Cambios del Sistema de Coordenadas. Transformación de

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cambios del Sistema de Coordenadas. Transformación de"

Transcripción

1 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de Tema N Cambios del Sistema de. Transformación de.- Cambios del Sistema de Consideremos dos sistemas de coordenadas, uno denominado S=(, X, Y, Z), al que llamaremos Viejo Sistema, otro denominado T=(C, U, V, W), al que llamaremos Nuevo Sistema, [Figura.a]. Figura.a: Cambio de un viejo sistema (S) a un nuevo sistema (T) En el viejo sistema S tenemos: = (,,), coordenadas del punto origen = {,,}s, componentes del vector unitario = {,,}s, componentes del vector unitario = {,,}s, componentes del vector unitario P = {,,}s, coordenadas del punto P = componentes del vector de posición p V = {,,}s componentes del vector v

2 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de En el nuevo sistema será: P = {u,v,w} T, coordenadas del punto P = componentes del vector de posición de P = CP V = {u,v,w} T, componentes del vector v Vamos a suponer que se tiene localiado el viejo sistema S en el nuevo sistema T = {uo,vo,wo} T coordenadas del origen de S en T = {,,} T componentes del versor de S en T = {,,} T componentes del versor de S en T = {,,} T componentes del versor de S en T Todo vector puede epresarse como combinación lineal de los vectores unidad: V = + + = u u + v v + w w en T será : = u + v + w en T será : = u + v + w en T será : = u + v + w Multiplicando cada una de las epresiones anteriores por,, respectivamente, sumando sacando factor común, tendremos: V = ( + + )u + ( + + )v + ( + + )w Comparando con lo obtenido anteriormente: V = u u + v v + u = + + v = + + w = + + tendremos: Definiendo:

3 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de X M w v u U,, U = M X w v u U () V T T T T Vs La ecuación () nos da el pasaje de S a T.Se llama Le de Variación de las Componentes para el paso de S a T, independiente de la posición del origen respecto a T. Para obtener la Le de variación de las de los Puntos aplicamos la le de variación de las componentes al vector p de P en S. P = p = {,,}s = {u-uo, v-vo, w-wo} T Aplicando () : w v u wo vo uo P T T T T T P S Definiendo las matrices: w v u U, wo vo uo Uo U = Uo + M X

4 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de.- Transformación Inversa sistema. Será cuestión ahora de considerar a T como el viejo sistema a S como el nuevo Para S T teníamos: M, U M X T T T V T Vs Ahora para T S tendremos : u M u u v v v w w w, X M U us vs ws Vs V T Donde M M son inversas, M = M - Para la le de variación de las coordenadas de los puntos teníamos en S T : U = Uo + M X () P T T Ps con : uo Uo vo wo T Ahora tendremos para T S :

5 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de X = Xc + M U () Ps Pc P T Reemplaando () en () : X = Xc + M (Uo + M X) X = Xc + M Uo + M M X, M M = Identidad I X = Xc + M Uo + X X X = = Xc + M Uo Xc = M Uo = M - Uo En consecuencia, como conoco la matri M la matri Uo (es decir las coordenadas del origen S en T), conoco también Xc (es decir las coordenadas del origen de T en S). La matri que gobierna la transformación en un sistema cartesiano es ortonormal, lo que significa que su inversa no es mas que su transpuesta M - = M t. Las filas columnas de esta matri conservan la longitud del vector el ángulo, es decir que no se produce distorsión. Como las columnas de M - son los vectores unidad de T en S, entonces también las filas de M son los vectores unidad de T en S. M us vs ws T T T

6 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de.- Traslación Rotación de Sistemas a) Traslación La traslación de sistemas cartesianos implica un cambio de origen sin cambiar la orientación de los ejes, [Figura.a], es decir que: = u, = v, = w Figura. a: Traslación entre sistemas de coordenadas En la matri de traslación M: M us vs ws T T T Como : u = {,,} T, = {,,}s v = {,,} T, = {,,}s w = {,,} T, = {,,}s La matri M será : M = I

7 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de La le de variación de las componentes de los vectores: U = M X U = X o sea : u v w I, de donde : u =, v =, w = Entonces, la traslación lo único que produce es un rebautio de las componentes del vector V, las que en el viejo sistema S se llamaban,,, ahora en el nuevo sistema T se llaman u, v, w. Para la le de variación de las coordenadas de los puntos: U = Uo + M X, con M = I tendremos: U = Uo + X, o sea u = uo + v = vo + w = wo + donde: (u,v,w) son las coordenadas de P en T (uo,vo,wo) son las coordenadas de O en T (,,) son las coordenadas de P en S b) Rotación La rotación es un cambio de orientación de los ejes sin cambio en el origen, [Figura.b]. El origen O = C, lo que implica que: uo =, vo =, wo =, por lo que las coordenadas de O en T son nulas. Figura.b: Rotación del sistema Como la variación de las componentes de los vectores no depende de la posición del origen C del nuevo sistema, se tiene: U = M X.

8 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de Pero en la le de variación de las coordenadas de los puntos: U = Uo + M X. Si Uo =, tenemos U = M X, de donde u = + + v = + + w = Esquema de Ángulos Directores de Cosenos Directores us M vs, U = M X ws T T T Las componentes de un vector respecto de un eje se calculan como el coseno del módulo del ángulo no orientado que el vector forma con el eje. cos u cos u cos u cos v, cos v, cos v cos w cos w cos w cos u M cos v cos w cos cos cos u v w cos u cos v cos w En todo problema se puede armar un cuadro de Ángulos Directores de Cosenos Directores, que son los ángulos que forman entre sí los ejes de los sistemas, [Tabla ]. Tabla : Esquema de ángulos directores Cosenos directores Ángulo Coseno u u u u u cos u cos u cos u v v v v v cos v cos v cos v w w w w w cos w cos w cos w

9 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de.4.- Rotación alrededor del primer eje X Sea el sistema S = (O, X, Y, Z) directo, sobre cuo eje X realiamos una rotación del mismo sentido que la del sistema, es decir que será positiva [+], [Figura.4a] ángulo u 9 9 v 9 9 w coseno u v cos sen w sen cos Figura.4a: Rotación alrededor del eje X La ecuación de transformación será: u v w cos - sen sen cos.4.- Rotación alrededor del segundo eje Y Consideremos un sistema S = (O, X, Y, Z) directo sobre cuo eje Y realiamos una rotación del mismo sentido que el del sistema, positiva [+], [Figura.b] ángulo u v 9 9 w 9 9 coseno u cos sen v Figura.4b: Rotación alrededor del eje Y w sen cos

10 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de La ecuación de transformación será: u cos v w sen sen cos.4.- Rotación alrededor del tercer eje Z Consideremos el sistema S = (O, X, Y, Z) directo sobre cuo eje Z realiamos una rotación del mismo sentido que el del sistema, o sea que será positiva [+], [Figura.4c]. ángulo u 9 9 v w 9 9 coseno u cos sen v sen cos Figura.4c: Rotación alrededor del eje Z w La ecuación de transformación será : u cos v sen w sen cos.5- Transformación de Para realiar transformaciones de coordenadas se utilian matrices de rotación, de tal manera que si tenemos un punto en el sistema (,,), después de aplicar rotación a dicho sistema las nuevas coordenadas del punto serán (u,v,w)

11 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de Estas matrices, según el eje donde se produce la rotación, son las siguientes: R cos sen, sen cos cos - sen R, sen cos cos R - sen sen cos La rotación es positiva si es en sentido contrario a las agujas del reloj. Para cambiar el sentido de rotación, debemos tener en cuenta que =, por lo tanto el sen = sen. Al trabajar con coordenadas astronómicas usualmente debemos pasar de coordenadas cartesianas a esféricas, [Figura.5a]: Figura.5a: Pasaje de coordenadas cartesianas a esféricas De la figura anterior podemos ver que: = r sen r = r cos = r cos = r cos cos = r sen = r cos sen

12 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de Por lo que la matri de transformación será: r r cos cos cos sen r sen Como los vectores tienen norma igual a uno, entonces r =..5.- Transformación de Ecuatoriales Celestes a Eclípticas En esta transformación debe llevarse el ecuador hacia la eclíptica girando un ángulo = 7 (oblicuidad de la eclíptica) sobre el eje X, [Figura.5b]. Figura.5b: Rotación [] del ecuador sobre la eclíptica Definiendo: L, B = Longitud Latitud Eclípticas, = Ascensión Recta Declinación La transformación se realia del siguiente modo: cos L cos B sen L cos B sen B cos - sen sen cos cos cos sen cos sen

13 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de X = cos L cos B = cos cos Y = sen L cos B = cos sen cos + sen sen Z = sen B = sen sen cos + cos sen B = sen - Z o mejor usar B = tg - ( Z / (X + Y ) / ) L = tg - (Y / X) Si se desea llevar de coordenadas eclípticas a ecuatoriales se debe tener en cuenta que = -, o bien utiliando la inversa (transpuesta) de la matri rotación..5.- Transformación de Ecuatoriales Celestes a Galácticas Sea la [Figura.5c], donde se indican los siguientes elementos: Figura.5c: Elementos del sistema de coordenadas galáctico b, l = latitud longitud galácticas C = coordenadas del centro galáctico

14 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de U = intersección del ecuador celeste con el ecuador galáctico con un ángulo de PG = h 5 m 6 s.754 PG = UC = lo = CG = 7 h 45 m 7 s.99 CG = Estas precisiones (J.) son ficticias a que solo se asegura el minuto, pero a fin de conservar la precisión de los cálculos se usan completamente. Los vectores de posición son : cos l cos b sen l cos b sen b, cos cos sen cos sen Aplicamos: () Una rotación sobre el eje Z de o + 9 = 8 h 5 m en sentido antihorario. Llevo el punto vernal () a coincidir con U. () Una rotación sobre el eje X de 66 4 en sentido antihorario. Llevo el polo norte a coincidir con el polo norte galáctico o lo que es lo mismo el ecuador con el ecuador galáctico. () Una rotación sobre el eje Z de 56 en sentido horario. Llevo U a coincidir con C. Rot - sen o - cos o cos o - sen o

15 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de Rot sen o - cos o cos o sen o Rot cos lo sen lo - sen lo cos lo El orden para resolver este producto es el siguiente: A = (R(R(R B))). Debemos recordar que para el producto de matrices no aplicamos la propiedad conmutativa. R R R Para pasar de coordenadas eclípticas a galácticas ( L, B l, b ), se tendrá que hacer una rotación mas. Deberemos primero llevar la eclíptica al ecuador girando sobre el eje X un ángulo de = 7 luego seguir los pasos vistos anteriormente..5.- Transformación de Ecuatoriales Locales a Horiontales El elemento clave para realiar esta transformación es la latitud del lugar. Si no se conoce la latitud, entonces no se puede operar. Los parámetros que deben relacionarse son: H, = Ángulo Horario Declinación A, h = Acimut (desde el norte pasando por el este) ángulo de altura Hacemos dos rotaciones no mu obvias, [Figura.5d]:

16 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de () Rotación alrededor del eje Z de 8, para hacer que el Acimut el Ángulo Horario sean compatibles en signo. () Rotación alrededor del eje Y de (9 ), para llevar el Ecuador hacia el plano del Horionte. Figura.5d: Transformación entre los sistemas Ecuatorial Local Horiontal Recordamos que: cos (9 ) = sen sen (9 ) = cos cos H cos sen H cos sen sen - cos cos sen - - cos A cos h sen A cos h sen h

17 ASTRONOMÍA DE POSICIÓN Cambios del Sistema de. Transformación de cos H cos sen H cos sen - sen cos - cos sen cos A cos h sen A cos h sen h Como la matri de rotación es simétrica la transpuesta es la misma, por lo tanto la transformación inversa se hace igual. cos A cos h sen A cos h sen h - sen cos - cos sen cos H cos sen H cos sen X = cos A cos h = sen cos H cos + cos sen Y = sen A cos h = sen H cos Z = sen h = cos cos H cos + sen sen h = sen - Z, o mejor usar: h = tg - ( Z / (X + Y ) / ) A = tg - (Y / X)

Escuela de Agrimensura

Escuela de Agrimensura Escuela de Agrimensura Coordenadas Geográficas Meridianos y paralelos Ecuador Meridiano de Greenwich Coordenada ascendente Longitud: ángulo entre el meridiano de Greenwich y el meridiano del lugar. Coordenada

Más detalles

RESUMEN GEODESIA ASTRONOMICA.-

RESUMEN GEODESIA ASTRONOMICA.- RESUMEN GEODESIA ASTRONOMICA.- Esfera Celeste: La esfera celeste es una superficie hipotética de forma abovedada sobre la cual se consideran proyectados todos los astros dispersos en el espacio. Esta bóveda

Más detalles

TRANSFORMACIONES LINEALES II. Computación Gráfica

TRANSFORMACIONES LINEALES II. Computación Gráfica TRANSFORMACIONES LINEALES II Computación Gráfica Rotaciones Transformación lineal que preserva producto punto entre vectores. Transforma bases de mano derecha a bases de mano derecha. En D, cada rotación

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1

el blog de mate de aida 4º ESO: apuntes de vectores pág. 1 el blog de mate de aida 4º ESO: apuntes de vectores pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El punto de

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles

Elementos de geometría útiles para la localización espacial

Elementos de geometría útiles para la localización espacial Elementos de geometría útiles para la localización espacial Por qué los necesitamos un sistema de coordenadas? Ubicar espacialmente lo que se mide u observa Posicionar objetos Navegar Replantear Volver

Más detalles

MOVIMIENTOS DE LA TIERRA

MOVIMIENTOS DE LA TIERRA MOVIMIENTOS DE LA TIERRA Está sujeta a más m s de 10 movimientos Movimiento de rotación Movimiento de traslación 930 millones de km Distancia media al sol 1 U.A. (150 millones km) 30 km por segundo Órbita

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Vectores. 1) Magnitudes físicas

Vectores. 1) Magnitudes físicas Vectores 1) Magnitudes físicas Eisten magnitudes físicas que quedan perfectamente definidas mediante un número epresado en sus unidades correspondientes. Ejemplos de este tipo de magnitud son: la masa

Más detalles

Sistemas de Coordenadas Astronómicas. Posiciones Especiales de los Astros

Sistemas de Coordenadas Astronómicas. Posiciones Especiales de los Astros continuación del Tema 1 Sistemas de Coordenadas Astronómicas. Posiciones Especiales de los Astros 1.6- Fórmulas de Nepper para triángulos esféricos Al trabajar con triángulos esféricos es conveniente,

Más detalles

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES

Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).

Más detalles

2 Transformaciones en 3D

2 Transformaciones en 3D 2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.

Más detalles

Resumen de Transformaciones Isométricas. Traslaciones

Resumen de Transformaciones Isométricas. Traslaciones Resumen de Transformaciones Isométricas Una transformación es un procedimiento geométrico o movimiento que produce cambios en una figura. La palabra isometría proviene del griego y significa igual medida

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto

Más detalles

ovimiento de traslación de la tierra alrededor del sol

ovimiento de traslación de la tierra alrededor del sol ovimiento de traslación de la tierra alrededor del sol que observamos? el sol se desplaza 1 por día hacia el este con respecto a las estrellas fijas las estrellas salen 4 mas temprano cada día se mueve

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

FIG Ω es el argumento del nodo o ángulo formado por el eje X y la dirección del nodo ascendente.

FIG Ω es el argumento del nodo o ángulo formado por el eje X y la dirección del nodo ascendente. 3.11 Elementos de una órbita Sabemos que para determinar completamente la solución del problema de los dos cuerpos necesitamos seis constantes de integración y, además, un dato: la masa del secundario

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

Sistemas de coordenadas celestes (resumen)

Sistemas de coordenadas celestes (resumen) istemas de celestes (resumen) suponiendo la tierra homogénea y esférica podemos dar las siguientes definiciones: esfera celeste: esfera imaginaria con centro en el observador y radio arbitrario donde,

Más detalles

Vectores. en el plano

Vectores. en el plano 7 Vectores 5 en el plano LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD Los vectores nos dan información en situaciones como el sentido de avance de una barca o la dirección de un trayecto en bicicleta. INICIO

Más detalles

Coordenadas horizontales

Coordenadas horizontales Primer vertical Coordenadas horizontales Acimut (a) : 0º a 360º en sentido retrógrado desde el Sur (SONE) (Criterio astronómico) desde el Norte (NESO) (Criterio topográfico) Altura (h) : de 90º (cénit))

Más detalles

intersección de dicho meridiano sobre el Ecuador.

intersección de dicho meridiano sobre el Ecuador. Tema 6 Determinación de la Latitud Geográfica 5.1 Definiciones De acuerdo a la [Figura 5.1a] siguiente pueden darse tres diferentes definiciones de Latitud (): a) es el arco de meridiano comprendido entre

Más detalles

V = v 1 +2v 2 +3v 3. v 2. v 1

V = v 1 +2v 2 +3v 3. v 2. v 1 Coordenadas Hay muchas maneras de darle coordenadas a los puntos del espacio, las ecuaciones de las curvas o superficies dependen de las coordenadas que utilicemos y eligiendo las coordenadas adecuadas

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 5. Orientándose en el Universo

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 5. Orientándose en el Universo Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

CORRECCIÓN PRUEBA 2ª EVALUACIÓN

CORRECCIÓN PRUEBA 2ª EVALUACIÓN CORRECCIÓN PRUEBA ª EVALUACIÓN OPCIÓN A EJERCICIO nº Sea la matriz 0 0 A a 0 b a) Cuándo el determinante de A es el seno de algún número real? b) Calcula la inversa de A cuando exista. c) Determina todos

Más detalles

Matemáticas Aplicadas

Matemáticas Aplicadas Matemáticas Aplicadas para Diseño de Videojuegos 5. Matrices y Geometría Vectorial Contenidos Vectores Componente de un vector. Vectores unitarios. Módulo, suma y producto escalar. Gráficos vectoriales.

Más detalles

Un vector es un segmento orientado que consta de los siguientes elementos:

Un vector es un segmento orientado que consta de los siguientes elementos: El conjunto R 3 : Conjunto formado por todas las ternas de números reales. Un vector es un segmento orientado que consta de los siguientes elementos: - Módulo: Es la longitud del vector. - Dirección: es

Más detalles

Introducción a la observación astronómica

Introducción a la observación astronómica Introducción a la observación astronómica Esfera Celeste Werner Omar Chanta Bautista Licenciatura en Física Aplicada, USAC www. astronomia. org. gt 22 de junio de 2012 Werner Chanta (USAC) Observación

Más detalles

ovimiento de traslación de la tierra alrededor del sol

ovimiento de traslación de la tierra alrededor del sol ovimiento de traslación de la tierra alrededor del sol que observamos? el sol se desplaza 1 por día hacia el este con respecto a las estrellas fijas las estrellas salen 4 mas temprano cada día se mueve

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

Expresión matricial de las operaciones de simetría

Expresión matricial de las operaciones de simetría Epresión matricial de las operaciones de simetría Cada una de las operaciones de simetría se puede describir como una transformación de ejes de coordenadas, de tal manera que las coordenadas de la imagen

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

CAPITÁN DE YATE MÓDULO DE NAVEGACIÓN ENERO 2017

CAPITÁN DE YATE MÓDULO DE NAVEGACIÓN ENERO 2017 CAPITÁN DE YATE MÓDULO DE NAVEGACIÓN ENERO 2017 NOMBRE: APELLIDOS: D.N.I.: TEORÍA DE NAVEGACIÓN 01.- Cuáles de los siguientes puntos de la eclíptica del Sol tienen declinación igual a cero? a) Aries y

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Tema 1.2 La observación del cielo. Coordenadas. El telescopio.

Tema 1.2 La observación del cielo. Coordenadas. El telescopio. Tema 1.2 La observación del cielo. Coordenadas. El telescopio. 1.2.1 Observación del cielo. Para poder observar de forma sistemática (y útil) el cielo es necesaria una cierta sistematización. Si tenemos

Más detalles

VECTORES. Vector fijo : es un segmento cuyos extremos se dan en cierto orden. Se simbolizan de la siguiente forma : AB

VECTORES. Vector fijo : es un segmento cuyos extremos se dan en cierto orden. Se simbolizan de la siguiente forma : AB VECTORES Vector fijo : es un segmento cuyos extremos se dan en cierto orden. Se simbolizan de la siguiente forma : B Características de un vector fijo :. 1º Módulo : es la longitud del segmento B. Se simboliza

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Astrofísica - I Introducción. 2 - La Esfera Celeste

Astrofísica - I Introducción. 2 - La Esfera Celeste Astrofísica - I Introducción 2 - La Esfera Celeste Astrofísica - I Introducción 2 - La Esfera Celeste Astronomía de posición Sistema de coordenadas horizontales Movimiento diurno de las estrellas Sistema

Más detalles

! OP por partir del origen tendrá como componentes

! OP por partir del origen tendrá como componentes 1 Ecuación del plano Conociendo N (nx ; n y ; n z )? y la distancia n a la que se encuentra el plano del origen de coordenadas ( medidaen la dirección del vector N ), deberemos encontrar la expresión del

Más detalles

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES:

ÁLGEBRA VECTORIAL MAGNITUDES ESCALARES Y VECTORIALES: MAGNITUDES ESCALARES Y VECTORIALES: Una magnitud es escalar cuando el conjunto de sus valores se puede poner en correspondencia biunívoca y continua con el conjunto de los números reales o una parte del

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

CALCULO VECTORIAL.CONCEPTOS BÁSICOS.

CALCULO VECTORIAL.CONCEPTOS BÁSICOS. CALCULO VECTORIAL.CONCEPTOS BÁSICOS. 1. MAGNITUDES ESCALARES Y VECTORIALES. Magnitud física es todo aquello que se puede medir. Magnitudes escalares Son aquellas que están perfectamente definidas por un

Más detalles

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra. CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan

Más detalles

Eigenvalores y eigenvectores

Eigenvalores y eigenvectores Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES Una de las aplicaciones más famosas del concepto de determinante es el método para resolver sistemas de m ecuaciones con n incógnitas, aparece en en la publicación

Más detalles

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:

RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:

Más detalles

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos.

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos. Álgebra lineal Matrices Rango de una matriz Orden del mayor menor complementario no nulo. Matriz regular det A Diagonal principal Elementos a ii de la matriz. Si la matriz es cuadrado son los elementos

Más detalles

Sesión Nº 02. Coordenadas polares

Sesión Nº 02. Coordenadas polares Sesión Nº 02 Coordenadas polares El sistema de coordenadas polares es un sistema de coordenadas que define la posición de un punto en función de los ángulos directores y de la distancia al origen de referencia.

Más detalles

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1

el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre

Más detalles

APUNTES 1 VECTORES M.C. CESAR GUERRA TORRES

APUNTES 1 VECTORES M.C. CESAR GUERRA TORRES APUNTES 1 VECTORES M.C. CESAR GUERRA TORRES 1. INTRODUCCION Las cantidades físicas en su forma general se dividen en: a) escalares y b) vectores. Un escalar es una cantidad física es utilizada para expresar

Más detalles

Geometría del plano y el espacio

Geometría del plano y el espacio Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

En un lugar de latitud 72º Norte, Cuándo el sol permanecerá todo el día sobre el horizonte? Cuando la declinación del sol sea superior a 18º.

En un lugar de latitud 72º Norte, Cuándo el sol permanecerá todo el día sobre el horizonte? Cuando la declinación del sol sea superior a 18º. A que es debido que el T.A.I y el T.E difieran exactamente -32.184 segundos? Sus orígenes se fijaron al T.U en épocas diferentes, por lo que la disminución de la velocidad de rotación de la tierra ha provocado

Más detalles

Matemáticas Aplicadas

Matemáticas Aplicadas Matemáticas Aplicadas para Diseño de Videojuegos 4. Trigonometría Contenidos Ángulos: unidades de medida. Razones trigonométricas. Funciones trigonométricas. Coordenadas polares y esféricas. Identidades

Más detalles

2.7.1 Movimientos de los planos fundamentales a los que se refieren las coordenadas de los astros

2.7.1 Movimientos de los planos fundamentales a los que se refieren las coordenadas de los astros .7 Precesión y Nutación.7. Movimientos de los planos fundamentales a los que se refieren las coordenadas de los astros La acción perturbatriz del Sol, la Luna y los planetas sobre la Tierra da lugar a

Más detalles

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales:

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales: Lección 1 El espacio euclídeo 1.1. El espacio vectorial R n Definición. Conjunto de todas las n-uplas de números reales: R n = {(x 1,x 2,...,x n ) : x 1,x 2,...,x n R} Nos interesan los casos n = 2 y n

Más detalles

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x Capítulo 2 Cinemática El desarrollo de las expresiones contenidas en este capítulo se lleva a cabo en un sistema de referencia general cartesiano {I 1 I 2 I 3 }. La notación es, con algunas diferencias,

Más detalles

Ecuación del plano. Conociendo. N n x,n y,n z y la distancia n a la que se encuentra el plano del

Ecuación del plano. Conociendo. N n x,n y,n z y la distancia n a la que se encuentra el plano del Ecuación del plano Conociendo N n x,n y,n z y la distancia n a la que se encuentra el plano del origen de coordenadas ( medidaen la dirección del vectorn ), deberemos encontrar la expresión del punto P

Más detalles

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial Visión artificial y Robótica Geometría Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Geometría 2D y 3D Transformación de coordenadas Calibración de la cámara Álgebra necesaria

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.

RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero. RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección

Más detalles

Algebra vectorial y matricial

Algebra vectorial y matricial Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un

Más detalles

Determinación de la Longitud

Determinación de la Longitud Tema 7 Determinación de la Longitud Geográfica DETERMINACION DE LA LONGITUD DE UNA ESTACION. El objeto de la Astronomía de Posición es la determinación de las coordenadas geográficas terrestres de un Punto

Más detalles

El Tensor de los Esfuerzos y los esfuerzos principales

El Tensor de los Esfuerzos y los esfuerzos principales El Tensor de los Esfuerzos y los esfuerzos principales Existen dos +pos principales de fuerzas en un con4nuo: 1. Fuerzas de cuerpo. Actúan en cualquier parte del cuerpo y son proporcionales al volúmen

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a

Más detalles

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x?

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x? Guía N 3 Nombre: Curso: 1 Medio A-B-C-D Unidad Geometría Fecha: Profesora: Odette Castro M. Contenidos: Transformaciones isométricas en el plano cartesiano Simetría Axial 1. Dibuja la figura simétrica,

Más detalles

TRIGONOMETRÍA DEL CÍRCULO

TRIGONOMETRÍA DEL CÍRCULO TRIGONOMETRÍA DEL CÍRCULO Otra unidad de medida para ángulos: RADIANES 1 Usamos grados para medir ángulos cuando aplicamos trigonometría a los problemas del mundo real. Por ejemplo, en topografía, construcción,

Más detalles

UNIDAD 2: ESPACIOS VECTORIALES

UNIDAD 2: ESPACIOS VECTORIALES UNIDAD 2: ESPACIOS VECTORIALES Introducción. Vectores. Adición de vectores. Propiedades. Multiplicación de un vector por un escalar. Propiedades. Módulo o norma de un vector. Vector unitario o versor.

Más detalles

Dr. Lorenzo Olguín R. Universidad de Sonora. DF-UNISON Hermosillo, Sonora

Dr. Lorenzo Olguín R. Universidad de Sonora. DF-UNISON Hermosillo, Sonora Dr. Lorenzo Olguín R. Universidad de Sonora DF-UNISON Hermosillo, Sonora 1 Sistemas de Coordenadas Hay varios sistemas de coordenadas astronómicas. Solo revisaremos el Sistema Ecuatorial. IAUNAM - OAN

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

Tema 11: Problemas Métricos

Tema 11: Problemas Métricos ..- Distancia entre dos puntos : Tema : Problemas Métricos B AB A d( A, B) AB La distancia entre dos puntos Aa (, a, a) Bbb (,, b ) es el módulo del vector que une dichos puntos: d( A, B) AB b a b a b

Más detalles

V E C T O R E S L I B R E S E N E L P L A N O

V E C T O R E S L I B R E S E N E L P L A N O V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

Navegación Pesca Y Transporte Marítimo Gobierno del Buque. Tema 2 Coordenadas celestes.

Navegación Pesca Y Transporte Marítimo Gobierno del Buque. Tema 2 Coordenadas celestes. ÍNDICE 1.1 INTRODUCCIÓN 1.2 COORDENADAS HORIZONTALES 1.3 COORDENADAS HORARIAS 1.4 COORDENADAS URANOGRÁFICAS O ECUATORIALES 1.5 RELACIÓN ENTRE LOS DISTINTOS SISTEMAS DE COORDENADAS QUE SE MIDEN EN EL ECUADOR.

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

EXAMEN DEL MÓDULO DE NAVEGACIÓN CAPITÁN DE YATE (RD 875/2014) CONVOCATORIA ENERO 2016

EXAMEN DEL MÓDULO DE NAVEGACIÓN CAPITÁN DE YATE (RD 875/2014) CONVOCATORIA ENERO 2016 EXAMEN DEL MÓDULO DE NAVEGACIÓN CAPITÁN DE YATE (RD 875/2014) CONVOCATORIA ENERO 2016 TEORÍA DE NAVEGACIÓN. 01.-La altura de un astro se define como un arco de: a) Círculo vertical contado desde el horizonte

Más detalles

La intersección con el eje y ocurre a la altura 1 y corresponde al término constante b. Por lo tanto,

La intersección con el eje y ocurre a la altura 1 y corresponde al término constante b. Por lo tanto, FORMA PENDIENTE INTERSECCIÓN y = mx + b Ejemplo 1: Hallar la ecuación de la recta cuya intersección con el eje y es (0, 1) y cuya pendiente es 3.Graficarla. Respuesta: La intersección con el eje y ocurre

Más detalles

2.- (Puntuación máxima 2 puntos). Para cada valor del parámetro real a, se consideran los tres planos siguientes:

2.- (Puntuación máxima 2 puntos). Para cada valor del parámetro real a, se consideran los tres planos siguientes: 1.- (Puntuación máxima 3 puntos). Se consideran las rectas: a) (1 punto) Calcular la distancia entre r y s. b) (1 punto) Hallar unas ecuaciones cartesianas de la recta perpendicular común a r y s y que

Más detalles

Prof: Martínez, Juan Asignatura: E.D.I. (Matemática) 1 ÁNGULOS ORIENTADOS

Prof: Martínez, Juan Asignatura: E.D.I. (Matemática) 1 ÁNGULOS ORIENTADOS Prof: Martínez, Juan Asignatura: E.D.I. (Matemática) 1 ÁNGULOS ORIENTADOS Se llama ángulo orientado R O S al ángulo generado por la rotación de la semirrecta OR a la posición de la semirrecta OS. POR CONVENCIÓN:

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014 ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la

Más detalles

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta. 1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

AST0111 Astronomía Clase 4

AST0111 Astronomía Clase 4 AST0111 Astronomía Clase 4 El tiempo en Astronomía Próxima Centauri: red dwarf star T=3050K L=0.001 L R=0.14 R M=0.12 M Próxima-b : Msini=1.3 M P=11.2 d a=0.05 AU P=11.2d CALENDARIOS División de años

Más detalles

EL CAMBIO DEL MARCO DE REFERENCIA OFICIAL EN MÉXICO

EL CAMBIO DEL MARCO DE REFERENCIA OFICIAL EN MÉXICO EL CAMBIO DEL MARCO DE REFERENCIA OFICIAL EN MÉXICO Contenido Antecedentes Cálculo de Coordenadas de la RGNA Transformación ITRF 92 a ITRF 2000 Modelo del IERS Placas Tectónicas Antecedentes La Red Geodésica

Más detalles

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

VECTORES Y OPERACIONES CON VECTORES

VECTORES Y OPERACIONES CON VECTORES BOLILLA 2 Sistema de Coordenadas VECTORES Y OPERACIONES CON VECTORES Un sistema de coordenadas permite ubicar cualquier punto en el espacio. Un sistema de coordenadas consta de: Un punto fijo de referencia

Más detalles

el blog de mate de aida MI: repaso de vectores pág. 1 VECTORES

el blog de mate de aida MI: repaso de vectores pág. 1 VECTORES el blog de mate de aida MI: repaso de vectores pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas el eje vertical se llama eje de ordenadas. El punto de corte de

Más detalles

Nociones elementales de trigonometría

Nociones elementales de trigonometría Nociones elementales de trigonometría La parte de la Matemática que se basa en las propiedades especiales de un triángulo rectángulo se llama trigonometría. Muchos conceptos de trigonometría son muy importantes

Más detalles

ECUACIÓN DEL PLANO, TODAS SUS FORMAS

ECUACIÓN DEL PLANO, TODAS SUS FORMAS ECUACIÓN DEL PLANO, TODAS SUS FORMAS Presentación: aquí pretendo desarrollar las formas de la ecuación del plano más utiliadas en Álgebra (no todas las formas, deben eistir otras más). Aquí trabajamos

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES CAPITULO 2 VECTORES 2.1 Escalares y Vectores Una cantidad física que pueda ser completamente descrita por un número real, en términos de alguna unidad de medida de ella, se denomina una cantidad física

Más detalles

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar RECURSO SOLAR Primera Clase Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar Objetivos Posicionamiento del Sol Ubicación de sombras en el diagrama solar Distancia entre paneles Inclinación óptima

Más detalles

La Esfera Celeste. Constelaciones: 88 regiones semi-rectangulares en el cielo. Cuadrante y Sextante. Ángulos

La Esfera Celeste. Constelaciones: 88 regiones semi-rectangulares en el cielo. Cuadrante y Sextante. Ángulos La Esfera Celeste Constelaciones: 88 regiones semi-rectangulares en el cielo Las constelaciones del hemisferio norte llevan nombres de mitología griega: Orion, Cygnus, Leo, Ursa Major, Canis Major, Canis

Más detalles

meridiano de referencia: círculos máximos que

meridiano de referencia: círculos máximos que coordenadas geográficas meridianos terrestres: meridiano de referencia: círculos máximos que meridiano de Greenwich contienen al eje de P rotación terrestre λ(longitud geográfica)=0h 0h λ 24h + hacia el

Más detalles