CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO IV. ANÁLISIS DE RESPUESTA TRANSITORIA"

Transcripción

1 ONTROL I ING. QUIRINO IMENEZ D. APITULO IV. ANÁLII DE REPUETA TRANITORIA La rspusa n l impo d un sisma d conrol s divid normalmn n dos pars: la rspusa ransioria y la rspusa n sado sabl o régimn prmann. Y Y Y ss Dond Y indica la rspusa ransioria; Y ss indica la rspusa d régimn prmann. Régimn prmann Frcunmn, cuando s habla d la rspusa d un sisma somido a la acción d una drminada sñal y no s spcifican las condicions inicials, s nind qu s hac rfrncia a la rspusa forzada. Por ora par n la xprsión mamáica d la rspusa rconocmos algunos érminos qu indn a dsaparcr a mdida qu ranscurr l impo, minras qu oros no lo hacn. En paricular, odos los érminos qu coninn l xponncial -/T indn a cro a mdida qu l impo ind al infinio. La rapidz con la qu dichos érminos indn a dsaparcr dpnd d T, por s moivo s llamado consan d impo. En gnral indn a cro odos aqullos érminos qu s ncunran muliplicados por A -k, con k ral posiivo. Todos los érminos d la rspusa qu no dsaparcn a mdida qu ranscurr l impo son la rspusa d sado sacionario o d régimn prmann. Transiorio no prmann En sismas d conrol, la rspusa ransioria sa dfinida como la par d la rspusa n l impo qu ind a cro cuando l impo s hac muy grand o s va al infinio. Por lo ano Y in la propidad d qu: Lim Y 0 EEMPLO. Y -8 R. ransioria - -8 R. sacionaria. Y 3-3cos35 R. ransioria 3 - R. sacionaria -3cos35

2 ONTROL I ING. QUIRINO IMENEZ D. 3. onsidrando la xprsión: Y aobnga l valor d la consan d impo dl érmino ransiorio, b calcul l valor d s érmino para 5T. a R. ransioria / Enoncs T b Para 5T 5 0 El érmino ransiorio val 5-0.5* PERTURAIONE REPUETA IMPULO UNITARIO DE ITEMA DE PRIMER ORDEN Para la nrada impulso uniario R R T Figura R δ δ dµ d µ -/T dµ -/T d T La salida d la figura anrior s T

3 ONTROL I ING. QUIRINO IMENEZ D. Ts/T Aplicando la ransformada invrsa d Laplac: /T 0 T La curva d rspusa rsulan d la cuación T T T T T T REPUETA RAMPA UNITARIA DE ITEMA DE PRIMER ORDEN. omo la ransformada d Laplac d la función uniaria s /s, la salida d la figura s * T A T T AT T AT A T A T 0 AT 0 A -T T -T T T T 3

4 ONTROL I ING. QUIRINO IMENEZ D. Tomando la ransformada invrsa d Laplac T T -/T T- /T T 0.367T T.35T 3T.05T T 3.08T 5T.006T 6T 5.00T REPUETA EALON UNITARIO DE ITEMA DE PRIMER ORDEN a R T La rlación d nrada salida d la figura. La ransformada invrsa d Laplac d la función scalón uniario s /s, susiuyndo R / n cuac., nmos: * T A T

5 ONTROL I ING. QUIRINO IMENEZ D. AT AT A A - T /T T T 0.63 T T 0.95 T T ITEMA DE ONTROL DE POIIÓN 5

6 ONTROL I ING. QUIRINO IMENEZ D. Ponciómros: L{ p r - c } E p E r s E c s Amplificador: L{ a k a } E a a E E ka E a ircuio lécrico: L{ a R a ί a L a dί a b } d E a R a I a s L a I a E b E a - E b R a L a I a Flujo magnéico ψ f i f 6

7 ONTROL I ING. QUIRINO IMENEZ D. El par s: T i i consan f T f i a f i f a a Volaj conra-lcromoriz b dθ L b d Eb b Φ circuio mcánico: d θ dθ L T 0 0 ia d d a T Φ Φ Ι 0 0 a I a T T ɸ Posición dl ponciómro d salida: nφ E Φ n E 7

8 ONTROL I ING. QUIRINO IMENEZ D. Diagrama a bloqus final: 8

9 ONTROL I ING. QUIRINO IMENEZ D. abindo qu L a s pquño noncs: 0 a L R n G b a a P 0 0 R R n G a b a a P / 0 0 i dividimos sobr n para rfrirlo al j d salida: n Ra n R G b a a p 0 0 / Dond: n R a a p / cons. Rfrido al j d salida. 0 n R a b cof. d viscosidad rfrido al j d salida. 0 n momno d inrcia rfrido al j d salida. R Analizando la cuación cararisica 0 9

10 ONTROL I ING. QUIRINO IMENEZ D., ± ± ±, R 0 Polos compljos 0 Polos rals R σ ; Wd jwd jwd R 0

11 ONTROL I ING. QUIRINO IMENEZ D. AO ITEMA UAMORTIGUADO s obin raics compljas R jwd jwd Dsarrollando l dnominador: jwd jwd jwd jwd j Wd Wd Wd Wd Wd Wd

12 ONTROL I ING. QUIRINO IMENEZ D. Analizando la cuac. n lazo crrado: dond R Facorizando l dnominador : anxando Wd : Wd Wd Wd L coswd L Wd Wd Wd Wd L snwd

13 ONTROL I ING. QUIRINO IMENEZ D. coswd coswd snwd snwd REPUETA DEL ITEMA UAMORTIGUADO: 0 Raics imaginario sobr l j imaginario coswd uando ríicamn amoriguado, raícs rals iguals A d A ds 0 A 3

14 ONTROL I ING. QUIRINO IMENEZ D. R spusa sobramoriguado. Raícs rals ngaivos y difrns

15 ONTROL I ING. QUIRINO IMENEZ D. 0 A A A A A R [ ] 5

16 ONTROL I ING. QUIRINO IMENEZ D. 6

17 ONTROL I ING. QUIRINO IMENEZ D / : 5 5?, 5 0 0,, ± ± A A A sobramoriguado sisma un s omo s rad dond R R H G s

18 ONTROL I ING. QUIRINO IMENEZ D. DEFINIIÓN DE EPEIFIAIONE DE REPUETA TRANITORIA EPEIFIAIONE n l dominio dl impo an una nrada n EALÓN:. Timpo d rardo d.. Timpo d crcimino r. 3. Timpo d pico p.. Máximo d sobrimpulso Mp. 5. Timpo d sablcimino s. TIEMPO DE RETARDO d. Es l impo qu arda la rpusa n alcnzar por primra vz la miad dl valor fnal.. TIEMPO DE REIMIENTO r Es l impo rqurido para qu la rspua crzca dl 0 al 90%, 5 al 95 %, 0 al 00 % d su valor final. Para l sisma sobramoriguado 0-90%. Para l sisma subamoriguado 0-00% 8

19 ONTROL I ING. QUIRINO IMENEZ D. 3. TIEMPO DE PIO p. Es l impo rqurido por la rspusa para alacanzar l primr pico dl sobrimpulso.. MÁXIMO OREIMPULO Mp. Es l valor pico máximo d la curva d rspusa mdido dsd la unidad. i la rspusa difir d la miad s común uilizar l máximo sobrimpulso porcnal. 9

20 ONTROL I ING. QUIRINO IMENEZ D. 5. TIEMPO DE ETALEIMIENTO s. Timpo rqurido por la curva d rspusa para alcanzar y mannr dnro d drminado rango, alrddor dl valor final spcificado n porcino absoluo dl valor final 5 y %. Exis una gran rlación nr Mp y s d al manra qu si uno aumna l ro disminy, por lo cual db dcidirs qu s lo más adcuado. 0

21 ONTROL I ING. QUIRINO IMENEZ D. ONTROL I DEMOTRAIÓN DE LA EPEIFIAIONE DE REPUETA TRANITORIA R F R Aplicando un scalón quda : Facorizando : R

22 ONTROL I ING. QUIRINO IMENEZ D. Facorizando l dnominador: [ Wd ] Wd Wd Wd Wd anxamos Wd Enoncs quda: Wd Wd Aplicando ransformada invrsa: L L Wd cos Wd L Wd Wd L Wd Wd Wd snwd

23 ONTROL I ING. QUIRINO IMENEZ D. L Wd Wd cos wd ξ sn wd Para un sisma subamoriguado s in r ξ wn r [cos wd r ξ ξ sn wd r] 0 ξ wn r cos wd r ξ wn r ξ ξ sn wd r cos wd r ξ ξ sn wd r cos wd sn wd r r ξ ξ an wd r ξ ξ. wn wn wn ξ wn ξ σ wd r wd an wd σ 3

24 ONTROL I ING. QUIRINO IMENEZ D. Trazando l plano compljo: También pud sr: π β r Wd β rad Wd rad / s β an Wd σ

25 ONTROL I ING. QUIRINO IMENEZ D. 3 ANALII DEL TIEMPO PIO p d d p 0 d d ξ wn p cos wd p ξ ξ sn wd p 0 d d ξ wn p cos wd p d d ξ wn p ξ ξ sn wd p 0 wd ξwn ξ wn p ξ wn p sn wd p ξwn ξ ξ sn wd p 0 ξ wn p cos wd p wd ξ wn p ξ ξ cos wd p Para sacar l p s ncsario drivar omo: wd wn ξ wd ξ ξ ξwn 5

26 ONTROL I ING. QUIRINO IMENEZ D. wd ξ wn p sn wd p ξ wn ξ wn p cos wd p ξ wd ξ ξ wn p cos wd p ξ wd ξ ξ wn p sn wd p 0 wd ξ wn p sn wd p ξ wn ξ wn p cos wd p ξ wd ξ ξ wn p cos wd p ξ wd ξ ξ wn p sn wd p 0 Análisis dl máximo sobrimpulso Mp ξ wn p p cos wd p ξ ξ sn wd p Mp p ξ wn p Mp cos wd p ξ ξ sn wd p π omo p, Enoncs: wd ξ wn π Mp wd cosπ ξ ξ snπ σ. π Mp wd dond σ ξ wn 6

27 ONTROL I ING. QUIRINO IMENEZ D. 5 ANALII DEL TIEMPO DE ETALEIMIENTO s: ξ wn cos wd ξ ξ sn wd ξ wn ξ sn wd g ξ ξ ξ wn ξ ξ wn ξ onsan dl impo srá: T ξ wn Para ± % : s T ξ wn Para ± 5 % : 3 s 3T ξ wn 7

28 ONTROL I ING. QUIRINO IMENEZ D. 8

29 ONTROL I ING. QUIRINO IMENEZ D. 9

30 ONTROL I ING. QUIRINO IMENEZ D. 30

31 ONTROL I ING. QUIRINO IMENEZ D. 3

32 ONTROL I ING. QUIRINO IMENEZ D. 3

33 ONTROL I ING. QUIRINO IMENEZ D. Ingniría d conrol modrna asuhiko, Ogaa. Ediorial: Prnic Hall. ILIOGRAFÍA ismas d conrol auomáico uo, njamín. Ediorial: Prnic Hall. Inroducción a la ingniría d conrol auomáico Rodríguz Avila, sús. Ediorial: Mc GrawHill. ismas rroalimnados d conrol análisis y sínsis. D`Azzo, ohn. Houpis, onsanin. Ediorial: Paraninfo. Quina dición,

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

Sistemas Suavemente Variantes

Sistemas Suavemente Variantes Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 7 Las Expcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo 7: Las

Más detalles

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

7.6 SEÑOREAJE E HIPERINFLACIÓN

7.6 SEÑOREAJE E HIPERINFLACIÓN Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +

Más detalles

n n ... = + : : : : : : : [ ]

n n ... = + : : : : : : : [ ] Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles

Respuesta al escalón unitario

Respuesta al escalón unitario Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a

Más detalles

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina Nmbr: Curs: 1º Bachillra B Eamn XII Fcha: 11 d juni d 018 Trcra Evaluación Anción: La n plicación clara y cncisa d cada jrcici implica una pnalización dl 5% d la na 1.- ( puns) Calcula la función plinómica,

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

TEORÍA DE CONTROL SISTEMAS DISCRETOS

TEORÍA DE CONTROL SISTEMAS DISCRETOS EORÍA DE ONROL SISEMAS DISREOS SISEMAS DISREOS ARQUIEURA DE UN SISEMA DE ONROL DIIAL oría d ontrol SISEMAS DISREOS IPOS DE SEÑALES IEMPO ONINUO { ANALÓIAS UANIFIADAS IEMPO DISREO { NO UANIFIADAS DIIALES

Más detalles

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción

Curso 2006/07. Tema 8: Retardos en el comportamiento económico y dinamicidad de los modelos. Dinámica y predicción Economría II Tma 8: Rardos n l comporamino conómico y dinamicidad d los modlos. Dinámica y prdicción 1. Moivos d dinamicidad n las rlacions 2. El mcanismo d corrcción dl rror y l quilibrio a largo plazo

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

Capítulo 1: Integral indefinida. Módulos 1 al 4

Capítulo 1: Integral indefinida. Módulos 1 al 4 Módulos al En los jrcicios a 8 s dan las funcions f y F. Comprub, usando drivación, qu F( ) s la primiiva más gnral d f ( ). Qué fórmula d ingración pud dducirs n cada caso?. f ( ) = ; ( ) = ln ( ). F

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CAPITULO º FUNCIONES DE VECTORES Y MATRICES_ Ing. Dgo Aljandro Paño G. M.Sc, Ph.D. Funcons d Marcs Torma: Sa f( una funcón arbrara dl scalar y sa A una marz con polnomo caracrísco: S dfn g( un polnomo

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones Capíulo. Sñals, spcros y ilros Univrsidad dl Cauca Toría d Tlcomunicacions Inroducción Las sñals prsns n los sismas d comunicacions varían con l impo, mas sin mbargo n ocasions sul sr más convnin analizar

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos UCV-INGENIERÍA ECUACIONES DIFERENCIALES (56) ECUACIONES DIFERENCIALES (56) Tma 3: La Tranformada d Laplac Connido programáico 3.- Dfinicion prliminar. Dfinición d Tranformada d Laplac. Condición uficin

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

Departamento de Ingeniería Eléctrica. Área Electrotecnia

Departamento de Ingeniería Eléctrica. Área Electrotecnia Dparamno d Ingniría Elécrica nivrsidad Nacional d Mar dl Plaa Ára Elcrocnia Elcrocnia Gnral (para la arrra Ingniría Indusrial Esudio d los circuios lécricos n égimn Transiorio Profsor Adjuno: Ingniro Elcricisa

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

Tema 2.4: Conceptos básicos de control PID?

Tema 2.4: Conceptos básicos de control PID? ma 2.4: Concpo báico d conrol D? Índic ma 2.4: Concpo báico d conrol.. Accion báico d conrol.. Conrolador odo.nada. 2. Conrol proporcional. 3. Conrol proporcional-drivaivo D. 4. Conrol proporcional-ingral.

Más detalles

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO ELECTRÓNICA

UNIVERSIDAD NACIONAL DE MAR DEL PLATA FACULTAD DE INGENIERÍA DEPARTAMENTO ELECTRÓNICA UNIVESIDAD NAIONAL DE MA DEL PLATA FAULTAD DE INGENIEÍA DEPATAMENTO ELETÓNIA ÁTEDA: Guía N o 6: ÁEA: ONTOL Sitma d ontrol (4E2) para Ingniría Eléctrica/Elctromcánica/Mcánica. OMPENSAIÓN DE SISTEMAS A LAZO

Más detalles

Sistemas Lineales 1 Segundo parcial, 11 de julio 2007

Sistemas Lineales 1 Segundo parcial, 11 de julio 2007 SSTEAS NEAES Sgundo Parcial Julio 7 comndacions gnrals: Sismas inals Sgundo parcial, d ulio 7 r anamn odos los rcicios y asgurars d no olvidar ralizar alguna par En caso d no podr avanzar n un problma,

Más detalles

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo.

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo. NÁLII EN RECUENCI DE EÑLE Y ITEM El análisis d la sñal n l dominio d la rcuncia a ravés d su spcro, nos prmi dinir l concpo d ancho d banda d la sñal. Las sñals s ransmin a ravés d sismas d comunicacions

Más detalles

Se pide: 2.- Considere el problema macroeconómico de conducir el estado x ( t) de la economía sobre el curso del periodo de planificación [ 0, T]

Se pide: 2.- Considere el problema macroeconómico de conducir el estado x ( t) de la economía sobre el curso del periodo de planificación [ 0, T] UNIVERSIDD DE PIUR PROGRM CDÉMICO DE ECONOMI MÉODOS MEMÁICOS (5) ESUDIO DIRIGIDO 4/ 7 / 6 HOR 7: p.m..- Una mprsa ha ribido un pdido d unidads d su produo, qu dbn nrgars al abo d un impo, fijado. La mprsa

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Inroducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions acas.7 Facor Ingran.8 Esabilidad dinámica dl quilibrio.9

Más detalles

Compensación en atraso-adelanto

Compensación en atraso-adelanto UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INENIEÍA MECANICA Y ELÉCICA CONOL CLÁSICO M.C. JOSÉ MANUEL OCHA NUÑEZ Compenaión en atrao-elanto Compenor eletrónio en atrao-elanto on amplifiore operaionale

Más detalles

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs ANÁLISIS TEMPORAL Concepto generale 1. Régimen tranitorio y permanente. 2. Señale normalizada de entrada. 3. Repueta a ecalón de itema de tiempo continuo. 4. Relación entre la repueta temporal y la ituación

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

Mecanismos de Reacción

Mecanismos de Reacción . Raccions Rvrsibls. Raccions Parallas o Compiivas. Raccions Conscuivas 4. Méodos Aproximados para obnr Ecuacions d Vlocidad 5. Raccions n Cadna 6. Efco d la Tmpraura sobr la consan d vlocidad . Raccions

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN PROPAGACÓN EN LÍNEAS DE TRANSMSÓN Connido 1.- nroducción a las línas. 2.- Campos E y H n una lína. 3.- Modlo circuial d una lína. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Onda sacionaria. 7.-

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

Política Monetaria y Cambiaria. Soluciones al problema de la credibilidad y la inconsistencia dinámica

Política Monetaria y Cambiaria. Soluciones al problema de la credibilidad y la inconsistencia dinámica Políica Monaria y Cambiaria Solucions al problma d la crdibilidad y la inconsisncia dinámica Simbr 01 1.1 Plano dl Problma Ancdns: Inconsisncia dinámica como una nación d políica conómica qu prmi sorprndr

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

Trabajo Fin de Grado

Trabajo Fin de Grado Trabajo Fin d Grado INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS sus Aplicacions n la Economía Auor Guillrmo Pribañz Juan Dircor/s Gloria Jarn Jarn Julio Sáncz Cóliz Faculad d Economía Emprsa 04 Rposiorio

Más detalles

Serie 4. Dinámica de Procesos

Serie 4. Dinámica de Procesos Sri 4 Dinámica d Proco unción d ranfrncia S dfin como G Y / X prna un modlo normalizado d un proco, dond Y la variabl d alida y X una d la nrada. Y and X án xprada como variabl dviación. La forma d la

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

CONTROL PID DEL ÁNGULO DE CABECEO DE UN HELICÓPTERO

CONTROL PID DEL ÁNGULO DE CABECEO DE UN HELICÓPTERO CONROL EL ÁNGULO E CABECEO E UN HELCÓERO F. Morilla SEÑO OR EAAS Canclación d la dinámica subamortiguada impo d asntaminto d la rspusta tmporal Rstriccions n la sñal d control Estructura d control y filtro

Más detalles

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR.... OBJETIOS....2 MODELIZACIÓN....3 IDENTIFICACIÓN... 2.4

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

INTERVALOS ENTORNOS FUNCIONES

INTERVALOS ENTORNOS FUNCIONES FUNCIONES TRIGONOMÉTRICAS D acurdo a la dfinición d razons trigonométricas, los valors d sn α, cos α, tg α, sc α, cosc αy cotg α dpndn dl valor α, sindo α s una variabl ral n l sistma circular o radial.

Más detalles

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ

APUNTES DE MACROECONOMÍA CAPÍTULO Nº 9 LA CONDICIÓN DE LA PARIDAD DE INTERESES AGOSTO 2008 LIMA - PERÚ Capíulo Nº 9: La condición d la paridad d inrss Marco nonio Plaza Vidaurr PUNTS D MCROCONOMÍ CPÍTULO Nº 9 L CONDICIÓN D L PRIDD D INTRSS GOSTO 2008 LIM - PRÚ Capíulo Nº 9: La condición d la paridad d inrss

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)

1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x) IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:

Más detalles

TEMA 4. CARACTERISTICAS DE LAS FDT: CEROS Y POLOS. TRANSFORMADA DE LAPLACE. 4.- Introducción a la representación de los sistemas.

TEMA 4. CARACTERISTICAS DE LAS FDT: CEROS Y POLOS. TRANSFORMADA DE LAPLACE. 4.- Introducción a la representación de los sistemas. Apun d rgulación Auomáica. Prácica y Problma. TEMA 4. CARACTERISTICAS DE LAS FDT: CEROS POLOS. TRANSFORMADA DE LAPLACE. OBJETIVOS. Lo diagrama d bloqu prmin rprnar ima como la FDT, la FDT un polinomio

Más detalles

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann K 11 aann difrncia s cro; ntoncs s múltiplo d 11

Más detalles

1. INTRODUCCION. 1.1 Introducción:

1. INTRODUCCION. 1.1 Introducción: . INRODUCCION. Inroducción: En los úlimos años, l vriginoso avanc d la lcrónica digial y spcialmn d los microprocsadors ha raído como conscuncia un aumno considrabl n l númro d aplicacions, ano a nivl

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Reguladores de compensación

Reguladores de compensación Rgulaors compnsación Dfinimos la salia saa para l sistma m D N La función transfrncia gnraliaa pos un rtaro ao por m. n n n q q q q A a a a b b b b G 0 0 Conicions: 0 q b, timpo murto la planta, G tin

Más detalles

Tipos de Cambio y Expectativas CAPÍTULO 14. Profesor: Carlos R. Pitta. Macroeconomía General

Tipos de Cambio y Expectativas CAPÍTULO 14. Profesor: Carlos R. Pitta. Macroeconomía General Univrsidad Ausral d Chil scula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 14 Tipos d Cambio y xpcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. 1.

Más detalles

Observe las siguientes constelaciones correspondientes a tres modulaciones A, B y C. Considere el mismo canal y receptor adaptado a cada caso.

Observe las siguientes constelaciones correspondientes a tres modulaciones A, B y C. Considere el mismo canal y receptor adaptado a cada caso. Prolmas Dccion Modulacion Binaria PROBLMA. QUIZ 3 RO 7. UCAB I GRA : Rinaldo May, José Manul Mjias Osrv las siguins conslacions corrspondins a rs modulacions A, B y C. Considr l mismo canal y rcpor adapado

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

FUNCIONES EULERIANAS

FUNCIONES EULERIANAS NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo Tma 5. Eficincia dl mrcado d divisas: la paridad d inrss y l ipo d cambio a coro plazo Macroconomía Abira Docorado Nuva Economía Mundial Profsor: Ainhoa Hrrar Sánchz Curso 2006-2007 5.1. La paridad no

Más detalles

PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE DEVOLUCION DE INSUMOS PARA LA SALUD A USUARIOS DE FARMACIA.

PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE DEVOLUCION DE INSUMOS PARA LA SALUD A USUARIOS DE FARMACIA. Clav: CEMA-PR-FC-DIMU-18 Vrsión: 0001 Sustituy a: Ninguno Próxima rvisión: cada 30 días. Página 1 d 7 PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE DEVOLUCION DE INSUMOS PARA LA SALUD A USUARIOS DE FARMACIA.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)

Más detalles

1. Calcular la integral definida de: x e xdx. sin 5

1. Calcular la integral definida de: x e xdx. sin 5 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES. Lln todos los datos n ltra

Más detalles

TEMA 3. Superficies Adicionales. Aletas.

TEMA 3. Superficies Adicionales. Aletas. TEMA 3. Suprficis Adicionals. Altas. Introducción Alta rcta d spsor uniform y alta d aguja d scción transvrsal constant La alta anular d spsor constant La alta d prfil triangular Efctividad d la alta Las

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Conversión CC/CC. Electrónica de Potencia. Autores (orden alfabético): A. Barrado, C. Fernández, A. Lázaro, E. Olías, M. Sanz, P.

Conversión CC/CC. Electrónica de Potencia. Autores (orden alfabético): A. Barrado, C. Fernández, A. Lázaro, E. Olías, M. Sanz, P. Convrsión CC/CC Elcrónica d Poncia Auors (ordn alfabéico): A. Barrado, C. Frnándz, A. ázaro, E. lías, M. Sanz, P. Zuml Índic ma Inroducción a las funs d alimnación linals y conmuadas Clasificación d los

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (3º) Aplicación: Longitud del arco de una curva. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgral dfinida: (º) Aplicación:

Más detalles