MÉTODOS NUMÉRICOS. 1.1 Sistemas de numeración

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MÉTODOS NUMÉRICOS. 1.1 Sistemas de numeración"

Transcripción

1 MÉTODOS NUMÉRICOS 1.1 Sistemas de numeración

2 Sistemas numéricos. Los números son los mismos en todos lados. Sus nombres y su simbología podrán ser diferentes, pero tienen el mismo significado. Los pueblos primitivos aprendieron a contar con los dedos, con los que no podían alcanzar cifras elevadas, pero si las suficientes para satisfacer sus necesidades. Si querían recordar algunos números, hacían incisiones en un palo o marcas en una roca.

3 Sistemas numéricos. Aún ahora, para contar algunas cosas, es útil usar rayas verticales, agrupando de cinco en cinco. Hay muchas maneras de contar: de dos en dos, porque las personas tienen dos manos, dos pies, dos ojos y dos orejas; de cinco en cinco, porque hay cinco dedos en cada mano; de diez en diez, porque son diez los dedos de las manos; de veinte en veinte, porque se tienen veinte dedos sumando los de las manos y los pies. Por eso, los números que sirven para contar se llaman naturales: x N. Cuando la gente empezó a escribir, también encontró la forma de representar los números de manera más sencilla, con símbolos.

4 Los números egipcios. Los egipcios fueron quizá los primeros que crearon una forma de escritura numérica, usando diferentes símbolos: El sistema numeral egipcio tiene como base el diez, pero no es posicional, porque no hace uso del cero; para representar un número, se repetían los ocho símbolos anotados, hasta nueve veces cada uno, con lo cual se alcanzaba un rango de representación de 1 a De izquierda a derecha, primero aparecían las unidades, luego las decenas, en seguida las centenas y así, sucesivamente. La interpretación de los números se hace leyendo de derecha a izquierda, sumando los valores de los símbolos. Ejemplo:

5 Los números romanos Los romanos usaron letras del alfabeto para construir un sistema de numeración que resultaba algo más fácil de manejar: I V X L C D M Los números romanos todavía se usan, por tradición, en relojes, para el capitulado de libros, etc., como representaciones elegantes de los números, pero ya no para fines aritméticos. Las reglas de escritura incluyen el no usar nunca tres símbolos iguales juntos, lo que implica tener que hacer restas para interpretar correctamente la representación de algunos números: IV, cinco menos uno; IX, diez menos uno; XL, cincuenta menos diez; XC, cien menos diez; CD, quinientos menos cien; y CM, mil menos cien. El sistema numeral romano usa el diez como base, es decir, que la progresión se realiza de diez en diez, de derecha a izquierda; el no uso del cero lo hace pseudo-posicional. Utiliza treinta numerales básicos para representar números en el rango de 1 a 3999:

6 Los números romanos Para las unidades: I II III IV V VI VII VIII IX Para las decenas: X XX XXX XL L LX LXX LXXX XC Para las centenas: C CC CCC CD D DC DCC DCCC CM Para las unidades de millar: M MM MMM Con objeto de aumentar el rango de escritura de los números romanos, más tarde se optó por colocar una raya sobre los numerales, para indicar que su valor se incrementa mil veces, dos rayas, para incrementarlo un millón de veces, etc.; esta regla tiene validez a partir del número IV y hasta el número MMMCMXCIX. Ejemplos: XVIII CII MCMXCVII X VIII C II M CM XC VII

7 Los números mayas El sistema numeral maya es semejante al romano, pero resulta superior por cuanto al uso del cero y porque en ningún caso es necesario restar para interpretar un número. El sistema maya usa solamente tres símbolos: Con estos símbolos se puede representar cualquier número de 0 a, para lo cual requiere del uso de veinte numerales básicos:

8 Los números mayas El sistema de numeración maya es vigesimal, es decir, que la progresión se realiza de veinte en veinte, de abajo hacia arriba, lo que le da la característica de ser posicional, donde la primera posición representa unidades, la segunda veintenas, las tercera múltiplos de cuatrocientos, la cuarta múltiplos de ocho mil, etc. Se escribe y se lee de arriba hacia abajo. Ejemplos: 4 x 400 = x 20 = x 20 = x 1 = 18 2 x 1 = 2 17 x 1 =

9 La evolución de los números. Además de contar, la gente empezó a necesitar hacer algo más con los números: medirlos, fraccionarlos, sumarlos, restarlos, multiplicarlos y dividirlos. Así nació la aritmética, la que ha evolucionado a medida que el hombre avanza y encuentra muchas cosas que calcular y también muy distintas maneras de hacerlo. Pero toda la matemática se basa en el simple acto de contar. La necesidad de utilizar números cada vez mayores trajo consigo la noción de infinito:, descubierta por los griegos a través de un elevado nivel de abstracción. Los números naturales ya no fueron suficientes; había la necesidad de fraccionarlos para dividir en partes un todo, y así nacieron los números racionales: Q = {q q = a/b}, (a, b N).

10 La evolución de los números. La aparición del cero: 0, nace de la necesidad de representar la diferencia entre dos números idénticos y constituye el elemento fundamental para la construcción de los sistemas numéricos posicionales. Con la invención del álgebra, aparecieron los números negativos como solución de ecuaciones, y con ello se pudo establecer la clasificación de los números enteros en positivos y negativos: Z + = {z > 0}; Z - = {z < 0} La necesidad de representar algunas cantidades requeridas por los desarrollos geométricos trajo consigo el advenimiento de los números irracionales: π, e, 2, etc. Q c = {u u R, u Q} La unidad y fundamento lógico del estudio de los números se alcanzó a través de la construcción del sistema de los números reales, R, que incluye a todos los mencionados anteriormente. Los números complejos, C, aparecieron de la misma manera que los negativos, al resolver ecuaciones cuyo resultado requería de la introducción de los llamados números imaginarios.

UNIDAD 1: SISTEMAS DE NUMERACIÓN

UNIDAD 1: SISTEMAS DE NUMERACIÓN UNIDAD 1: SISTEMAS DE NUMERACIÓN ÍNDICE 1.1 Nuestro sistema de numeración 1.1.1 Lectura de números naturales 1.1.2 Descomposición de números naturales 1.2 Comparación y ordenación de Nº naturales 1.3 Los

Más detalles

NUMERACIÓN. Vale 5 veces

NUMERACIÓN. Vale 5 veces 1) Completa la siguiente tabla NUMERACIÓN En el número 1.245 8.473 4.788 6.004 5.409 El 4 vale 2) Qué número es? a) 38 UM + 58 d + 123 c = b) 15 d + 148 u + 76 c = c) 88 u + 405 d + 7 DM = 3) Indica la

Más detalles

TABLA DE CONTENIDO. Números Naturales. Series Numéricas. Valor de Posición en Números Naturales. Descomposición de los Números Naturales

TABLA DE CONTENIDO. Números Naturales. Series Numéricas. Valor de Posición en Números Naturales. Descomposición de los Números Naturales TABLA DE CONTENIDO TEMA 1 TEMA 2 TEMA 3 TEMA 4 TEMA 5 TEMA 6 TEMA 7 TEMA 8 TEMA 9 TEMA 10 TEMA 11 TEMA 12 Números Naturales Series Numéricas Valor de Posición en Números Naturales Descomposición de los

Más detalles

Un sistema de numeración es una serie de símbolos y unas normas que empleamos para expresar los números.

Un sistema de numeración es una serie de símbolos y unas normas que empleamos para expresar los números. MATEMÁTICAS GRADO SEXTO SISTEMA DE NUMERACIÓN DECIMAL 06/02/2017 SISTEMA DE NUMERACIÓN DECIMAL ORÍGENES Un sistema de numeración es una serie de símbolos y unas normas que empleamos para expresar los números.

Más detalles

Sistema de numeración romano

Sistema de numeración romano R Sistema de numeración romano Escribe con números romanos. > XXIV 8 > CCCLXXXV 8 > IVCCXXXVIII > 90 > 999 > 0 > > LV CMXCIV MMCCCLVI 0 > XC CCXL MCCLX Aplica las reglas y averigua el valor de los siguientes

Más detalles

Lección 1: Números naturales. Sistema de numeración decimal y orden

Lección 1: Números naturales. Sistema de numeración decimal y orden Lección 1: Números naturales. Sistema de numeración decimal y orden Sistema de numeración Los números naturales son los que usamos para contar y forman un conjunto infinito, un conjunto que no se acaba.

Más detalles

Práctica 1: Representación de números enteros

Práctica 1: Representación de números enteros Organización del Computador I DC - UBA Segundo Cuatrimestre 2010 Número vs Numeral Un número es un objeto matemático Un numeral es un símbolo que representa un número No posicionales Posicionales no posicionales

Más detalles

Sistema de numeración Egipcio (3000 a.c.)

Sistema de numeración Egipcio (3000 a.c.) Sistemas de Numeración A lo largo de la historia de la humanidad, el ser humano ha buscado diferentes maneras de representar cantidades. Si nos remontamos hacia más de dos mil años, los pueblos de aquella

Más detalles

Cuaderno de matemáticas 1. Numeración: Concepto y grafía del número 5.

Cuaderno de matemáticas 1. Numeración: Concepto y grafía del número 5. Cuaderno de matemáticas 1 Numeración: Concepto y grafía del número 1. Conceptos matemáticos: Formas geométricas. Nociones espacio-temporales: Dentro, fuera, en el borde. Ampliación y refuerzo: Atención

Más detalles

Introducción. Desarrollo. Palabras clave. Matemáticas Unidad 1 Significado y uso de los números. Números enteros

Introducción. Desarrollo. Palabras clave. Matemáticas Unidad 1 Significado y uso de los números. Números enteros Matemáticas Unidad 1 Significado y uso de los números Convertir fracciones a su escritura decimal y viceversa. Definir y utilizar los números negativos. Ubicar y representar números enteros, fraccionarios

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

I.E.S Santo Domingo. Departamento Informática. Tema 1 Los Sistemas de Numeración. José Luis Mollinedo Jiménez

I.E.S Santo Domingo. Departamento Informática. Tema 1 Los Sistemas de Numeración. José Luis Mollinedo Jiménez I.E.S Santo Domingo Departamento Informática Tema 1 Los Sistemas de Numeración José Luis Mollinedo Jiménez El Ejido - 6 de mayo de 2012 Página:2 Índice 1. Denición 2 2. Ejemplos 2 3. Clasicación 2 3.1.

Más detalles

Actividades de Cognitiva Matemáticas que recogen las diversas estrategias de cálculo metal / reflexivo

Actividades de Cognitiva Matemáticas que recogen las diversas estrategias de cálculo metal / reflexivo s de suma Actividades de Cognitiva Matemáticas que recogen las diversas estrategias de cálculo metal / reflexivo Sumar utilizando los dobles de los números Sumar decenas enteras a números de dos o más

Más detalles

EXPRESIONES VARIABLES

EXPRESIONES VARIABLES EXPRESIONES VARIABLES.1.1.1. Un variable es un símbolo que se usa para representar uno o más números. Es común usar letras del alfabeto como variables. El valor del variable que se usa varias veces en

Más detalles

SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación

SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación SISTEMAS NUMÉRICOS OBJETIVO GENERAL Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación OBJETIVOS ESPECÍFICOS Distinguir los sistemas de numeración Identificar

Más detalles

MatemáticaDiscreta&Lógica 1

MatemáticaDiscreta&Lógica 1 MatemáticaDiscreta&Lógica 1 Sistemas de numeración Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html SISTEMAS DE NUMERACIÓN.::. Introducción. Podemos

Más detalles

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.

Más detalles

Sistema De Numeración

Sistema De Numeración Sistema De Numeración Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos. Un sistema de numeración puede representarse como donde:

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

El Sistema de numeración Romano utiliza letras para escribir los números: I V X L C D M. uno cinco diez cincuenta cien quinientos mil

El Sistema de numeración Romano utiliza letras para escribir los números: I V X L C D M. uno cinco diez cincuenta cien quinientos mil BLOQUE 1. NÚMEROS Y OPERACIONES CAPÍTULO 1.2. REPRESENTACIÓN ESCRITA DE LOS NÚMEROS La necesidad de comunicación entre los seres humanos ha llevado desde antiguo a la invención y uso de signos para contar,

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA I : NÚMEROS NATURALES Sistema de numeración romano. Los números naturales. Números naturales como cardinales y ordinales. o Recta numérica. El sistema de numeración decimal.

Más detalles

LA HISTORIA DE LAS MATEMÁTICAS

LA HISTORIA DE LAS MATEMÁTICAS LA HISTORIA DE LAS MATEMÁTICAS ÍNDICE: 1º; LOS EGIPCIOS. 2º;LOS BABILÓNIOS. 3º;LOS ROMANOS. 4º;LOS GRIEGOS. 5º;LOS CHINOS. 6º;LOS NÚMEROS ARÁBICOS. 7º;LA EDAD MEDIA. 8º;CONCLUSIÓN. LOS EGIPCIOS: Desde

Más detalles

Material Educativo. Matemática. 6to grado. Matemática/jljf

Material Educativo. Matemática. 6to grado. Matemática/jljf 1 Material Educativo Matemática 6to grado Carrizal, septiembre 2016 2 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Dr. José María Vargas Municipio

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 1

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 1 PÁGINA: 1 de 5 Nombres y Apellidos del Estudiante: Docente: Área: MATEMATICAS Grado: Cuarto Periodo: Primero GUIA 1 Duración: 25 HORAS Asignatura: MATEMATICAS ESTÁNDAR: Resuelvo y formulo problemas cuya

Más detalles

EDUCACIÓN PRIMARIA TERCER CICLO Luis Pereda erein

EDUCACIÓN PRIMARIA TERCER CICLO Luis Pereda erein EDUCACIÓN PRIMARIA TERCER CICLO Luis Pereda erein Para trabajar la matemática durante este curso, además de este libro y del CD interactivo del Taller sobre Resolución de Problemas, se te facilitará una

Más detalles

Sistemas de Numeración

Sistemas de Numeración Magisterio 1er año C - Matemática 2016 IFD Comenio Canelones Sistemas de Numeración Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.

Más detalles

LOS NÚMEROS NATURALES

LOS NÚMEROS NATURALES LOS NÚMEROS NATURALES NUESTRO SISTEMA DE NUMERACIÓN (Características) 5 5º de E. Primaria Es decimal porque diez unidades de un orden forman una unidad del orden inmediato superior. 10 U = 1 D 10 D = 1C

Más detalles

Orden o comparación. Número 2 cifras más pequeño = Número 2 cifras más grande = Número 2 cifras más pequeño = Número 2 cifras más grande =

Orden o comparación. Número 2 cifras más pequeño = Número 2 cifras más grande = Número 2 cifras más pequeño = Número 2 cifras más grande = Orden o comparación 1.- Con las cifras de la columna izquierda, debes encontrar el número más grande y el número más pequeño de DOS cifras que con ellas se puede obtener: 3, 8, 2, 7, 9, 6 Número 2 cifras

Más detalles

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar OBJETIVO CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: 0 unidades de un orden forman unidad del

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

Números Reales.

Números Reales. Números Reales http://www.numerosreales.com/ El conjunto de los números reales pertenece en matemáticas a la recta numérica que comprende a los números racionales y a los números irracionales. Esto quiere

Más detalles

RESUMEN PARA EL ESTUDIO

RESUMEN PARA EL ESTUDIO RESUMEN PARA EL ESTUDIO 1. Números de siete cifras U. millón CM DM UM C D U Cómo se lee 2 8 9 6 7 8 2 Cómo se descompone: 2.896.782 = 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U Cómo se compone:

Más detalles

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER

APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO UNIDADES TECNOLÓGICAS DE SANTANDER APUNTES DOCENTES ASIGNATURA: ANALISIS NUMERICO ASIGNATURA: ANALISIS NUMERICO PROFESOR: ESP. PEDRO ALBERTO ARIAS QUINTERO 1. ERRORES Y ARITMETICA DE PUNTO FLOTANTE 1.1. Introducción a la Computación Numérica

Más detalles

Lección 1:NÚMEROS NATURAIS E SISTEMAS DE NUMERACIÓN

Lección 1:NÚMEROS NATURAIS E SISTEMAS DE NUMERACIÓN Lección 1:NÚMEROS NATURAIS E SISTEMAS DE NUMERACIÓN 1.1.- LOS NÚMEROS NATURALES Y LOS SISTEMAS DE NUMERACIÓN QUÉ ES UN NÚMERO? Un número es la expresión de la idea de cantidad. Esta idea de cantidad es

Más detalles

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez

7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones. Prof. Kyria A. Pérez 7.1 Números Racionales: números enteros, propiedades de los números y orden de operaciones Prof. Kyria A. Pérez Estándares de contenido y expectativas N.SO.7.2.1- Modela la suma, Resta, multiplicación

Más detalles

Tema 4. Los números reales.

Tema 4. Los números reales. Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También

Más detalles

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números *Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles

El Sistema Decimal.

El Sistema Decimal. Curso: Titulo: Matemática 1 a 3 Básico Lección 3: El Sistema Decimal Unidad: Nº 2 Módulo: Desarrollo Objetivos de Aprendizaje El Sistema Decimal Se cree que la mayor parte de los sistemas de numeración

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia 01 Mes 04 Año 2016 META DE COMPRENSIÓN: Desarrolla comprensión acerca de la evolución histórica de los sistemas de numeración, para ubicar dentro de ellos

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre

Más detalles

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura

Más detalles

GLOSARIO GENERAL DE TÉRMINOS

GLOSARIO GENERAL DE TÉRMINOS GLOSARIO GENERAL DE TÉRMINOS Binomio al cuadrado: es una expresión agrupada en dos términos y elevada al cuadrado. Se resuelve con la siguiente regla, un binomio al cuadrado es igual al cuadrado del primer

Más detalles

Developed in Consultation with Texas Educators

Developed in Consultation with Texas Educators Developed in Consultation with Texas Educators Índice Carta al estudiante.......................................6 Lista de revisión para tomar exámenes......................7 Correlación de expectativas

Más detalles

I Parte. Selección única. (6 puntos) Leo cada oración y marco con una (X) la respuesta correcta.

I Parte. Selección única. (6 puntos) Leo cada oración y marco con una (X) la respuesta correcta. Trimestre: I Nombre: Temas: Números hasta 99 999; Mayor que, menor que o igual que y Los números ordinales Habilidades específicas: Representar números menores que 00 000 aplicando el concepto unidad de

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 6 ASIGNATURA: Matemática PERIODO: I PROFESORA: Carina Candelario UNIDAD Nº 1 NOMBRE DE LA UNIDAD: CONOZCAMOS SISTEMAS

Más detalles

CLASIFICACION DE LOS NUMEROS

CLASIFICACION DE LOS NUMEROS CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer

Más detalles

Por ejemplo: el número se tiene que separar por una coma cada tres números contando de derecha a izquierda, entonces queda 678,345.

Por ejemplo: el número se tiene que separar por una coma cada tres números contando de derecha a izquierda, entonces queda 678,345. LEYENDO LOS NÚMEROS 13 Pone en práctica la lectura y escritura de los números. El maestro recuerda a sus alumnos que para leer una cifra se habrá de separar por una coma; explica de qué forma se pone y

Más detalles

2 Escribe con cifras. 3 Cuál es el valor de la cifra 4 en estos números?: 4 Escribe el signo > o <, según corresponda.

2 Escribe con cifras. 3 Cuál es el valor de la cifra 4 en estos números?: 4 Escribe el signo > o <, según corresponda. PREPARO MAT. 6º Nuestro sistema de numeración Agrupamos de diez en diez MILLONES DMM UMM 4 CM MILLARES DM UM 6 0 0 C UNIDADES D U 3 6 8 El número 4 600 368 se lee: «Cuatro millones seiscientos mil trescientos

Más detalles

TEMA 1: NÚMEROS NATURALES

TEMA 1: NÚMEROS NATURALES TEMA 1: NÚMEROS NATURALES 1. NÚMEROS NATURALES Todas las civilizaciones han tenido un sistema de numeración. Estos han pasado de unos pueblos a otros y han evolucionado a lo largo del tiempo. Desde la

Más detalles

FRACCION GENERATRIZ. Pasar de decimal exacto a fracción

FRACCION GENERATRIZ. Pasar de decimal exacto a fracción FRACCION GENERATRIZ Un número decimal exacto o periódico puede expresarse en forma de fracción, llamada fracción generatriz, de las formas que indicamos: Pasar de decimal exacto a fracción Si la fracción

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 2

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 2 PÁGINA: 1 de 7 Nombres y Apellidos del Estudiante: Docente: Esp. Blanca Rozo Blanco Área: Matemáticas Grado:6 Periodo: 1º GUIA 2 Duración: 5 horas Asignatura: Matemáticas ESTÁNDAR: * 1) Justifico procedimientos

Más detalles

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved.

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved. 5.1 Números Reales Mate 3041 Milena Salcedo V R Copyright Cengage Learning. All rights reserved. Números Reales Números Naturales: N = 1,2,3, Números Enteros no negativos (Cardinales): 0,1,2,3, Números

Más detalles

TEMA 1. Las cuentas de andar por casa

TEMA 1. Las cuentas de andar por casa TEMA 1. Las cuentas de andar por casa 1.-Los distintos tipos de números Módulo 3 1.1. Los números naturales El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

Más detalles

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA 1

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA 1 PÁGINA: 1 de 9 Nombres y Apellidos del Estudiante: Docente: Área: MATEMATICAS Grado: Cuarto Periodo: Primero GUIA 1 Duración: 25 HORAS Asignatura: MATEMATICAS ESTÁNDAR: Resuelvo y formulo problemas cuya

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO. Si la división de un número A, entre otro número B, es exacta, entonces decimos que:

CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO. Si la división de un número A, entre otro número B, es exacta, entonces decimos que: CUADERNILLO DE REFUERZO DE OPTATIVA DE MATEMATICAS 1º ESO Si la división de un número A, entre otro número B, es exacta, entonces decimos que: El número A es divisible por el número B. El número A es múltiplo

Más detalles

Clasificación de los números.

Clasificación de los números. Clasificación de los números. Alguna vez te has preguntado cómo sería la vida sin números? Trata de imaginar un día sin números. No importa el día, trata de imaginar pasar las primeras horas sin números.

Más detalles

Capítulo. Decimales. Copyright 2013, 2010, and 2007, Pearson Education, Inc.

Capítulo. Decimales. Copyright 2013, 2010, and 2007, Pearson Education, Inc. Capítulo 7 Decimales Copyright 2013, 2010, and 2007, Pearson Education, Inc. Los decimales La palabra decimal viene del latín decem, que significa diez. El sistema decimal es un sistema basado en posiciones

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

CONJUNTOS Y SISTEMAS NUMÉRICOS

CONJUNTOS Y SISTEMAS NUMÉRICOS 1. CONJUNTOS. 1.1 Conceptos básicos Medir y contar fueron las primeras actividades matemáticas del hombre y ambas nos conducen a los números. Haciendo marcas, medían el tiempo y el conteo de bienes que

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito.

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL SISTEMA DE NUMERACIÓN DECIMAL Se llama decimal o de base diez porque se utilizan diez símbolos para representar todos los números. Los diez símbolos, cifras son: 0, 1, 2,3, 4, 5, 6, 7, 8, 9 La relación

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

El concepto de número

El concepto de número Los Números Reales El concepto de número El concepto de número es una de las más importantes abstracciones de la mente humana. Los números han surgido a lo largo de la historia como herramienta para resolver

Más detalles

MULTIPLICACIÓN DE NÚMEROS NATURALES

MULTIPLICACIÓN DE NÚMEROS NATURALES MULTIPLICACIÓN DE NÚMEROS NATURALES La solución de una adición donde los sumandos son iguales, es decir, que se repiten, se puede obtener de una forma directa y sencilla. Por ejemplo: Al calcular la cantidad

Más detalles

643 = 6C + 4D + 3U 6 X X X1 Ejercicios. Escribe las posiciones que faltan de los números naturales.

643 = 6C + 4D + 3U 6 X X X1 Ejercicios. Escribe las posiciones que faltan de los números naturales. Grado Materia Bimestre Periodo de Evaluación GRADO ESCOLAR CUARTO GRADO MATERIA MATEMÁTICAS BIMESTRE/ BLOQUE PRIMER BIMESTRE PERIODO BLOQUE I CONTENIDOS 1-Notación desarrollada de números naturales y decimales

Más detalles

GUION TÉCNICO AUDIO. El Conjunto De Los Números Reales. realidad, es una ciencia resultado de más de 4 mil años de

GUION TÉCNICO AUDIO. El Conjunto De Los Números Reales. realidad, es una ciencia resultado de más de 4 mil años de 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. El Conjunto De Los Números Reales. Hablar de matemáticas, no es solo referirse a números. En realidad, es

Más detalles

Sistemas de numeración.

Sistemas de numeración. Capítulo 3 Sistemas de numeración. 3.1 Introducción histórica. Todos entendemos frases como tengo dos hermanos, cuesta tres mil quinientas pesetas, en el año doscientos catorce antes de Cristo, porque

Más detalles

1. Por extensión o forma constructiva. Se declara individualmente todos los elementos del conjunto. Ejemplo: A = {a, b, c, d} A = {2, 4, 6, 8}

1. Por extensión o forma constructiva. Se declara individualmente todos los elementos del conjunto. Ejemplo: A = {a, b, c, d} A = {2, 4, 6, 8} ENCUENTRO # 1 Relación de pertenencia y sub- TEMA: Cálculo Aritmético: Dominios numéricos. conjunto. Operaciones con conjuntos. Conjuntos Concepto 1. Es la reunión, agrupación o colección de objetos o

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

Comprende e interpreta valores posicionales de los números.

Comprende e interpreta valores posicionales de los números. ENTEROS Y DECIMALES 09 Comprende e interpreta valores posicionales de los números. El maestro recuerda el orden de posición menor al entero (1, 0.1, 0.01, etc); resuelven ejercicios sobre el uso del punto

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc. NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO NO. 1 ÁREA: LOS NÚMEROS,

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 1 Representación de la Información

Más detalles

Enteros y Decimales APRENDO JUGANDO

Enteros y Decimales APRENDO JUGANDO 09 Lección Refuerzo Matemáticas Enteros y Decimales APRENDO JUGANDO Competencia Comprende e interpreta valores posicionales de los números. Diseño instruccional El maestro recuerda el orden de posición

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

Para desarrollar esta actividad evaluativa, revisaremos y recordaremos tres (3) conceptos básicos:

Para desarrollar esta actividad evaluativa, revisaremos y recordaremos tres (3) conceptos básicos: Para desarrollar esta actividad evaluativa, revisaremos y recordaremos tres (3) conceptos básicos: Álgebra. Trigonometría. Geometría Analítica. 1. Conceptos fundamentales de Álgebra: La palabra álgebra

Más detalles

FUNDAMENTOS DE MATEMÁTICAS

FUNDAMENTOS DE MATEMÁTICAS FUNDAMENTOS DE MATEMÁTICAS Dr. Miguel Angel Morales Cabrera E-mail: miguelmorales.uv@gmail.com CONTENIDO 1. Introducción al álgebra 2. Exponentes y radicales 3. Operaciones con Polinomios (Suma, Resta,

Más detalles

FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino)

FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág. 1 de 9 Conjuntos numéricos

Más detalles

VERÓNICA GRIMALDI HÉCTOR PONCE

VERÓNICA GRIMALDI HÉCTOR PONCE Matemática CLAUDIA BROITMAN VERÓNICA GRIMALDI HÉCTOR PONCE Índice Capítulo I el sistema de numeración... 7 Escribir, leer y comparar números naturales... 8 Relaciones entre sistema de numeración y operaciones...

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

Tema 1: Números naturales. Sistemas de numeración

Tema 1: Números naturales. Sistemas de numeración Tema 1: Números naturales. Sistemas de numeración SELECCIÓN DE EJERCICIOS RESUELTOS 1. Utiliza nuestro sistema de numeración oral para expresar el número, 754.120.004.002000.000.000 Utiliza nuestro sistema

Más detalles

3.5 NÚMEROS COMPLEJOS

3.5 NÚMEROS COMPLEJOS 64 CAPÍTULO Funciones polinomiales y racionales.5 NÚMEROS COMPLEJOS Operaciones aritméticas con números complejos Raíces cuadradas de números negativos Soluciones complejas de ecuaciones cuadráticas Vea

Más detalles

TEMA V SISTEMAS DE NUMERACIÓN

TEMA V SISTEMAS DE NUMERACIÓN TEMA V SISTEMAS DE NUMERACIÓN En la vida diaria el hombre se expresa, se comunica, almacena y maneja información desde el punto de vista alfabético con un determinado idioma y desde el punto de vista numérico

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 1 Conjuntos Numéricos COMPETENCIA Reconocer los diferentes conjuntos numéricos,

Más detalles

00-A-1/24. Nombre: 2, 3, 4, 5, 6,... Si queremos saber la cantidad de bombones que hay en esta caja, los contamos: 1, naturales

00-A-1/24. Nombre: 2, 3, 4, 5, 6,... Si queremos saber la cantidad de bombones que hay en esta caja, los contamos: 1, naturales 00-A-1/24 Si queremos saber la cantidad de bombones que hay en esta caja, los contamos: 1, 2, 3, 4, 5, 6,... Estos números se llaman naturales El sistema de numeración que usamos normalmente se llama cambiando

Más detalles

LOS NUMEROS NATURALES SUMA Y RESTA

LOS NUMEROS NATURALES SUMA Y RESTA LOS NUMEROS NATURALES SUMA Y RESTA I. Sistemas de Numeración y Números Naturales A lo largo de la historia, el ser humano ha ido inventando las herramientas que necesitaba para resolver problemas. Así

Más detalles

TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA

TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA Conceptos preliminares. Epresión algebraica.- es el conjunto de letras y números interrelacionados entre si, mediante las operaciones de adición y sustracción,

Más detalles