8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO."

Transcripción

1 8. CONTROL ÓPTIMO PARA SISTEMAS DE TIEMPO DISCRETO. La oría conrol ópmo lnal mpo scro s nrsan por su aplcacón n l conrol por compuaor. 8. DESCRIPCION EN VARIABLES DE ESTADO A vcs nrsa obsrvar un ssma n cros nsans mpo. En sos casos, s posbl caracrzar l comporamno l ssma por valors fnos n sos nsans mpo solamn. La quvalnca naural la cuacón frncal sao s la cuacón frnca sao: x(+ = f [x(, u(, ] on x( s l vcor sao n l nsan u( s l vcor nraa n l nsan La cuacón la sala s: y( = g[x(, u(, ] Los ssmas mpo scro lnals son scros por la cuacón frnca sao la forma: x(+ = A( x( + B( u( on A( y B( son marcs mnsons apropaas. La cuacón sala s: y( = C( x( + D( u( S las marcs A, B, C y D son npnns, l ssma s lnal nvaran n l mpo.

2 8.2 INTERCONEXION DE SISTEMAS DE TIEMPO CONTINUO CON SISTEMAS DE TIEMPO DISCRETO Eso normalmn suc cuano s usa un compuaor gal para conrolar un ssma mpo connuo. Para ralzar físcamn sas nrconxons s usan las nrfacs nomnaas: convrsor Análogo a Dgal (A/D y convrsor Dgal a Análogo (D/A. Un convrsor A/D, llamao ambén musraor, s un aparao qu cumpl la sgun rlacón: f + ( = f( con =,, 2,. S usa la forma f + ( para sngur scunca valors la corrsponn funcón mpo connuo. Un convrsor D/A más smpl s l conoco como rnor orn cro. Es rnor s scrb por la rlacón: f( = f + ( + =,, 2,. La sgun fgura lusra un jmplo ípco nrconxón ssmas mpo scro con ssma mpo connuo. Para analzar s po ssma s convnn rprsnar l ssma mpo connuo juno con l convrsor D/A y l convrsor A/D por un ssma mpo scro quvaln. ssma mpo scro rnor orn cro ssma mpo connuo Musraor Ssma mpo scro Ssma mpo scro quvaln Fg. 8. Inrconxón ssmas scros con connuo.

3 8.3 ECUACIONES DE DIFERENCIA DE ESTADO El ssma mpo connuo la fgura 8., s un ssma lnal con: La cuacón frncal sao: x ( = A(x( + B(u( y la cuacón sala: y( = C(x( + D(u( Ya qu s usa un rnor orn cro, noncs: u( = u( + =,, 2,. Dl capíulo, pomos scrbr para l sao l ssma n l nsan + : x( = Φ(, x( Φ( +,τb(ττu( on Φ(, s la marz ranscón l ssma. Al rvar la cuacón sala corrsponn, s v la posbla qu los nsans n qu s musra la sala no concan con los nsans n qu la nraa s ajusaa. Lugo la sala asocaa con l -ésmo nsan musro, s: y( on < + con =,, 2,. Lugo nmos qu: y( = C( Φ (, x( + C( Φ(,τB(ττu( + D( u(

4 Rmplazano: x( = x + ( u( = u + ( y( = y + ( s n las cuacons l ssma n la forma: x + (+ = A (x + ( + B (u + ( y + ( = C (x + ( + D (u + ( con I =,, 2, on: A ( = Φ( B ( = C ( = C( Φ ( Φ( D ( = C(,,τB(ττ, Φ(,τB(ττ + D( S obsrva qu l ssma mpo scro n nlac rco aún s l ssma mpo connuo no lo nga, porqu D ( pu sr frn cro aunqu D( sa cro. El nlac rco saparc s D( = y l nsan conc con l nsan, s cr, =, =,, 2,. En l caso spcal n qu los nsans musro sán gualmn spacao: + = y = Amás, s l ssma mpo connuo s nvaran n l mpo, l ssma mpo scro s ambén nvaran n l mpo y A A Aτ A = ; B = ( B ; C = C ; D = ( C Aτ B + D S nomna a l proo musro y / la frcunca musro. Una vz obnas las cuacons mpo scro qu rprsnan l ssma mpo connuo, juno con los convrsors, s sá n concons suar la nrconxón l ssma con oros ssmas mpo scro.

5 8.4 SOLUCIÓN DE LA ECUACION DIFERENCIA DE ESTADO Para la solucón, xs l sgun orma, complamn análogo al vso n l capíulo. Torma 3.4 Consrar la cuacón frnca sao: x(+ = A(x( + B(u( la solucón sa cuacón s: x( = Φ(, + x( = j Φ(, j + B(ju(j + on Φ(,, con s la marz ranscón Φ(, A( A( 2...A( = I para para = + La marz ranscón Φ(, s la solucón la cuacón frnca: Φ( +, Φ(, = = A(Φ (, I S A( no pn noncs: con Φ(, = A

6 S la sala l ssma on s y( = C(x( + D(u( S l sao ncal s cro, s cr, x( y( = j= K(, ju(j =, s n qu : C( Φ(, j + B(j K(, j = D( para j - para j = Don K(, j s nomna la marz rspusa pulso l ssma. Para ssmas nvarans n l mpo K( pn (-j solamn. Para ssmas mpo scro nvaran n l mpo, algunas vcs s úl agonalzar la marz A. El sgun orma rsum s fco: Torma 8.2 n l mpo: Consrar la cuacón frnca sao nvaran x(+ = A x( S supon qu la marz A n n valors caracríscos snos λ,λ 2,...λ n con sus corrsponns vcors caracríscos, 2,, n. Dfnn las marcs n x n: T = (, 2,, n Λ = ag( λ,λ 2,...λ n Enoncs la marz ranscón la cuacón frnca sao s pu scrbr como: Φ(, = A = TΛ T

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CAPITULO º FUNCIONES DE VECTORES Y MATRICES_ Ing. Dgo Aljandro Paño G. M.Sc, Ph.D. Funcons d Marcs Torma: Sa f( una funcón arbrara dl scalar y sa A una marz con polnomo caracrísco: S dfn g( un polnomo

Más detalles

Teoría cuántica de Schroedinger

Teoría cuántica de Schroedinger Caíulo 5 Toría cuánca Schrongr Dfcncas la oría Bohr. La oría Bohr roujo una lcacón lausbl l áoo H, ro no uo lcar o Las frncas nr las nnsas las línas scrals o La ullca algunas línas o La foracón agrgaos

Más detalles

Control inversores trifásicos

Control inversores trifásicos Conrol nvror rfáco Tranformaa Conrol nvror rfáco Tranformaa αβ Spac cor Moulaon SPWM Conrolaor baao n SPWM E rfrnca roaoro Tranformaa Park Inrpracón l conrolaor PI obr roaoro Obncón la ranformaa αβ a b

Más detalles

3. Determinación de la fuente y la respuesta en el dominio de la

3. Determinación de la fuente y la respuesta en el dominio de la 3. Drmnacón d la fun y la rspusa n l dmn d la frcunca. Para ulzar l algrm d MDFDT, pdms mar ds pcns. La prmra, ncalzar l camp cn valrs 0, pr jmpl l cas d la cavdad d la sccón..5 bn clcar una fun qu nrduzca

Más detalles

Se estudiarán las soluciones de algunas redes dinámicas básicas sin excitaciones y con excitaciones constantes y sinusoidales.

Se estudiarán las soluciones de algunas redes dinámicas básicas sin excitaciones y con excitaciones constantes y sinusoidales. apíulo 7 REDES DINÁMIAS Rds qu conngan condnsadors nducors s dnomnan dnámcas. Su comporamno quda dscro por cuacons dfrncals. S sudarán las solucons d algunas rds dnámcas báscas sn xcacons y con xcacons

Más detalles

LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO

LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO LA ECUACIÓN DE GOMPERTZ COMO MODELO DE CRECIMIENTO Ana María Islas Cors Insuo Polécnco Naconal, ESIT amslas@pn.mx Gabrl Gullén Bunda Insuo Polécnco Naconal, ESIME-Azcapozalco ggulln@pn.mx Yolanda Monoya

Más detalles

Tema 10: RÉGIMEN TRANSITORIO

Tema 10: RÉGIMEN TRANSITORIO Tma : ÉGMEN TANSTOO. OBJETVOS. NTODUÓN. UTOS NEAES DE PME ODEN.. DESAGA DE EEMENTOS AGADOS SOBE UNA ESSTENA. ESPUESTA DE UN UTO A ENTADA EO..3 ESPUESTA DE EEMENTOS A ESTADO NA EO EXTADOS PO FUENTES..3.

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

Capitulo III. III 2. Métodos analíticos de análisis cinemático. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo III. III 2. Métodos analíticos de análisis cinemático. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Unvsa Cantaba Dpatamnto Ing. Estuctual y Mcánca Captulo III III. Métoos analít análss cnmátco 1 Cnmátca y Dnámca Máqunas. III. Métoos analít análss cnmátco. Unvsa Cantaba Dpatamnto Ing. Estuctual y Mcánca

Más detalles

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

Identificación en lazo cerrado de un motor de corriente directa usando un controlador PI

Identificación en lazo cerrado de un motor de corriente directa usando un controlador PI Congrso Mxcano Robóca Smbr 5 y 6, 8, Méxco D.F. Unvrsa Anáhuac Méxco Sur Infcacón n lazo crrao un moor corrn rca usano un conrolaor PI Garro Moczuma Rubén A., Mrana Colorao Rogr CINVESTAV, Méxco DF garro,

Más detalles

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

Tema 4. Ondas de Señal: Onda Alterna Senoidal E 0 es la amplitud ω es la pulsación ω t + φ es el ángulo de fase φ es el ángulo de fase inicial

Tema 4. Ondas de Señal: Onda Alterna Senoidal E 0 es la amplitud ω es la pulsación ω t + φ es el ángulo de fase φ es el ángulo de fase inicial Ondas d sñal ma 4 f f Ondas d Sñal: Onda lrna Snodal f sn ( + φ) s la amplud s la pulsacón + φ s l ángulo d fas φ s l ángulo d fas ncal f < f >. d scalón mplud Ondas d Sñal: Ondas d xcacón y Rspusa f f

Más detalles

CLAMP EUGLICÉMICO HIPERINSULINÉMICO

CLAMP EUGLICÉMICO HIPERINSULINÉMICO Mrcds Lomar CLAMP EUGLCÉMCO HPERNULNÉMCO El dsarrollo d sa écnca prm onr una sr d parámros rlvans para los modlos mamácos d homosass dl ssma glucosa-nsulna. Prmra par 2h d ayuno. 2 Onr musra d sangr asal

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas. Guía de Ejercicios de Sistemas de Control Avanzados PS-4313

Universidad Simón Bolívar Departamento de Procesos y Sistemas. Guía de Ejercicios de Sistemas de Control Avanzados PS-4313 Unvrdad Smón Bolívar Dparamno d Proco y Sma Guía d Ejrcco d Sma d Conrol Avanzado PS-433 Pro. Alxandr Hoyo hp://pro.ub.v/ahoyo ahoyo@ub.v ÍNDICE Pág. Tranormada d Laplac 3 Tranormada Invra d Laplac y Rolucón

Más detalles

4. Medios dependientes de la frecuencia.

4. Medios dependientes de la frecuencia. 4. Mos s l frcuc. Uo los logros ás ors l MFT h so l or clculr os s l frcuc.,,4 S brgo sos éoos s bs srrollos ácos qu so xusos for uy suc y ás bsos éoos ácos o usuls l lgu l físc, ls coo l rsfor Z. Por

Más detalles

( t ) ( ) exp( ) 2. La transformada de Fourier

( t ) ( ) exp( ) 2. La transformada de Fourier xp F d La ransormada d Fourr F xp d D la Sr d Fourr a la ransormada d Fourr La sr d Fourr nos prm obnr una rprsnacón n l domno d la rcunca d uncons pródcas. Es posbl xndr d alguna manra las srs d Fourr

Más detalles

Circuitos no senoidales

Circuitos no senoidales Crcuos no snodals A6 Objos Famlarzars con los componns d la xpansón d la sr d Fourr para cualqur funcón snodal o no snodal. Enndr cómo la aparnca y la cura n l j d mpo d una forma d onda pudn dnfcar qué

Más detalles

LAS ECUACIONES DEL CAMPO ELECTROMAGNETICO

LAS ECUACIONES DEL CAMPO ELECTROMAGNETICO LS CUCIONS DL CMPO LCTROMGNTICO Calos S CIN 999 LS CUCIONS DL CMPO LCTROMGNTICO Dfnón: l ampo lomagnéo: S pu fn po l valo l nso máno y po l valo la nsa aón n vaío s po l valo χ al qu l nvalo s s χ y po

Más detalles

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

( )exp( ) 2. La transformada de Fourier

( )exp( ) 2. La transformada de Fourier xp F d π La ransormada d Fourr F xp d D la Sr d Fourr a la ransormada d Fourr La sr d Fourr nos prm obnr una rprsnacón n l domno d la rcunca d uncons pródcas. Es posbl xndr d alguna manra las srs d Fourr

Más detalles

El comportamiento ideal del CN sirve como estándar, contra el cual se compara el comportamiento de cuerpos reales

El comportamiento ideal del CN sirve como estándar, contra el cual se compara el comportamiento de cuerpos reales Propas raatvas curpos opa El comportamnto al l CN srv como stánar contra l cual s compara l comportamnto curpos rals El comportamnto ral s xprsa por una sr propas fnas n rlacón al CN En gnral las propas

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

CONTROL MODERNO CAPÍTULO 4 CONTROLABILIDAD DE SISTEMAS LINEALES

CONTROL MODERNO CAPÍTULO 4 CONTROLABILIDAD DE SISTEMAS LINEALES CONROL MODERNO Sesón n 0 # Obevo: El aluno reconocerá la caracerísca de conrolabldad de sseas dnácos expresados por edo de varables de esado, la uldad de d esa propedad para llevar al ssea desde su esado

Más detalles

2. Interacción radiación-materia

2. Interacción radiación-materia Tpos d cagas:. Inaccón adacón-maa Cagas lbs: no sán nlazadas dno d un áomo. S suponn punuals. Basa con spcfca su caga, masa y aycoa. m F Cagas lgadas: son ssmas d caga con sucua nna: áomos, moléculas,

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

Solución de Ecuaciones Diferenciales y de Diferencias

Solución de Ecuaciones Diferenciales y de Diferencias Solucón de cuacones Dferencales y de Dferencas UdeC - DI Problema Planear la solucón generalada de ecuacones dferencales y de dferencas. Formulacón general de ec. dferencales n m d y a d b du d Formulacón

Más detalles

n n ... = + : : : : : : : [ ]

n n ... = + : : : : : : : [ ] Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (

Más detalles

Optimización multicriterial del diseño del cuerpo de los cilindros oleohidráulicos.

Optimización multicriterial del diseño del cuerpo de los cilindros oleohidráulicos. Ingnría Mcánca, 1 (003 55-60 55 Opmzacón mulcrral dl dsño dl curpo d los clndros olohdráulcos. V. G. Gómz Rodríguz, R. Goyzolo Espnosa, J. J. Cabllo Eras. Unvrsdad d Cnfugos. Carrra a Rodas km. Cnfugos.Cuba.

Más detalles

Control Discreto en Plantas Continuas

Control Discreto en Plantas Continuas UdC - DIE Conrol Dicro n Plana Coninua Prolma Prnar l conrolador dicro n un ima coninuo. Conrol Análogo ld + - k c v k a v a l moor l Conrolador Análogo PID i R C C R 4 R R 3 o El conrolador á implmnado

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

Por otro lado, las raíces características de la nueva ecuación son: Entonces la solución tendrá la forma: t

Por otro lado, las raíces características de la nueva ecuación son: Entonces la solución tendrá la forma: t Ejriio rsuo Suponga a siguin uaión irnia primr orn qu rprsna omporamino un iruio RC omo a igura. ' ( ) x( ) Don RC, x() s a nsión apiaa () s a nsión n apaior. Enunr a rspusa oa sisma si a nraa s un saón

Más detalles

Tema 1. Repaso de Teoría de Circuitos

Tema 1. Repaso de Teoría de Circuitos Tma. paso d Toría d rcuos Joaquín aquro ópz Elcrónca, 7 Joaquín aquro ópz paso d Toría d rcuos: índc. oncpos prlmars. oncpo d crcuo, lmnos d un crcuo. ys fundamnals d los crcuos lécrcos: ys d Krchhoff.3

Más detalles

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

Conceptos Básicos Previos

Conceptos Básicos Previos Concptos Báscos Prvos Clasfcacón d Sñals Comuncacons Unvrsdad d Cantabra Sñals Dtrmnstas /Alatoras Sñals Pródcas / o Pródcas Sñals Contnuas / Dscrtas ( / ( (t+ 0 ) = ( ( / [n] Sñals Dtrmnstas Rpaso d concptos

Más detalles

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 7 Las Expcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo 7: Las

Más detalles

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)

Más detalles

INFLUENCIA DE LA FUERZA DE INFECCIÓN Y LA TRANSMISIÓN VERTICAL EN LA MALARIA: MODELADO MATEMÁTICO

INFLUENCIA DE LA FUERZA DE INFECCIÓN Y LA TRANSMISIÓN VERTICAL EN LA MALARIA: MODELADO MATEMÁTICO sa Facula Cncas Báscas 9-699 ompag: p://rsasunmlaruco/nxpp/rfcb ol 3 7-8 p://xoorg/8359/rfcb98 FLUCA D LA FUZA D FCCÓ Y LA TAMÓ TCAL LA MALAA: MODLADO MATMÁTCO FLUC OF FCTO FOC AD TCAL TAMO MALAA: MATMATCAL

Más detalles

Corriente Alterna y la Potencia Activa & Reactiva

Corriente Alterna y la Potencia Activa & Reactiva Corrn Alrna y la Ponca Aca & aca Fundanos Maácos La nsón s una onda lcroagnéca snusodal d frcunca n [rad/s], con f con f n [Hz]. ( n( ω Al so po, la corrn abén srá una sñal snusodal d frcunca, con un ángulo

Más detalles

CAPÍTULO 1 RÉGIMEN TRANSITORIO EN CIRCUITOS DE PRIMER Y SEGUNDO ORDEN 1.1 INTRODUCCIÓN

CAPÍTULO 1 RÉGIMEN TRANSITORIO EN CIRCUITOS DE PRIMER Y SEGUNDO ORDEN 1.1 INTRODUCCIÓN APÍTUO ÉGIMEN TANSITOIO EN IUITOS DE PIME Y SEGUNDO ODEN. INTODUIÓN Todo cambo d sado n un crcuo lécrco(s dcr n un ncnddo, aagado, accdn, c.) sgnfca un cambo n la candad d la nrgía dl ssma ya sa s mcánco,

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

Resumen TEMA 6: Momentos de inercia

Resumen TEMA 6: Momentos de inercia EMA 6: Momntos d nrca Mcánca Rsumn EMA 6: Momntos d nrca. Dfncons Sstma matral d puntos matrals d masa m, =, 2,...,. a) Momnto d nrca rspcto d un plano π md (d = dstanca d la masa m al plano π) π =Σ 2

Más detalles

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA ONTROL I ING. QUIRINO IMENEZ D. APITULO IV. ANÁLII DE REPUETA TRANITORIA La rspusa n l impo d un sisma d conrol s divid normalmn n dos pars: la rspusa ransioria y la rspusa n sado sabl o régimn prmann.

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

MAESTRIA EN OPTOELECTRONICA

MAESTRIA EN OPTOELECTRONICA MAESTRA EN OPTOELECTRONCA Complmnos d Mamáicas.- Sismas linals rprsnación d Fourir Sismas linals Muchos nómnos ísicos pudn dscribirs mamáicamn mdian maniuds uncions dl spacio dl impo. En muchas siuacions

Más detalles

Desintegración radiactiva

Desintegración radiactiva Daramno Física Fac. Cincias Exacas - UNLP Dsingración raiaciva El núclo y sus raiacions Página 1 (DF Facor caimino DF DF = x (- = x {(- ln2/t 1/2 } Una amolla connino 99m Tc (T 1/2 = 6h sá roulaa 75 kbq/ml

Más detalles

Control predictivo distribuido mediante redes de sensores: Aplicación al control distribuido de temperaturas en una habitación

Control predictivo distribuido mediante redes de sensores: Aplicación al control distribuido de temperaturas en una habitación Conrol predcvo dsrbdo medane redes de sensores: Aplcacón al conrol dsrbdo de emperaras en na habacón 9 3 MPC 3 Sn resrccones Para rabaar con n MPC Model Predcve Conrol pasamos la ncón de ranserenca a espaco

Más detalles

UNIDAD Nº 7 RESPUESTA DE COMPONENTES PASIVOS A LA CORRIENTE CONTINUA

UNIDAD Nº 7 RESPUESTA DE COMPONENTES PASIVOS A LA CORRIENTE CONTINUA UNIDAD Nº 7 SPUSTA D OMPONNTS PASIOS A A OINT ONTINUA Sñal cuadrada Una onda cuadrada smérca IDA adqur nsanánamn ( n mpo cro ) la máxma amplud, prmanc duran un mpo n dcho valor y lugo ca nsanánamn a su

Más detalles

3. DINÁMICA DEL SÓLIDO RÍGIDO

3. DINÁMICA DEL SÓLIDO RÍGIDO 3. DINÁMICA DEL SÓLIDO RÍIDO 3.1. Dnámca la partícula La sguna ly Nwton stablc qu n una partícula masa constant m sobr la qu actúa una furza F s vrfca F p (3.1) on p s l momnto lnal qu s fn como l proucto

Más detalles

DISEÑO DE EQUIPOS DE TRANSFERENCIA DE CALOR

DISEÑO DE EQUIPOS DE TRANSFERENCIA DE CALOR DISEÑO DE EQUIPOS DE TRNSFERENCI DE CLOR Intrcambaors obl tubo Los ntrcambaors obl tubo son muy populars, sncllos construr y fácls ntnr. Son muy comuns spcalmnt cuano la furza mpulsora s gran y l ára transfrnca

Más detalles

5.1 La función logaritmo natural: derivación

5.1 La función logaritmo natural: derivación CAPÍTULO Funcions logarímica, ponncial oras funcions rascnns. La función logarimo naural: rivación Dsarrollar usar propias la función logarimo naural. Comprnr la finición l númro. Drivar funcions qu involucran

Más detalles

Control Automático. Control con observadores de estado

Control Automático. Control con observadores de estado Control Automático Control con observadores de estado Contenido Observabilidad Observadores de estado sin entrada r Cálculo de la ganancia K del observador usando Ackermann Compensadores con entrada de

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong

Determinación del Coeficiente de Restitución (e) de una pelota de ping-pong Dtrmnacón l Cocnt Rsttucón () una plota png-pong Víctor Garro C. Unrsa Vña l Mar, A. Agua Santa 755, Campus Rolllo, Vña l Mar, Cl. garro@um.cl, garrostr@gmal.com 3() 4668 Rsumn Est artículo prsnta una

Más detalles

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto) San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA INSTITUTO DE INVESTIGACIÓN

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA INSTITUTO DE INVESTIGACIÓN UNIERSIDD NCIONL DEL CLLO FCULTD DE CIENCIS NTURLES Y MTEMÁTIC INSTITUTO DE INESTIGCIÓN TEXTO: TEORÍ CLÁSIC DE CMPOS D. Jo bl Espchán Callo Rsolucón Rcoal Nº 6--R l 4-3- -3- al 3-8- ÍNDICE Pána ÍNDICE

Más detalles

Parques Eólicos con Aerogeneradores de Jaula de Ardilla y STATCOM

Parques Eólicos con Aerogeneradores de Jaula de Ardilla y STATCOM locdad dl no (m/s) Parqus Eólcos con Arognradors d Jaula d Ardlla y STATCOM Nésor D. Galán Gullrmo J. Ruo Jos M. Cañdo Rsumn En s arículo s analza l comporamno n sado sal y dnámco d un parqu ólco con compnsacón

Más detalles

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción Economría II Tma 8: Rardos n l comporamino conómico y dinamicidad d los modlos. Dinámica y prdicción 1. Moivos d dinamicidad n las rlacions 2. El mcanismo d corrcción dl rror y l quilibrio a largo plazo

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada d alac CIPQ Marga Marco, Itzar Caban, Eva Portllo, 6 Tranformada d alac f(t funcón tmoral f(t f(t ara t < [ f (t] F( f (t t σ jω varabl comlja d alac t f(t g(t [ f (t] [ g(t ] F( G( Cambo d

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Para hallar la solución homogénea se hacen la siguientes consideraciones: 0, d dx

Para hallar la solución homogénea se hacen la siguientes consideraciones: 0, d dx Elaborao or: Jonn Coquuanca Lizarraga. Rsolvr: 5 5 4 3 Solución: la solución la ED sta aa or, g Para allar la solución omogéna s acn la siguints consiracions: 0, ED orn surior Alicacions Q D m 5 : D D

Más detalles

Descomposiciones Canónicas

Descomposiciones Canónicas Observabilidad p. 1/12 Descomposiciones Canónicas Las descomposiciones canónicas de las ecuaciones de estado permiten establecer la relación entre Controlabilidad, Observabilidad, y una matriz de transferencia

Más detalles

NOCIONES DE ELECTRÓNICA ANALÓGICA (Respuestas en frecuencias de los amplificadores)

NOCIONES DE ELECTRÓNICA ANALÓGICA (Respuestas en frecuencias de los amplificadores) susas n frcuncas d ls amlfcadrs NOIONES DE EETÓNI NÓGI (susas n frcuncas d ls amlfcadrs) Escula Plécnca Surr Prfsr: Darí García dríguz susas n frcuncas d ls amlfcadrs ESPUESTS EN FEUENIS DEOS MPIFIDOES

Más detalles

II. Electrostática tica en el vacío

II. Electrostática tica en el vacío II. Elcosáca ca n l vacío 5. Ecuacons d la Elcosáca ca Gabl Cano Gómz, G 29/ Dpo. Físca F Aplcada III (U. Svlla Campos Elcomagnécos cos Ingno d Tlcomuncacón II. Elcosáca ca n l vacío Gabl Cano G Gómz,

Más detalles

Recopilación y presentación de estadísticas del trabajo basadas en registros administrativos

Recopilación y presentación de estadísticas del trabajo basadas en registros administrativos R í bj b g v R L g b bj g f fz h í, b f z í. E ILO/EASMAT b b q f M Tbj q á b f b í bj h g. E ILO/EASMAT: Eí bj b g v: P (Bgkk, 1997). E h b, q g : - L v g í bj: L g f á v b í bj í q hg b. L b í áx v v.

Más detalles

Tema 2. Señales y Ruido Comunicaciones Digitales Universidad de Cantabria

Tema 2. Señales y Ruido Comunicaciones Digitales Universidad de Cantabria ma. Sñals y udo Comuncacons Dgtals Unvrsdad d Cantabra. Clasfcacón Sñals Dtrmnstas /Alatoras Sñals Pródcas / o Pródcas Sñals Contnuas / Dscrtas ( / ( (t+ ( ( / [n]. Sñals Dtrmnstas paso d concptos d la

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

Semana 12: Tema 9 Movimiento Rotacional

Semana 12: Tema 9 Movimiento Rotacional Semana : Tema 9 Movmeno Roaconal 9. Velocdad y Aceleracón angular 9. Roacón con aceleracón angular consane 9.3 Energía cnéca roaconal 9.4 Cálculo de momeno de nerca y el eorema de los ejes paralelos Capíulo

Más detalles

Tarea 1 de Álgebra Conmutativa (Lista larga)

Tarea 1 de Álgebra Conmutativa (Lista larga) Instrucciones: Entregar solo los ejercicios marcados con. 1. ( ) 2. ( ) (i) (Principio de substitución) Sea A-álgebra B via ϕ : A B y b 1,..., b n B. Demuestra que existe un único morfismo de anillos conmutativos

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

LA SOSTENIBILIDAD DE LA DEUDA PÚBLICA EN UNA ECONOMÍA ABIERTA Waldo Mendoza Bellido Pedro Herrera Catalán Febrero, 2004

LA SOSTENIBILIDAD DE LA DEUDA PÚBLICA EN UNA ECONOMÍA ABIERTA Waldo Mendoza Bellido Pedro Herrera Catalán Febrero, 2004 23 LA SOSTIILIDAD D LA DUDA PÚLICA UA COOMÍA AIRTA Walo Mnoza llo Pro Hrrra Caalán Frro, 24 DOCUMTO D TRAAJO 23 hp://www.pucp.u.p/conoma/pf/ddd23.pf LA SOSTIILIDAD D LA DUDA PÚLICA UA COOMÍA AIRTA Walo

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Luns 26 d marzo d 2012 Prácica individual 1. A parir d los siguins daos sobr l ipo d cambio nominal d varias

Más detalles

Cinemática (parte II)

Cinemática (parte II) Cnmác p II Z Dnccón n con spco l mpo α omulcón Lnn R 3 Dbuos Lono Dnc 3 R 3 3 α α 3 α X R Z Dnccón n con spco l mpo M M M omulcón Euln α α Dnccón n con spco l mpo Z α omulcón Euln Dnccón n con spco l mpo

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

H 2 = 3,6 kn + 3,6 kn = 7,2 kn

H 2 = 3,6 kn + 3,6 kn = 7,2 kn Trabajo Pracco Nº 8: Torsón n Ejs Ejrcco 1: Una coluna d sccón crcular acúa coo soor d un carl sodo a cargas horzonals (vno). A los fns d dl dnsonano sas cargas las suonos alcadas n ars guals n las cuaro

Más detalles

10 - Radiación Electromagnética

10 - Radiación Electromagnética lcomagnsmo 4 - - Raacón lcomagnéca nouccón n los capíulos pcns analamos las solucons las cuacons Maxwll n un cno sn funs campo qu consuyn onas lcomagnécas. n als casos s suponía qu las funs s hallaban

Más detalles

UNIDAD 4 Modelos Probabilísticos Variable Continua TEORÍA. Mg.Ing. Susana Vanlesberg Profesor Titular

UNIDAD 4 Modelos Probabilísticos Variable Continua TEORÍA. Mg.Ing. Susana Vanlesberg Profesor Titular Unvrsdad Naconal dl Loral Faculad d Ingnría Cncas Hídrcas ESTADÍSTICA Ingnrías: Rcursos Hídrcos-Ambnal-Agrmnsura TEORÍA Mg.Ing. Susana Vanlsbrg Profsor Tular UNIDAD 4 Modlos Probablíscos Varabl Connua

Más detalles

PROBLEMAS RESUELTOS DE INTERACCIÓN MAGNÉTICA

PROBLEMAS RESUELTOS DE INTERACCIÓN MAGNÉTICA PROLEMAS RESUELTOS DE INTERACCIÓN MAGNÉTICA PROEMAS DEL CURSO Una carga q = 2 C y 0,01 g masa, ncalmnt n rposo n un punto A, s aclraa por un campo léctrco horzontal orntao haca la zqura. Al llgar al punto,

Más detalles

Reguladores de compensación

Reguladores de compensación Rgulaors compnsación Dfinimos la salia saa para l sistma m D N La función transfrncia gnraliaa pos un rtaro ao por m. n n n q q q q A a a a b b b b G 0 0 Conicions: 0 q b, timpo murto la planta, G tin

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

se conoce como el coeficiente de restitución.

se conoce como el coeficiente de restitución. Dtrmnacón l Cocnt Rsttucón (.-Introuccón ) una plota pn-pon Víctor Garro Castro - arro@um.cl El st artículo prsntarmos una orma xprmntal para l cálculo l cocnt rsttucón ( ) una plota pn-pon, s analzará

Más detalles

Tema 10. Modelos de tipo de cambio con cuenta corriente

Tema 10. Modelos de tipo de cambio con cuenta corriente Tma 10. Modlos d po d cambo con cuna corrn Modlos dl po d cambo con cuna corrn S: Movldad prfca d capals Susubldad mprfca d acvos fnancros Rlacón drca nr l saldo d la CC y l po d cambo Para conocr la dnámca

Más detalles

Transiciones de sincronización en flujos caóticos

Transiciones de sincronización en flujos caóticos Posgrado en Físca Fundamenal Area de Caos y Ssemas Complejos Transcones de sncronzacón en flujos caócos M.Sc. Glbero Paredes hp://www.cens.ula.ve/cff/caocos Tuor: Dr. Maro Cosenza Condcones para el Caos

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

TÉRMINOS Y CONDICIONES DEL CÁLCULO DE CORRIENTES DE CORTOCIRCUITO PARA LA VERIFICACIÓN DEL DIMENSIONAMIENTO DE INTERRUPTORES EN EL SIC

TÉRMINOS Y CONDICIONES DEL CÁLCULO DE CORRIENTES DE CORTOCIRCUITO PARA LA VERIFICACIÓN DEL DIMENSIONAMIENTO DE INTERRUPTORES EN EL SIC POCEDMENTO DO TÉMNOS Y CONDCONES DEL CÁLCULO DE COENTES DE COTOCCUTO PAA LA VEFCACÓN DEL DMENSONAMENTO DE NTEUPTOES EN EL SC CDEC-SC Drccón d Opracón ÍNDCE TÍTULO : ASPECTOS GENEALES... 3 ATÍCULO. OBJETVO...

Más detalles

Introducción a la técnica de Bond-Graph

Introducción a la técnica de Bond-Graph Capíítullo T1 Introduccón a la técnca d Bond-Graph 1.1 INTRODUCCIÓN En un sstma físco cualqura, la nrgía pud almacnars, dspars o ntrcambars. Cuando postrormnt s unn dos sstmas, aparcn dstntos flujos d

Más detalles

Verificación e Identificación de Locutor con Normalización de Vectores de Características en Entornos Acústicos Adversos

Verificación e Identificación de Locutor con Normalización de Vectores de Características en Entornos Acústicos Adversos Vrfcacón Idnfcacón d Locuor con Normalzacón d Vcors d Caracríscas n Enornos Acúscos Advrsos Lus Bura 1 Eduardo Llda 1 Juan Dgo Rosas 1 Jsús Vllalba 1 Anono Mgul 1 Alfonso Orga 1 Óscar Saz 1 1 Daramno d

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Paraná

UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Paraná UNIVERSIDAD TENOLÓGIA NAIONAL Faclad Rgonal Paraná Dparamno Maras Báscas EUAIONES DIFERENIALES SISTEMAS DE EUAIONES DIFERENIALES APLIAIONES DE LAS EUAIONES DIFERENIALES Aors: Ing. Flca Dora Zraga Ing.

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +

Más detalles

Propagación de Fractura y la influencia de Heterogeneidades

Propagación de Fractura y la influencia de Heterogeneidades Propagacón d Fracura y la nflunca d Hrogndads A. Fguroa oo, M. Crca Marínz y F. Ramón Zúñga. Cnro d Gocncas, UNAM. Apdo Posal -74, Cnro Quraro, Quréaro, C.P. 7600, Mxco Rsumn. En l prsn rabajo, s prsna

Más detalles

4.1 Procedimientos de inferencia para la distribución exponencial

4.1 Procedimientos de inferencia para la distribución exponencial 4 Ifrca paramétrca 4 Procdmtos d frca para la dstrbucó xpocal La dstrbucó xpocal fu la prmra dstrbucó para modlar tmpos d falla y para lla s ha dsarrollado métodos stadístcos d mara xtsva a T ua va xpocal

Más detalles

1. Problema clásico de EDO

1. Problema clásico de EDO FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57C Control Óptimo Semestre 27-2 Profesor: Rafael Correa Auxiliar: Oscar Peredo Clase Auxiliar #1 31 de julio de 27 1 Problema clásico de EDO Problema

Más detalles

Sistemas Suavemente Variantes

Sistemas Suavemente Variantes Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas

Más detalles

Y i, es decir, la. Regresión Simple y Múltiple Parte II Profesor Oscar Millones Borrador, Octubre 12, Supuestos en el modelo de regresión

Y i, es decir, la. Regresión Simple y Múltiple Parte II Profesor Oscar Millones Borrador, Octubre 12, Supuestos en el modelo de regresión Rgrsón Smpl y Múltpl Part II Profsor Oscar Mllons Borrador, Octubr 1, 8 Supustos n l modlo d rgrsón 1.- Para cada valor d X, xst un grupo d valors d Y qu tnn una dstrbucón normal. (grafcar sta da).- Las

Más detalles