución articular de la ecuación y y + y =, nos fijamos en que R = es un olinomio de segundo grado, así que buscamos una solución articular de la forma y ( ). = a + b + c Imoniendo que y ( ) verifique la ecuación llegamos a la siguiente igualdad a ( a + b) + ( a + b + c) =, que se debe verificar ara todo. Igua- lando los coeficientes del olinomio de la izquierda y del olinomio de la derecha, obtenemos el un sistema de ecuaciones cuyas soluciones son a =, b = 0 y c =, lo que nos da la solución articular y ( ). =

3 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. En lo que sigue consideraremos que m y m son las soluciones de la ecuación auiliar de la ecuación homogénea y + y + qy = 0. () Si R( ) es un olinomio de grado n, entonces se busca como solución articular un olinomio de grado n si m y m son distintas de cero (esto sucede cuando q 0 ), de grado n + si una de las dos raíces m o m es cero (esto sucede cuando q = 0 y 0 ) y de grado n + si las dos raíces m y m son cero (esto sucede cuando = q= 0 en cuyo caso la ecuación es y = 0 ). a () Si R = e es una eonencial, entonces se busca como solución articular a a) y = ce, si a es distinta de m y de m. a b) y = ce, si a coincide con una de las dos raíces m o m. a c) y = c e, si a = m = m. EJEMPLO. Calculamos una solución articular de la ecuación y y y = 5 e. La ecuación auiliar de la ecuación homogénea asociada es m m = 0 y tiene or raíces m = y m =. Estamos, or tanto, ante un ejemlo del caso a) y buscamos una solución del tio y = ce. Imo- niendo que esta función verifique la ecuación obtenemos que ce ce ce = 5 e. Simlificando 5 5 en la anterior ecuación llegamos a que c = y, or tanto, y = e. EJEMPLO. Calculamos una solución articular de la ecuación y y y = 5 e. La ecuación auiliar de la ecuación homogénea asociada es m m = 0 y tiene or raíces m = y m =. Estamos, or tanto, ante un ejemlo del caso b) y buscamos una solución del tio y = ce. Imoniendo que esta función verifique la ecuación diferencial lineal obtenemos que ( ce + ce ) ( ce ce ) ce = 5 e. Simlificando en la anterior ecuación llegamos a que 5 c = y, or tanto, 3 5 y = e. 3 (3) Si R = sen( b) o R = cos( b), entonces se busca como solución articular a) y = ccos( b) + csen( b), si bi m y bi m. b) y = ccos( b) + csen( b), si bi es una raíz de la ecuación auiliar. EJEMPLO. Calculamos una solución articular de la ecuación y + y + y = cos. La ecuación auiliar de la ecuación homogénea es m + m+ = 0 y tiene or raíces m = m =. Estamos, or tanto, ante un ejemlo del caso a) y buscamos una solución del tio y c c ( ) = cos( ) + sen( ). Imoniendo que esta función verifique la ecuación diferencial lineal obtenemos que ( ) ( ) c cos c sen + c sen + c cos + c cos + c sen = cos. 3

4 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Simlificando llegamos a que 8ccos 8csen = cos. Por tanto, debemos tomar c = 0 y c =. Es decir, la solución articular es y = sen. 8 8 EJEMPLO. Buscamos ahora una solución articular de la ecuación y + y = cos. La ecuación auiliar de la ecuación homogénea asociada es m + = 0 y tiene or raíces m = i y m = i. Estamos, or tanto, ante un ejemlo del caso b) y buscamos una solución del tio y = ccos + csen. Imoniendo que esta función verifique la ecuación diferencial lineal obtenemos que c sen ccos + c cos csen + ccos + csen = cos. Simlificando llegamos a que csen+ ccos= cos. Debemos tomar c = 0 y c =. Es decir, la solución articular buscada es y = sen. () Si R( ) es una combinación de las funciones anteriores, entonces se busca como solución articular la corresondiente combinación de las soluciones articulares rouestas. 3 3 EJEMPLO. Calculamos una solución articular de la ecuación y y + 5y = 6 e. La ecuación auiliar de la ecuación homogénea es m m+ 5= 0 y tiene or raíces m = + i y m = i. 3 3 Buscamos una solución del tio y = ( a + b + c+ d) e. Imoniendo que esta función verifique la ecuación diferencial lineal obtenemos que ((6a + b) e + 6(3a + b + c) e + 9( a + b + c + d) e ) ( ) ( ) = (3a b c) e 3( a b c d) e 5a b c d e 6 e. Dividiendo los dos términos de la ecuación anterior or 3 e llegamos a que ( ) ( ) ( ) 3 3 8a + a+ 8b + 6a+ 8b+ 8c + b+ c+ 8d = 6, que se debe verificar ara todo. Es decir, debemos tomar a =, b = 3, c = y d =. La solu- ción articular buscada viene dada or y e 3 3 ( ) = EJEMPLO. Vamos a calcular la solución general de y + y = cos + 3sen. Alicaremos el rinciio de suerosición, es decir, calcularemos soluciones articulares de las ecuaciones y + y = cos e y + y = 3sen. Puesto que cos es solución de la ecuación y + y = 0, buscamos una solución articular de la forma y = Acos + Bsen. Derivando dos veces obtenemos que y = Asen + Bcos Acos Bsen. Sustituimos en la ecuación y obtenemos Asen + Bcos = cos. Tomamos A = 0, B = y te-

5 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. nemos que y = sen es una solución articular de la ecuación y + y = cos. Para la segunda ecuación, uesto que sen( ) no es solución de ecuación homogénea, buscamos una solución de la forma y = Acos + Bsen. Por tanto, y = Acos Bsen. Sustituyendo en la ecuación obtenemos que y + y = 3Acos 3Bsen = 3sen. Tomamos A = 0, B = y tenemos que y sen = es una solución articular de y + y = 3sen( ). Llegamos así a que sen sen( ) es una solución articular de y + y = cos + 3sen( ) y su solución general es y = ccos + csen + sen sen. EJEMPLO. Vamos a calcular una solución articular de la ecuación y + 6y + 3y = e cos. En este caso la ecuación auiliar de la ecuación homogénea asociada es m + 6m+ 3= 0, cuyas raíces son m = 3+ i y m = 3 i. Por tanto, la solución general de la ecuación homogénea asociada es y = Ae cos + Be sen. De esta forma buscamos una solución del tio h y = Ae + Be ( ) cos( ) sen( ). Imoniendo que esta función verifique la ecuación diferencial lineal obtenemos que (5Ae cos 6Ae cos + Ae sen Ae sen + 5Be sen 6Be sen Be cos + Be cos) + 6( 3Ae cos + Ae cos Ae sen 3Be sen + Be sen + Be cos) ( cos( ) + Ae + Be sen) = e cos. Dividiendo los dos términos de la ecuación anterior or 3 e B cos Asen = cos. Por tanto, debemos tomar A = 0, de la ecuación es y e ( ) = sen( ). EJERCICIO. Resuelve las siguientes ecuaciones con coeficientes constantes. () y + y = cos. () y y =. (3) y y = e. () y + y = 3 e. (5) y + y = 8sen. EJERCICIO. Resuelve la ecuación y y = f en los siguientes casos: y simlificando llegamos a la igualdad B = y la solución articular () f ( ) 3 e. = () f = cos. (3) f e ( ) = ( + + ). 5

6 GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. EJERCICIO 3. Resuelve la ecuación y + y = f en los siguientes casos: () f = e cos. () f = e ( ). (3) f = e sen. EJERCICIO. Resuelve los siguientes roblemas de valores iniciales: () y + y 8 y =, con y (0) = 0, y (0) = 0, () y y + 5y = 0, con y (0) =, y (0) = 5, (3) y 3y + y = 3e 0cos(3 ), con y (0) =, y (0) =, () y + y 5y= 0, con y () =, y () = 0. EJERCICIO 5. Por el método de variación de las constantes, encuentra una solución articular de las ecuaciones diferenciales: ) y + y = tan. ) y 3y + y = sen( e ). EJERCICIO 6. Resuelve la ecuación diferencial + = cos( ), donde ab>, 0. y by a EJERCICIO 7. Resuelve el roblema de valor inicial y + 3y + y = R, con las condiciones iniciales y(0) = y (0) = 0, donde R ( ) =, si 0 < < 0, si, EJERCICIO 8. Una ecuación diferencial de la forma y + y + qy = R, donde y q son constantes y R( ) es una función continua, se llama ecuación de Euler Cauchy de segundo orden. ) Comrueba que una ecuación de este tio se reduce a una ecuación lineal con coeficientes constantes mediante el cambio de variable indeendiente = e t. ) Resuelve las siguientes ecuaciones de Euler Cauchy. a) y y + 6 y =. b) 3 3 y y + y = log. 6

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales

SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales SESION. El comando Integrate. Aproimación de integrales definidas. Integración de funciones racionales . El comando Integrate El cálculo de integrales definidas e indefinidas en MATHEMATICA es sencillo

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

Observaciones del profesor:

Observaciones del profesor: Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los

Más detalles

Capítulo 3. Congruencias. 3.1. Clases residuales

Capítulo 3. Congruencias. 3.1. Clases residuales Caítulo 3 Congruencias 3.1. Clases residuales En su obra Disquisitiones Arithmeticae, ublicada en el año 1801, Gauss introdujo el conceto de congruencia. Suongamos que a, b y m > 0 son números enteros.

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea

Más detalles

Adivinanza o logaritmos?

Adivinanza o logaritmos? Nivel:.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Actualmente un alumno está cursando el Cuarto Año Medio. Tiempo atrás estuvo de cumpleaños y recibió de regalo diferentes cantidades

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

1.- Hallar la longitud de un grado del paralelo que corresponde a Pekín (116º 30 E, 40º N). O P del paralelo de Pequín R

1.- Hallar la longitud de un grado del paralelo que corresponde a Pekín (116º 30 E, 40º N). O P del paralelo de Pequín R 1.- Hallar la longitud de un grado del aralelo que corresonde a Pekín (116º 30 E, 40º N). 360º π R P π R P 1º L =. Hay que hallar el radio 1º L 360º RP O P del aralelo de Pequín R P. 50º Llamando R T al

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace 2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

FUNCIONES Y GRÁFICAS.

FUNCIONES Y GRÁFICAS. FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 1) Cierto artículo de lujo se vende en 1 000 pesos. La cantidad de ventas es de 0 000 artículos al año. Se considera imponer un impuesto

Más detalles

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004 Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004. Estudia si existe alguna función de variable compleja f() entera cuya parte real sea x

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

VII INTEGRALES TRIGONOMÉTRICAS

VII INTEGRALES TRIGONOMÉTRICAS VII INTEGRALES TRIGONOMÉTRICAS Diez fórmulas más habrán de agregarse al formulario actual de integrales del estudiante. Son seis correspondientes a las seis funciones trigonométricas seno, coseno, tangente,

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

SUCESIONES INFINITAS

SUCESIONES INFINITAS SUCESIONES INFINITAS 1 2 Ejercicio: Cálculo del término general de una sucesión: Encontrar el quincuagésimo término de la sucesión 1, 3, 5, 7,... Es una progresión aritmética de diferencia 2. Su término

Más detalles

Bloque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos loque 5. Probabilidad y Estadística Tema 1. Probabilidad Ejercicios resueltos 5.1-1 Se lanzan al aire tres monedas iguales, describe todos los sucesos del esacio muestral. Sean los sucesos A = sacar al

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

SISTEMA DE PLANOS ACOTADOS APUNTES REALIZADOS POR ANTONIO CUESTA

SISTEMA DE PLANOS ACOTADOS APUNTES REALIZADOS POR ANTONIO CUESTA SISTEMA DE LANOS ACOTADOS AUNTES REALIZADOS OR ANTONIO CUESTA El sistema de lanos Acotados o Sistema Acotado constituye, al igual que el Sistema Diédrico, un sistema de representación reversible en el

Más detalles

6 Ecuaciones de 1. er y 2. o grado

6 Ecuaciones de 1. er y 2. o grado 8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados

Más detalles

9. Lección 9: Cambios de Fase

9. Lección 9: Cambios de Fase 9. Lección 9: Cambios de Fase Cuando un sistema consiste de más de una fase, cada fase uede ser considerada como un sistema searado del todo. Los arámetros termodinámicos del sistema entero ueden ser construidos

Más detalles

2. Integrales dobles sobre regiones no rectangulares.

2. Integrales dobles sobre regiones no rectangulares. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples.. Integrales dobles sobre regiones no rectangulares. Supongamos que tenemos una función f :(, ) f(, ) continua positiva cuo dominio

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Control de Fase. Capítulo 4. 4.1 Conceptos Teóricos

Control de Fase. Capítulo 4. 4.1 Conceptos Teóricos Caítulo 4 Control de Fase 4.1 Concetos Teóricos En este caítulo se resentará el método de control de fase ara convertidores AC/DC conmutados or línea, comúnmente conocidos como rectificadores controlados.

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Principio de la Termodinámica

Principio de la Termodinámica ema.- Primer P Princiio de la ermodinámica..- El rabajo en la Mecánica. rabajo realizado or una fuerza externa F, que actúa sobre los límites del sistema, cuando su unto de alicación exerimenta un deslazamiento

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014 IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre

Más detalles

1. Funciones de varias variables: representaciones gráficas, límites y continuidad.

1. Funciones de varias variables: representaciones gráficas, límites y continuidad. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Funciones de varias variables: representaciones gráficas, límites y continuidad. En el análisis de los problemas de la ciencia y de la técnica, las cantidades

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

U.D. 24 Análisis económico (II)

U.D. 24 Análisis económico (II) U.D. 24 Análisis económico (II) 24.01 El margen de contribución unitario y el margen de contribución total. 24.02 el Punto de equilibrio (o Punto muerto). 24.02.01 Incremento de ventas y aumento de beneficio.

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

PRÁCTICA 4. De las dos primeras CPO operando y simplificando se obtiene la condición de tangencia:

PRÁCTICA 4. De las dos primeras CPO operando y simplificando se obtiene la condición de tangencia: .- Determine la exresión de la demanda del bien x ara la siguiente función de utilidad: Para calcular la del bien x hay que resolver el roblema de maximización de la utilidad condicionada a la renta disonible

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

VALUACIÓN DE BONOS. 4 Valuación de un bono en una fecha entre cupones

VALUACIÓN DE BONOS. 4 Valuación de un bono en una fecha entre cupones 1 VALUAIÓN DE BONOS 4 Valuación de un bono en una fecha entre cuones Hasta ahora hemos suuesto en (2.1) y (2.2) que la valuación se hace en el momento de emisión del bono o un instante osterior al ago

Más detalles

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS

PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS Tema 7.- VALORES Y VECTORES PROPIOS. DIAGONALIZACIÓN DE MATRICES CUADRADAS VALORES Y VECTORES PROPIOS MATRICES CUADRADAS DIAGONALIZABLES DIAGONALIZACIÓN N ORTOGONAL DE MATRICES CUADRADAS SIMÉTRICAS 1 Un

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Absorción de la droga en el organismo

Absorción de la droga en el organismo Universidad de oriente Unidad de estudios básicos Matemática Absorción de la droga en el organismo Profesor: Integrantes: Castillo Cristian Cedeño Luisaydis 19872989 Hernández Peter 23552901 Villarroel

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Alicaciones de las derivadas Autores: Paco Martínez (jmartinezbos@uoc.edu), Patrici Molinàs (molinas@uoc.edu). ESQUEMA DE CONTENIDOS Concetos Ejemlos Alicaciones de las Derivadas

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 1 1 MÓDULO DE LOS ENTEROS Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 2 Módulo 3 Tema: Los Enteros

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x).

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x). 2 Integrales Indefinidas y Métodos de Integración La integral Indefinida o antiderivada es el nombre que recibe la operación inversa a la derivada. Es decir, dada una función F aquella consiste en encontrar

Más detalles

Cadenas de Markov. http://humberto-r-alvarez-a.webs.com

Cadenas de Markov. http://humberto-r-alvarez-a.webs.com Cadenas de Markov http://humberto-r-alvarez-a.webs.com Definición Procesos estocásticos: procesos que evolucionan de forma no determinista a lo largo del tiempo en torno a un conjunto de estados. Estos

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

TÉCNICAS DE INTEGRACIÓN

TÉCNICAS DE INTEGRACIÓN C TÉCNICAS DE INTEGRACIÓN C. CONCEPTOS PRELIMINARES C.. Función primitiva Sea f : I R, donde I es un intervalo real. Diremos que la función F : I R es una función primitiva de la función f en I si se cumple

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

CAPÍTULO. Optimización

CAPÍTULO. Optimización 1 CAPÍTULO 10 Otimización 10.1 Problemas de otimización 1 Un roblema de otimización consiste en minimizar o maimizar el valor de una variable. En otras alabras se trata de calcular o determinar el valor

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

3. MODELO MACROECONOMICO. 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional

3. MODELO MACROECONOMICO. 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional 3. MODELO MACROECONOMICO 3.1 Oferta y demanda agregada nacional y su efecto en la economía internacional Definimos primero a la oferta y demanda agregada para después desglosar sus elementos. Veremos la

Más detalles