2. Amplía: factoriales y números combinatorios Soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Amplía: factoriales y números combinatorios Soluciones"

Transcripción

1 UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 1 de FACTORIALES El núero de perutaciones de n eleentos es: P n n n 1) n 2) 2 1 A este producto de n factores decrecientes a partir de n se le designa por n! que se lee factorial de n o n factorial. Por ejeplo, 2! 2 1 2,! 2 1,! El valor de n! crece enoreente deprisa al auentar n. Por ejeplo: 1! 2 2! tiene 1 cifras La fórula de las variaciones se puede expresar uy cóodaente con factoriales: V, n 1) n 1) 1) [ 1) n 1)] [ n) 2 1] n) 2 1 1) Heos ultiplicado nuerador y denoinador por n)! para conseguir en el nuerador!. Por ejeplo: V, ) 2 1!!! n)! NÚMEROS COMBINATORIOS Los núeros que se obtienen al aplicar la fórula de las cobinaciones, C, n, se llaan núeros cobina-. Se lee sobre n. n torios y se suelen designar así: ) Por ejeplo: ) C, 5 Los núeros cobinatorios pueden expresarse, tabién, con factoriales: V, P V, P Por ejeplo: ) ) V, n! / n)! n n!! /! P P n!!!! n! n)! Los factoriales son uy cóodos para anejar expresiones teóricas. Pero para cálculos nuéricos son preferibles las fórulas sin ellos.

2 UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 2 de PROPIEDADES DE LOS NÚMEROS COMBINATORIOS Los núeros cobinatorios tienen interesantes propiedades. Vaos a ver algunas: I. ) 1, ) 1 ) significa el núero de cobinaciones con ningún eleento que se pueden hacer con eleentos. Solo el conjunto vacío tiene ningún eleento. Es decir, solo hay una. ) es el núero de cobinaciones que se pueden hacer con todos los eleentos. Es claro que solo hay una. Por ejeplo: ) 1, ) 1 II. ) ) n n Pues, si disponeos de eleentos, cada vez que escogeos n nos quedan n. Es decir, cada vez que foraos una cobinación de n eleentos, nos queda otra de n. Por ejeplo: ) ) ) ), III. ) ) ) 1 n 1 n n Por ejeplo: ) ) ) ) ) ) ) ) ) 5,, La justificación de esta propiedad es ás coplicada que la de las anteriores; por eso la deostraos con una historieta. Epeceos probando que: ) ) ) Leticia y Héctor son una pareja de recién casados. Tienen objetos de adorno y una vitrina donde caben de ellos. El núero de posibles elecciones es: ) Pero en el oento de hacer la elección surge una pequeña diferencia de criterio: Leticia exige que uno de los objetos sea el retrato de su adre, ientras que Héctor rechaza esta posibilidad. Cuántas son las posibilidades que adite Leticia? Tantas coo foras de seleccionar los objetos que acopañarán al retrato de su adre, es decir: ) Cuántas son las posibilidades que adite Héctor? Tantas coo foras de seleccionar objetos de entre los que no son el retrato de su suegra, es decir: )

3 UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. de Pero fíjate que, necesariaente, si seleccionan objetos, uno de los dos se saldrá con la suya. Es decir, que cualquier posible selección o es de las que quiere Leticia, o es de las que quiere Héctor. Por tanto: ) ) ) Si en lugar de objetos tuvieran, y en la vitrina en vez de cupiesen n, el iso razonaiento nos llevaría a la deostración de la fórula. TRIÁNGULO DE TARTAGLIA Tartaglia se lee Tartall fue un ateático italiano del siglo XVI. Su verdadero nobre era Niccolò Fontana. En una guerra recibió un golpe, a consecuencia del cual quedó tartaudo. Su apodo, Tartaglia tartaj, se hizo tan popular que él iso firaba así sus libros. Pues bien, para resaltar las propiedades de los núeros cobinatorios, a este ateático se le ocurrió ponerlos del siguiente odo: 1 1 ) 1 ) ) 1 ) 2 ) ) 1 ) 2 ) ) ) 1 ) 2 ) ) ) ) ) ) ) ) ) 1 Esta configuración responde a las propiedades de arriba. 2 Todos los eleentos de los extreos valen 1 Propiedad I). En cada fila, los eleentos siétricos son iguales Propiedad II). Sus correspondientes valores son los de la derecha. 5 Puedes coprobarlo Cada eleento, salvo los de los extreos, se obtiene suando los dos que tiene encia Propiedad III). De este odo, cada línea del triángulo de Tartaglia se obtiene de la anterior: se epieza y se terina con 1 y cada uno de los deás térinos se halla suando los dos que tiene encia. 5.ª ª ª

4 UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. de OTRA PROPIEDAD DEL TRIÁNGULO DE TARTAGLIA La sua de los eleentos de la fila n-ésia es 2 n. 1 1 Ä Ä Ä Ä 1 2 La razón es uy sencilla: cada eleento de una fila se utiliza dos veces coo suando para forar la fila siguiente. Por ejeplo, para obtener la fila.ª a partir de la.ª: Por tanto, la sua de cada fila es doble que la sua de la fila anterior. ACTIVIDADES 1 Escribe coo cociente de factoriales:! 5 b) ! 19! 1! n! c) n n 1) n 2) n ) d) n 1) n n 1) n )! n 1)! n 2)! n 1)! e) n 1) n 2) n 9) f) 2) 1) n 1) n n 1) n 1)! 2)! n 2)! 2 Siplifica los siguientes cocientes entre factoriales:!! 1 9! b) c) 5! 9! 9 5!! 9 2 1! 1)! 1)! d) e) 1 f) 1) 1)!! 1)!

5 UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 5 de Resuelve las ecuaciones: V x, 2 x x b) VR x, 2 V x, 2 c) V x, 2 V x 2, 2 2 x 1 d) VR x, VR x, 2 1 x x Calcula utilizando factoriales y siplifica: 2) 1) n) 1 n) C 2, n b) C 1, 1 n! 1) 2 5 Escribe la fila once del triángulo de Tartaglia. ) ) ) ) ) ) ) ) ) ) ) ) ô ô ô ô ô ô ô ô ô ô ô ô Calcula: ) ) ) ) 1 ) Cuántas aleaciones distintas se pueden forar con etales diferentes? Cada aleación debe estar forada por dos o ás etales. Solución: aleaciones distintas 2 son todas las posibles cobinaciones de eleentos. son las cobinaciones de eleentos toados 1 a 1, pero con un único etal no hay aleación. 1 es la cobinación de ningún eleento. Resuelve las ecuaciones siguientes sin desarrollar los núeros cobinatorios: b) 12 9 x ) x ) ) ) x ) ) c) 1 1 ) ) x x x 1 x 2 9 Tienes onedas 2, 1, 5 cent., 2 cent., 1 cent., 5 cent., 2 cent. y 1 cent.). Te piden un donativo y puedes responder de uchas foras distintas: no dar nada, dar una oneda, dos, todas. Cuántas posibles respuestas hay? Solución: Hay 2 25 posibles respuestas.

6 UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. de 1 Resuelve sin desarrollar: 9 9 x 9 b) ) ) ) 5 2x ) 2x 2 ) x x y 5 x ; y 1 Calcula x en cada una de las siguientes expresiones: 1 1 b) x x ) ) x o x x ) ) x 15 c) 9 9 d) 12 ) ) ) ) x 9 o x 2 x 2 ) 5 x 5 e) 1 ) 1 f) 1 ) x ) 19 ) ) x 1 x x x o x x 1 12 Resuelve: b) 1 1 x 2x ) x 2 ) x 2 ) x 1 ) x 5 c) 2 ) 2 ) 2 ) d) 19 ) 19 2 ) ) x, y x y x x 1 x 1 Siplifica las siguientes expresiones: x! b) x 1)! c) x! x 2 x x 2 x x 2)! x 1)! x 1)! x 1 Qué relación tiene que existir entre a y b para que se verifique la igualdad ) )? a b Solución: a b o a b 15 Calcula razonadaente el valor de: 1 b) ) ) ) ) Calcula:... ) ) ) ) ) b) Halla: ) ) )... ) 1 2 2

2. Amplía: factoriales y números combinatorios

2. Amplía: factoriales y números combinatorios UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 1 de FACTORIALES El núero de perutaciones de n eleentos es: P n n n 1) n 2) 2 1 A este producto de n factores decrecientes a partir de

Más detalles

4. Amplía: factoriales. Números combinatorios. La fórmula de las variaciones se puede expresar muy cómodamente con factoriales:

4. Amplía: factoriales. Números combinatorios. La fórmula de las variaciones se puede expresar muy cómodamente con factoriales: Pág. 1 de 6 Factoriales El número de permutaciones de n elementos es: P n n (n 1) (n 2) 3 2 1 A este producto de n factores decrecientes a partir de n se le designa por n! que se lee factorial de n o n

Más detalles

Capítulo I. Combinatoria y Probabilidad. Estrategias para contar. Variaciones y Permutaciones sin repetición. Variaciones con repetición

Capítulo I. Combinatoria y Probabilidad. Estrategias para contar. Variaciones y Permutaciones sin repetición. Variaciones con repetición Capítulo I Cobinatoria y Probabilidad Los probleas de conteo son aquellos en los que la solución buscada da coo resultado situaciones o conjuntos de uchos eleentos. Coo agotar todas las posibilidades puede

Más detalles

Tema 1: Combinatoria

Tema 1: Combinatoria Tea : Cobinatoria C. Ortiz, A. Méndez, E. Martín y J. Sendra Febrero de Índice Guía del tea. Introducción. Principios básicos del conteo 3. Variaciones 4. Perutaciones 4 5. Perutaciones circulares. 5 6.

Más detalles

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano Mateática Discreta - IT Inforática de isteas - Mónica squivel - Antonio J. Lozano Tea 4 Técnicas de contar La cobinatoria trata de contar el núero de eleentos de conjuntos finitos. ntre sus aplicaciones

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tea Los úeros reales Mateáticas I º Bachillerato TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úeros racioales: Se caracteriza porque puede expresarse: E fora de fracció,

Más detalles

1-3 EXPONENTES 18 CAPÍTULO 1 ÁLGEBRA

1-3 EXPONENTES 18 CAPÍTULO 1 ÁLGEBRA . 8 9 t st. s. z z. y y y 9 t t t 6. z z z 7. t t t 8. 6 9. 0 0.. 0 y.. a a. 6 b b a. a 6 b 9b 7 6. 6 7. y 0 6 8. p 9. p yq y y z z 0. y y. y y. 6. 6 a. b a b b a 6. 9 y 6 8. y 7. y 0 9. 0... 6 7. a b

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque

Más detalles

PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S

PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S Interés Copuesto: Concepto y factores Fórulas Fundaentales Operación cuando hay Intervalos Irregulares Tasa Noinal Anual y Tasa Efectiva 2.1

Más detalles

INTRODUCCIÓN AL RIESGO, RENTABILIDAD Y COSTO DE OPORTUNIDAD DEL CAPITAL

INTRODUCCIÓN AL RIESGO, RENTABILIDAD Y COSTO DE OPORTUNIDAD DEL CAPITAL CAPÍTULO 7 ITODUCCIÓ AL IESGO, ETABILIDAD Y COSTO DE OPOTUIDAD DEL CAPITAL Hasta el oento heos basado nuestro análisis en el hecho de que el costo de oportunidad del capital depende del riesgo del proyecto,

Más detalles

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo5.Estailidad JoséRaónLlataGarcía EstherGonzálezSaraia DáasoFernándezPérez CarlosToreFerero MaríaSandraRolaGóez DepartaentodeTecnologíaElectrónica eingenieríadesisteasyautoáca Estailidad

Más detalles

Números primos y compuestos

Números primos y compuestos Divisibilidad -Números primos y compuestos. -Múltiplos. Mínimo común múltiplo. -Divisores. Máximo común divisor. -Criterios de divisibilidad. -Descomposición factorial. -Aplicaciones. 1 Números primos

Más detalles

Ley de composición interna u operación en un conjunto

Ley de composición interna u operación en un conjunto ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resuen teoría Prof. Alcón Ley de coposición interna u operación en un conjunto Sea A un conjunto no vacío. Una ley de coposición interna u operación en A es una

Más detalles

2 POTENCIAS Y RAÍCES CUADRADAS

2 POTENCIAS Y RAÍCES CUADRADAS 2 POTENCIAS Y RAÍCES CUADRADAS EJERCICIOS PROPUESTOS 2.1 Escribe cada potencia como producto y calcula su valor. a) ( 7) 3 b) 4 5 c) ( 8) 3 d) ( 3) 4 a) ( 7) 3 ( 7) ( 7) ( 7) 343 c) ( 8) 3 ( 8) ( 8) (

Más detalles

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta Una Fora Distinta para Hallar la Distancia de un Punto a una Recta Lic. Enrique Vílchez Quesada Universidad Nacional Escuela de Mateática Abstract La siguiente propuesta nace de la iniciativa de copartir

Más detalles

TRIÁNGULO DE SIERPINSKI

TRIÁNGULO DE SIERPINSKI TRIÁNGULO DE SIERPINSKI El matemático polaco Waclav Sierpinski (188-1969), construyó este en 1919 del modo siguiente: Paso Inicial (0): Construimos un equilátero de lado a: Paso 1: Uno los puntos medios

Más detalles

PARTE 3 PROGRESIÓN GEOMETRICA

PARTE 3 PROGRESIÓN GEOMETRICA PARTE 3 PROGRESIÓ GEOMETRICA DEFIICIÓ Es un conjunto ordenado en el cuál cada térino se obtiene ultiplicando al anterior por una cantidad constante llaada razón cociente. Tabién podeos decir que progresión

Más detalles

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x CURSO 22-23. Septiebre de 23. ) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: f() -e 2) Utilizando la definición, calcula las derivadas laterales de la función f()

Más detalles

CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaramanga Profesor: Lic. Eduardo Duarte Suescún OPERACIONES CON RADICALES Y RACIONALIZACIÓN

CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaramanga Profesor: Lic. Eduardo Duarte Suescún OPERACIONES CON RADICALES Y RACIONALIZACIÓN CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaraanga Profesor: Lic. Eduardo Duarte Suescún OPERACIONES CON RADICALES Y RACIONALIZACIÓN MARCO TEÓRICO - CONCEPTUAL En el taller anterior heos desarrollado

Más detalles

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA

COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ALGEBRA º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE OPERACIONES CON RADICALES Y RACIONALIZACIÓN MARCO TEÓRICO - CONCEPTUAL En el taller anterior

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

Problema nº2 Halla el número de capicúas de 8 cifras. Cuántos capicúas hay de 9 cifras?

Problema nº2 Halla el número de capicúas de 8 cifras. Cuántos capicúas hay de 9 cifras? Problema nº1 Las matrículas de los coches de un país están formadas por dos letras diferentes seguidas de tres números repetidos o no. Cuántos coches se podrán matricular sin cambiar el sistema? Se supone

Más detalles

3Soluciones a los ejercicios y problemas

3Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; ;, ) 9 7;,; ; ; π b) Alguno de ellos es entero? c) Ordénalos

Más detalles

Determinación de la porosidad

Determinación de la porosidad Deterinación de la porosidad Apellidos, nobre Atarés Huerta, Lorena (loathue@tal.upv.es) Departaento Centro Departaento de Tecnología de Alientos ETSIAMN (Universidad Politécnica de alencia) 1 Resuen de

Más detalles

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102 TEÁTIS ÁRE: ÁSI LVE DE L SIGNTUR: L OJETIVO(S) GENERL(ES) DE L SIGNTUR: l térino del curso el aluno analizará los principios de las ateáticas; aplicará los isos coo herraientas para operar en los coportaientos

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 55. En el caso de la circunferencia, su ecuación en forma general es

INSTITUTO VALLADOLID PREPARATORIA Página 55. En el caso de la circunferencia, su ecuación en forma general es INSTITUTO VALLADOLID PREPARATORIA Página 55 4 LA CIRCUNFERENCIA 4.1 INTRODUCCIÓN Aunque no requiere ser presentada por conocida que es, la circunferencia es el lugar geoétrico de todos los puntos que equidistan

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 58 REFLEXIONA Óscar y Mónica colaboran como voluntarios en el empaquetado de medicinas. En qué contenedor embalará Óscar los analgésicos? Qué ocurriría si eligiera el que tiene forma de cubo?

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GUIAS ÚNICAS DE LABORAORIO DE ÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANIAGO DE CALI UNIVERSIDAD SANIAGO DE CALI DEPARAMENO DE LABORAORIOS MÁQUINAS SIMPLES - POLEAS 1. INRODUCCIÓN. Una áquina siple

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION Nombre de la alumna: Área: MATEMATICAS Asignatura: Matemáticas Docente: Luis López Zuleta Tipo de Guía: Conceptual PERIODO GRADO FECHA DURACION DOS 7º 13 de agosto

Más detalles

PAU+25 QUÍMICA TEMA 1. ESTRUCTURA DE LA MATERIA.

PAU+25 QUÍMICA TEMA 1. ESTRUCTURA DE LA MATERIA. PAU+5 QUÍICA EA. ESRUCURA DE LA AERIA. Ayudas para la resolución de los ejercicios propuestos al final del tea (pág. 8 a pág. 4) CUESIONES: ) Recuerda que todo átoo o ión viene identificado por su síbolo

Más detalles

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8 Ejercicios de potencias y raíces con soluciones 1 Sin realizar las potencias, indica el signo del resultado: a) ( ) 4 b) ( ) 10 c) ( 1) 7 d) ( 5) 9 a) Positivo por tener exponente par. b) Positivo por

Más detalles

ESTRUCTURA TARIFARIA GAS NATURAL

ESTRUCTURA TARIFARIA GAS NATURAL ESTRUCTURA TARIFARIA GAS NATURAL El Artículo 74 de la Ley 42 de 994 establece las funciones y facultades generales de las Coisiones de Regulación. Dentro de estas funciones se encuentra la definición de

Más detalles

La ecuación de segundo grado para resolver problemas.

La ecuación de segundo grado para resolver problemas. La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD CONCEPTOS BÁSICOS ÍMITES Y CONTINUIDAD a deinición de ite para unciones de varias variables es siilar a aquélla para unciones de una variable, pero con la salvedad de que los entornos toados alrededor

Más detalles

3 POTENCIAS Y RAÍZ CUADRADA

3 POTENCIAS Y RAÍZ CUADRADA EJERCICIOS PROPUESTOS 3.1 Indica la base y el exponente de las siguientes potencias y calcula su valor. a) 2 4 c) 4 3 e) 3 5 g) ( 10) 4 b) 3 4 d) 5 3 f) ( 2) 5 h) (6 2 ) a) Base 2, exponente 4; 2 4 16

Más detalles

tecnun INDICE Volantes de Inercia

tecnun INDICE Volantes de Inercia VOLANTES DE INERCIA INDICE 7. VOLANTES DE INERCIA... 113 7.1 INTRODUCCIÓN.... 113 7. ECUACIÓN DEL MOVIMIENTO.... 113 7.3 CÁLCULO DE UN VOLANTE DE INERCIA.... 116 Eleentos de Máquinas 11 7. VOLANTES DE

Más detalles

División 3. Trenes de engranajes. Descripción Cinemática

División 3. Trenes de engranajes. Descripción Cinemática CAPITULO 9 TRENES DE ENGRANAJES, REDUCTORES PLANETARIOS Y DIFERENCIALES División 3 Trenes de engranajes. Descripción Cineática . Descripción General Introducción Un tren de engranajes es un ecaniso forado

Más detalles

EL MAXIMO VALOR ESPERADO, COMO CRITERIO DECISORIO

EL MAXIMO VALOR ESPERADO, COMO CRITERIO DECISORIO EL MAXIMO VALOR ESPERADO, COMO CRITERIO DECISORIO ALFONSO BUSTAMANTE A. Mateático Universidad del Valle. Magister en Ingeniería Industrial y de Sisteas. Universidad del Valle. Profesor Universidad del

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

1. Ejercicios 3 ; 7 4 6, 270 75, 28

1. Ejercicios 3 ; 7 4 6, 270 75, 28 1. Ejercicios 1. Ordena de menor a mayor los siguientes números racionales y represéntalos en una recta numérica: 9 4 ; 2 3 ; 6 5 ; 7 3 ; 7 4 2. Determina, sin hacer la división de numerador por denominador,

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 ACTIVIDAD 1. NÚMEROS RACIONALES esto? a) Efectúa las divisiones 1/3, 1/5, 1/7, 8/2. Son exactas? Se empiezan a repetir las cifras del cociente en algún momento? Cuándo sucede b) Sin efectuar 15/13, di

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES SISTEMAS DE ECUACIONES Dos ecuaciones de primer grado, que tienen ambas las mismas dos incógnitas, constituen un sistema de ecuaciones lineales. La forma

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

Ejercicios resueltos de funciones

Ejercicios resueltos de funciones Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA 1.- Contestar razonadaente a las siguientes preguntas acerca del oviiento arónico siple (MAS): 1A (0.25 p).- Si el periodo de un MAS es

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES Definición Un sistema lineal de dos ecuaciones con dos incógnitas es un par de expresiones algebraicas que se suelen representar de la siguiente forma: ax + by = p cx + dy = q donde

Más detalles

EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES

EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Se recomienda: a) Antes de hacer algo, lee todo el examen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del examen

Más detalles

Razones, Proporciones, Tasas, Matemáticas I

Razones, Proporciones, Tasas, Matemáticas I Razones, Proporciones, Tasas, Porcentajes y Variaciones Números racionales expresados como fracción Dentro de los números reales, encontramos a los números racionales que se expresan como un cociente de

Más detalles

RECURSIÓN. Antonio de J. Pérez Jiménez Seminario de Estalmat Tenerife, marzo de 2008

RECURSIÓN. Antonio de J. Pérez Jiménez Seminario de Estalmat Tenerife, marzo de 2008 RECURSIÓN Antonio de J. Pérez Jiénez Seinario de Estalat Tenerife, arzo de 2008 RECURSIÓN En este trabajo nos centrareos en la recursión aritética. La Recursión roorciona un étodo ara abordar uchos robleas.

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL SISTEMA DE NUMERACIÓN DECIMAL Se llama decimal o de base diez porque se utilizan diez símbolos para representar todos los números. Los diez símbolos, cifras son: 0, 1, 2,3, 4, 5, 6, 7, 8, 9 La relación

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x.

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x. EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 4 ECUACIONES Ejercicio nº 1.- Dada la siguiente igualdad: x 1 3 9 x 5 3x = x responde razonadamente: a) Es cierta si sustituimos la incógnita por el valor cero?

Más detalles

Conteo de Relaciones y Funciones Posibles

Conteo de Relaciones y Funciones Posibles Conteo de Relaciones y Funciones Posibles Departamento de Matemáticas Conteo de Relaciones y Funciones Posibles p.1/?? Número de Relaciones Posibles de A en B Consideremos dos conjuntos: A = {a 1,a 2,...,a

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

ÁLGEBRA: Ejercicios de Exámenes

ÁLGEBRA: Ejercicios de Exámenes MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 4-5.-Se pide a) (p) Enuncia breveente: qué es el rango de una atri cuándo una atri es regular. b) (5p) Discutir según los valores del paráetro el rango de la atri

Más detalles

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES 1. Magnitudes Directamente Proporcionales Kg de café Precio ( ) 1 4 2 8 3 12 4 16 5 20 8 32 Estas dos magnitudes, peso en kg de café y su precio en, se dice

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

1. DIBUJO TÉCNICO: TRAZADOS GEOMÉTRICOS.

1. DIBUJO TÉCNICO: TRAZADOS GEOMÉTRICOS. 1. DIBUJO TÉCNICO: TRAZADOS GEOMÉTRICOS. DEPARTAMENTO DE TECNOLOGÍA 1.1. ÚTILES Y MATERIALES DE DIBUJO TÉCNICO: A) FORMATOS NORMALIZADOS DE PAPEL: En el dibujo técnico el taaño del papel está establecido

Más detalles

Números naturales, principio de inducción

Números naturales, principio de inducción , principio de inducción. Conjuntos inductivos. Denotaremos por IN al conjunto de números naturales, IN {,,, 4, 5, 6,...}, cuyos elementos son suma de un número finito de unos. Recordemos que IN es cerrado

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

4. TEORÍA ATÓMICA-MOLECULAR

4. TEORÍA ATÓMICA-MOLECULAR 4. TEORÍA ATÓMICA-MOLECULAR 1. Indica cuáles de los siguientes procesos son cabios físicos y cuáles quíicos: a) La aduración de una fruta. b) La ebullición del agua. c) La congelación del agua. d) La corrosión

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3

Más detalles

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Matemática General Universitaria 12 mo grado

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Matemática General Universitaria 12 mo grado Colegio Beato Carlos Manuel Rodríguez Departaento de Mateáticas Mapa curricular Mateática General Universitaria 12 o grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Mateática General Universitaria

Más detalles

FUNCIÓN DE TRANSFERENCIA

FUNCIÓN DE TRANSFERENCIA FUNCIÓN DE TRANSFERENCIA 1. RESPUESTA IMPULSO La respuesta ipulso de un sistea lineal es la respuesta del sistea a una entrada ipulso unitario cuando las condiciones iniciales son cero. Para el caso de

Más detalles

Capítulo 3. Fundamentos matemáticos del estudio

Capítulo 3. Fundamentos matemáticos del estudio Capítulo 3. Fundaentos ateáticos del estudio 3.1 Ecuación de Darcy La ley de Darcy es el pilar fundaental de la hidrología subterránea. Es una ley experiental obtenida por el ingeniero francés Henry Darcy

Más detalles

Evaluación 1ª Examen 1º Grupo: 4º ESO Fecha: 9 de octubre 2008. Nota ) 1'9 0'6 : 0'125 7-5/4

Evaluación 1ª Examen 1º Grupo: 4º ESO Fecha: 9 de octubre 2008. Nota ) 1'9 0'6 : 0'125 7-5/4 Departamento de Matemáticas Evaluación 1ª Examen 1º Grupo: 4º ESO Fecha: 9 de octubre 008 Nota 1. Obtén la fracción generatriz de los siguientes números decimales: a) 0'57 b) 1'9 ) c) 0'15. Obtén el número

Más detalles

APUNTES DE LA ASIGNATURA:

APUNTES DE LA ASIGNATURA: APUNTES DE LA ASIGNATURA: ASIGNATURA OBLIGATORIA DE 3º DE INGENIERÍA INDUSTRIAL TEMA 9 TRENES DE ENGRANAJES JESÚS Mª PINTOR BOROBIA DR. INGENIERO INDUSTRIAL DPTO. DE INGENIERÍA MECÁNICA, ENERGÉTICA Y DE

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional Dirección de Capacitación No Docente Dirección General de Cultura y Educación Provincia de Buenos Aires FÍSICA Segundo

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

SUBCONJUNTOS y CONJUNTO POTENCIA. COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013

SUBCONJUNTOS y CONJUNTO POTENCIA. COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013 1 SUBCONJUNTOS y CONJUNTO POTENCIA COMP 2501: Estructuras Computacionales Discretas I Dra. Madeline Ortiz Rodríguez 3 de septiembre de 2013 2 Material de Estudio Libro de Koshy: páginas 71-72, 78-84. Vídeos

Más detalles

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94 6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES 1.- ECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS Una ecuación como 2x + 3y = 7 es una ecuación de primer grado con dos incógnitas. Es de primer grado porque las letras

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 191 EJERCICIOS Epresiones algebraicas 1 Haz corresponder cada enunciado con su epresión algebraica: La mitad de un número. El triple de la mitad de un número. La distancia recorrida en horas

Más detalles

Un sistema formado por dos ecuaciones y dos incógnitas, se puede escribir como sigue:

Un sistema formado por dos ecuaciones y dos incógnitas, se puede escribir como sigue: MATEMÁTICAS EJERCICIOS RESUELTOS DE SISTEMAS LINEALES Juan Jesús Pascual SISTEMA DE ECUACIONES LINEALES A. Introducción teórica B. Ejercicios resueltos A. INTRODUCCIÓN TEÓRICA Sistemas de ecuaciones lineales

Más detalles

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA 1 ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA AUTORES: Cra. Laura S. BRAVINO Mgter. Oscar A. MARGARIA Esp. Valentina CEBALLOS SALAS Departaento de Estadística y Mateática

Más detalles

Clase 8 Sistemas de ecuaciones lineales

Clase 8 Sistemas de ecuaciones lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Considere el siguiente sistema de dos ecuaciones lineales con dos incógnitas x e y:

Más detalles

( ) Experiencia m (Ca) g m (O) g 1ª 1 004 0 400 2 51 2ª 2 209 0 880 2 51 ( ) ( )

( ) Experiencia m (Ca) g m (O) g 1ª 1 004 0 400 2 51 2ª 2 209 0 880 2 51 ( ) ( ) LEYES PONDERALES. Definir: ol, átoo-rao, u..a., peso atóico, peso olecular, núero de Avoadro. Mol: Es la cantidad de sustancia de un sistea que contiene tantas entidades eleentales coo átoos hay en 0 0

Más detalles

XVI Olimpiada Matemática. 2º ESO 2012. Cantabria.pág. 1. XVI Olimpiada Matemática para estudiantes de 2º de ESO

XVI Olimpiada Matemática. 2º ESO 2012. Cantabria.pág. 1. XVI Olimpiada Matemática para estudiantes de 2º de ESO XVI Olimpiada Matemática. 2º ESO. Cantabria.pág. 1 XVI Olimpiada Matemática para estudiantes de 2º de ESO Santander. 12 de mayo de XVI Olimpiada Matemática. 2º ESO. Cantabria.pág. 2 a) El año 2000 fue

Más detalles

Ecuaciones. 2x + 3 = 5x 2. 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. 2x + 2 = 2 (x + 1) 2x + 2 = 2x + 2 2 = 2. x + 1 = 2 x = 1

Ecuaciones. 2x + 3 = 5x 2. 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. 2x + 2 = 2 (x + 1) 2x + 2 = 2x + 2 2 = 2. x + 1 = 2 x = 1 Ecuaciones Igualdad Una IGUALDAD se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. Cierta 2x + 2 = 2 (x + 1)

Más detalles

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO OBJETIVO IDENTIICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO NOMBRE: CURSO: ECHA: Los múltiplos de un número son aquellos que se obtienen multiplicando dicho número por,,,, es decir, por los números naturales.

Más detalles

Ecuación de primer grado con una incógnita. Ejercicios y Solucionario

Ecuación de primer grado con una incógnita. Ejercicios y Solucionario Ecuación de primer grado con una incógnita. Ejercicios y Solucionario 1. Traduce al lenguaje algebraico las siguientes frases: a) la mitad de un número más ocho. b) el doble de un número menos su mitad

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS UNIDAD 5 FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES Y LOGARÍTMICAS Página. La distancia al suelo de una barquilla de la noria varía conforme ésta gira. Representamos gráficamente la función que da la altura

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 1 1 SLUINES LS EJERIIS E L UNI Pág. 1 Página 175 PRTI Semejanza de figuras 1 uáles de estas figuras son semejantes? uál es su razón de semejanza? La primera y la cuarta son semejantes, porque todos los

Más detalles

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como: VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones

Más detalles