OBJETIVO 1 RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OBJETIVO 1 RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES"

Transcripción

1 OBJETIVO RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES NOMBRE: CURSO: ECHA: MAGNITUDES DIRECTAMENTE PROPORCIONALES Dos magnitudes son directamente proporcionales cuando la razón entre dos cantidades correspondientes de ambas es constante: a b = = k al bl Esta constante k se denomina constante de proporcionalidad directa. Si cada kilo de manzanas vale 0 céntimos, averigua la relación que existe entre el peso de manzanas y el precio. Para ello, formamos una tabla de dos filas: en una de ellas representamos las cantidades de una magnitud, y en la otra, las cantidades de la otra magnitud. PESO (en kilos) 5 PRECIO (en céntimos) Todas las divisiones entre el precio de las manzanas y su peso dan el mismo resultado: = 0 = 0 = 0 = 0 = = = = = = 0 = k 5 Es decir, el peso de las manzanas y su precio son magnitudes directamente proporcionales. La constante de proporcionalidad es, en este caso, k = 0. La tabla representada se denomina tabla de proporcionalidad. Para hacer una tortilla se utilizan huevos. Determina la relación entre estas magnitudes. a) Completa la tabla. HUEVOS 8 0 TORTILLA 5 b) Comprueba el resultado de todas las divisiones entre cantidades correspondientes. 8 0 = = = = = 5 c) Son magnitudes directamente proporcionales? 8 0 = = = = = 5 d) Determina la constante de proporcionalidad, k. Completa las tablas siguientes para que sean tablas de proporcionalidad directa ,5,5 8 9 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 078 _ indd 9 7/05/0 :

2 UNIDAD Esta tabla refleja el tiempo y los kilómetros recorridos por un coche que no circula a velocidad constante, es decir, va frenando y acelerando según el tráfico. Averigua si existe proporcionalidad HORAS TRANSCURRIDAS KILÓMETROS RECORRIDOS Realizamos todas las divisiones entre las dos magnitudes: = =,5 = 5 =,75 Podemos observar que estas divisiones no dan el mismo resultado. Por tanto, las magnitudes de las horas transcurridas y los kilómetros recorridos no son directamente proporcionales. Por cada ventana instalada nos cobran 500, pero si instalamos más de 0 ventanas nos cobran 50 por cada una. Comprueba si estas magnitudes son directamente proporcionales. a) Completa la tabla con los datos numéricos que faltan. NÚMERO DE VENTANAS PRECIO 000 b) Halla el resultado de las razones entre cantidades correspondientes ADAPTACIÓN CURRICULAR c) Son magnitudes directamente proporcionales? 000 = = = = = = 0 Estudia si las siguientes magnitudes son directamente proporcionales. a) El lado de un cuadrado y su perímetro. b) El volumen que ocupa un líquido y su peso. c) El número de fotocopias y su precio. 5 Observa la tabla siguiente. Comprueba que las magnitudes M y M' son directamente proporcionales, y calcula y e y'. MAGNITUD M MAGNITUD M ' 8 y y ' MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L _ indd 9 7/05/0 :

3 OBJETIVO APLICAR LA REGLA DE TRES SIMPLE DIRECTA NOMBRE: CURSO: ECHA: REGLA DE TRES SIMPLE DIRECTA La regla de tres simple directa es un procedimiento para conocer una cantidad que forma proporción con otras cantidades conocidas de dos magnitudes directamente proporcionales. Si una docena de huevos cuesta, cuánto cuestan huevos? Como la cantidad de huevos y su precio son magnitudes directamente proporcionales, podemos expresar esta relación de la siguiente manera. Ahora despejamos la x: Los huevos cuestan. cuestan Si huevos - -" " = Si huevos costarán - -" x x x = " = " x = " x = = x En una panadería han pagado por 70 barras de pan. Cuánto tendrían que pagar si hubiesen comprado 85 barras? Si Si barras cuestan - -" " = barras costarán - -" Las 85 barras cuestan. Si dólares son euros, cuántos euros son,5 dólares? Si Si dólares dólares son - -" serán euros " = - -" euros Los,5 dólares son euros. 9 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 078 _ indd 9 7/05/0 :

4 OBJETIVO CALCULAR PORCENTAJES UNIDAD NOMBRE: CURSO: ECHA: PORCENTAJES Los porcentajes o tantos por ciento expresan la razón entre dos magnitudes directamente proporcionales y nos indican la cantidad de una de ellas correspondiente a 00 unidades de la otra. Si el 7 % de un terreno es, m, cuántos metros cuadrados representan el total del terreno? % 7 -" 00 m, -" x 7 00 Como es una relación de proporcionalidad directa, tenemos que: =., x 7x = 00?, El total del terreno es 8 m. x = = 8 7 Un depósito de 000 litros de capacidad contiene 05 litros. Qué tanto por ciento es? Como es una relación de proporcionalidad directa: % 00 -" x Litros 000 -" x =. 05 ADAPTACIÓN CURRICULAR Con los 05 litros el depósito está al... %. En época de sequía, un embalse con capacidad máxima de 00 hectómetros cúbicos estaba al 5 %. Qué capacidad de agua contenía en ese momento? Capacidad x -" 00 % 5 -" 00 x 00 Como es una relación de proporcionalidad directa: = La capacidad de agua es... hectómetros cúbicos. A un artículo que vale 0 se le aplica un 0 % de descuento. Cuánto cuesta el artículo? % 00 -" 0 Euros 0 -" x MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L _ indd 95 7/05/0 :

5 OBJETIVO REALIZAR REPARTOS DIRECTAMENTE PROPORCIONALES NOMBRE: CURSO: ECHA: REPARTOS DIRECTAMENTE PROPORCIONALES Para realizar el reparto de una cantidad n de forma directamente proporcional a unas cantidades a, b, c : Se suman las cantidades: a + b + c +... Se divide la cantidad a repartir, n, entre esa suma. Este cociente es la constante de proporcionalidad. Para calcular cada parte basta con multiplicar cada cantidad a, b, c por esa constante. La Unión Europea ha concedido una subvención de para tres pueblos. El pueblo A tiene 800 habitantes; el B, 700, y el C, 500. Cómo debe repartirse el dinero? A + B + C = = 000 Pueblo A Total A B C Habitantes Euros 5000 x y z = 5000 x 000x = 800? " 000x = " x = = x = Pueblo B Total A B C Habitantes Euros 5000 > x y > z Despejamos la y: = 5000 y y = Pueblo C Total A B C Habitantes Euros 5000 > x y z > Despejamos la z: = z = 9 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 078 _ indd 9 7/05/0 :

6 UNIDAD Vicente y José abren una cartilla de ahorros en el banco. Vicente ingresa 00 y José ingresa 800. Al cabo de unos años les devuelven 80. Cómo se los tienen que repartir? Vicente + José = = 00 Total Vicente José Dinero invertido Dinero ganado 80 x y = = Despejamos la y: x = y = Tres socios de un negocio aportan 0 000, y 0 000, respectivamente. Si obtienen unos beneficios de 0 000, cuánto le corresponde a cada uno? Total Socio Socio Socio Dinero invertido Beneficios x y z ADAPTACIÓN CURRICULAR = = = Despejamos la y: Despejamos la z: x = y = z = Un padre reparte el premio de una quiniela entre sus tres hijos de 8, y 5 años para ayudar en su formación universitaria, de forma directamente proporcional a sus edades. Si el menor obtiene 000, calcula: a) Cuánto dinero ha repartido el padre? b) Cuánto le ha correspondido a cada hijo? Total Hijo Hijo Hijo Años 8 5 Dinero MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L _ indd 97 7/05/0 :

7 OBJETIVO 5 RECONOCER MAGNITUDES INVERSAMENTE PROPORCIONALES NOMBRE: CURSO: ECHA: MAGNITUDES INVERSAMENTE PROPORCIONALES Dos magnitudes son inversamente proporcionales si el producto de dos valores correspondientes de ambas es constante: a? a' = b? b' = k Esta constante k se denomina constante de proporcionalidad inversa. 0 obreros tardan 0 horas en pintar una fachada. Si fuesen 0 obreros tardarían 80 horas, y si fuesen 5 obreros, 0 horas. Qué relación hay entre estas magnitudes? OBREROS HORAS ? 0 = 00 0? 80 = 00 5? 0 = 00 k = 00 Como los productos que obtenemos son iguales, las magnitudes número de obreros y número de horas son inversamente proporcionales. Tardamos horas en hacer el recorrido que hay de casa al colegio a una velocidad de km/h. Si fuésemos a 5 km/h tardaríamos, horas, y si fuésemos a km/h, 9 horas. Comprueba si estas magnitudes son inversamente proporcionales. VELOCIDAD (km/h) 5 TIEMPO (horas), 9 Para construir una nave en 0 días son necesarias 0 personas. Si pasados días se incorporan personas más, en cuántos días terminarán? 98 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 078 _ indd 98 7/05/0 :

8 OBJETIVO APLICAR LA REGLA DE TRES SIMPLE INVERSA UNIDAD NOMBRE: CURSO: ECHA: REGLA DE TRES SIMPLE INVERSA La regla de tres simple inversa es un procedimiento para conocer una cantidad que forma proporción con otras cantidades conocidas de dos magnitudes inversamente proporcionales. Si trabajadores tardan 0 días en hacer un trabajo, cuánto tardarán trabajadores? Si trabajadores Si trabajadores tardan -- -" 0 días " tardarán -- -" x días = x 0 0? 0 =? x " 0 = x " x = =, días Los trabajadores tardarán algo más de días. En un depósito hay agua para 0 personas durante 0 días. Para cuánto tiempo durará el agua si fueran personas? tienen para Si 0 personas - 0 días " = tendrán para Si personas - días ADAPTACIÓN CURRICULAR Las personas tendrán agua para días. Con el agua de un depósito se llenan 0 envases de 5 litros cada uno. Cuántas botellas, de tres cuartos de litro (0,75 ) cada una, se llenarían con el agua del depósito? Si 5 litros Si litros llenan - 0 llenarían envases " = - botellas Se llenarían botellas de tres cuartos de litro. MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L _ indd 99 7/05/0 :

9 OBJETIVO 7 REALIZAR REPARTOS INVERSAMENTE PROPORCIONALES NOMBRE: CURSO: ECHA: REPARTOS INVERSAMENTE PROPORCIONALES Repartir una cantidad n de forma inversamente proporcional a otras cantidades a, b, c es equivalente a repartirla de forma directamente proporcional a los inversos de las cantidades a, b, c Cada parte se obtiene dividiendo la constante de proporcionalidad: R = n / a + / b + / c + entre su cantidad correspondiente a, b, c El premio de una carrera es de 550 y se repartirá entre los tres primeros corredores en acabar la prueba de forma inversamente proporcional al orden de llegada, es decir, inversamente proporcional a, y. Qué cantidad le corresponde a cada corredor? Puestos = Sumamos los inversos ---- Dividimos la cantidad, 550, entre la suma de los inversos. Al.º le corresponde Al.º le corresponde Al.º le corresponde = 00 = 50 = = + + = 550 : 550? = = 00. Comprobamos = 550 Un padre acude con sus dos hijos a una feria y en la tómbola gana 50 caramelos que los reparte de forma inversamente proporcional a sus edades, que son 9 y años. Cuántos caramelos le da a cada uno? Edades 9 78 Sumamos los inversos = Dividimos la cantidad, 50, entre la suma de los inversos: Al hijo de 9 años le corresponden Al hijo de años le corresponden 78 Comprobamos = MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 078 _ indd 00 7/05/0 :

10 UNIDAD Reparte 50 en partes inversamente proporcionales a los números, y. Números Dividimos la cantidad, 50, entre la suma de los inversos: A le corresponde A le corresponde A le corresponde Sumamos los inversos = Comprobamos = 50 El coste de la matrícula de una academia de música es menor cuantos más notables se han obtenido en el curso anterior. Tres amigos, Pedro, Sara y Leonor, han obtenido, y 5 notables, respectivamente, y entre los tres han pagado 0. Cuánto le ha costado la matrícula a cada uno? Notables Sumamos los inversos = ADAPTACIÓN CURRICULAR Dividimos la cantidad, 0, entre la suma de los inversos: A Pedro le corresponde A Sara le corresponde A Leonor le corresponde 78 Comprobamos = 0 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L _ indd 0 7/05/0 :

11 REALIZAR REPARTOS INVERSAMENTE PROPORCIONALES Los tres camareros de una cafetería, Olga, Juan y élix, han estado enfermos durante, y 9 días del mes de julio, respectivamente. Durante este mes han recibido 75 de propina que se han de repartir de forma inversamente proporcional a los días no trabajados. Cuántos euros les corresponden a cada uno de ellos? Días 9 78 Sumamos los inversos = Dividimos la cantidad, 75, entre la suma de los inversos: A Olga le corresponde A Juan le corresponde A élix le corresponde 78 Comprobamos = 75 0 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 078 _ indd 0 7/05/0 :

6 Proporcionalidad numérica

6 Proporcionalidad numérica 85 _ 0-0.qxd 7//07 :7 Página Proporcionalidad numérica INTRODUCCIÓN Es muy importante que los alumnos sean capaces de discernir si dos magnitudes son proporcionales. A veces cometen el error de pensar

Más detalles

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES OBJETIVO IDENTIICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES NOMBRE: CURSO: ECHA: Para multiplicar un número por 0, 00,.000... se desplaza la coma a la derecha tantos lugares como ceros tenga la

Más detalles

IES CINCO VILLAS TEMA 6 PROPORCIONALIDAD Página 1

IES CINCO VILLAS TEMA 6 PROPORCIONALIDAD Página 1 SOLUCIONES MÍNIMOS CURSO 1º ESO TEMA 6 PROPORCIONALIDAD Ejercicio nº 1.- Indica los pares de magnitudes que son directamente proporcionales (D.P.), los que son inversamente proporcionales (I.P.) y los

Más detalles

Nº Clavos : ; t 12.5h Tiempo 5 t

Nº Clavos : ; t 12.5h Tiempo 5 t MAGNITUDES DIRECTAMENTE PROPORCIONALES 1 de 14 DESCRIPCIÓN MATEMÁTICA: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES. Grupo: 1ºB Fecha: 21/04/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES. Grupo: 1ºB Fecha: 21/04/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES Nombre y Apellidos: Grupo: 1ºB Fecha: 21/04/2009 CALIFICACIÓN: Ejercicio

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD Ejercicio nº 1.- Subraya los pares de magnitudes que sean proporcionales: a) El peso de las naranjas compradas y el precio pagado por ellas. b) La estatura

Más detalles

OBJETIVO 1 LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES 2 15=5 6

OBJETIVO 1 LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES 2 15=5 6 IDENTIICAR OBJETIVO LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES NOMBRE: CURSO: ECHA: RACCIONES EQUIVALENTES Para comprobar si dos fracciones son equivalentes se multiplican en cruz, obteniéndose,

Más detalles

Guía del estudiante. Clase 36 Tema: Magnitudes directamente proporcionales y regla de tres simple directa

Guía del estudiante. Clase 36 Tema: Magnitudes directamente proporcionales y regla de tres simple directa MATEMÁTICAS Grado Séptimo Bimestre I Semana 8 Número de clases 36-39 Clase 36 Tema: Magnitudes directamente proporcionales regla de tres simple directa Actividad 1 A partir de la tabla, determine si las

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 14 REFLEXIONA En esta unidad vas a estudiar las relaciones de proporcionalidad, que te ayudarán a superar muchos problemas aritméticos de los que se presentan todos los días. Completa la

Más detalles

4 Problemas aritméticos

4 Problemas aritméticos 008 _ 07-000.qxd 9/7/08 9:06 Página 77 Problemas aritméticos INTRODUCCIÓN En la vida real, la mayor parte de las relaciones entre magnitudes son relaciones de proporcionalidad directa o inversa. Es importante

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

Departamento de Matemáticas. Nombre:.Grupo:..

Departamento de Matemáticas. Nombre:.Grupo:.. I.E.S. Mar Mediterráneo Matemáticas º E.S.O e) 2 [5 (7 2)] f) 22 - [5 - (8 - )] - 6 g) (-5) 2 - (-2) + (-) 6 h) 8 0 : 5 + 6 : 2 i) 5 : [2 + (2-7) + 5] j) 5 (8 - ) (2-7) 5 ( - 6) k) + 6 : 9 50 : [2 + (7

Más detalles

Proporcionalidad. En la introducción del tema planteábamos la siguiente situación de proporcionalidad:

Proporcionalidad. En la introducción del tema planteábamos la siguiente situación de proporcionalidad: Proporción y porcentajes Proporcionalidad En la introducción del tema planteábamos la siguiente situación de proporcionalidad: La proporción de agua requerida para la preparación de un zumo a partir de

Más detalles

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2)

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2) MATEMÁTICAS.- PRIMER CURSO ESO. Repasa durante el verano estos objetivos, realiza estos ejercicios y preséntalos el día del examen de recuperación en Septiembre. La prueba de Septiembre serán ejercicios

Más detalles

$ 2500 9000 5000 9000 : ; x 18000

$ 2500 9000 5000 9000 : ; x 18000 1 de 10 MAGNITUDES DIRECTAMENTE PROPORCIONALES Descripción matemática: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales.

Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales. REGLA DE TRES SIMPLE La regla de tres simple es una herramienta muy útil y a la vez muy fácil de usar. La utilizamos diariamente, por ejemplo, cuando deseamos saber cuánto costarán 3 kg de naranjas, si

Más detalles

Razón y proporción (I)

Razón y proporción (I) Matemáticas 2.º ESO Unidad 5 Ficha 1 Razón y proporción (I) Una razón es la división entre dos cantidades comparables. Se representa a b y se lee «a es a b». 1. Calcula mentalmente las razones entre las

Más detalles

Nombre y Apellidos: N 4. Edición 3.0

Nombre y Apellidos: N 4. Edición 3.0 Nombre y Apellidos: 4 Problemas N 4 Edición 3.0 P á g i n a 1 1. Una máquina etiqueta 64 botellas por minuto. Cuántas botellas etiquetará en total si está funcionando sin parar durante todo un día? 2.

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño 1. Razón. Proporción numérica La razón de los números a y b es la fracción b a Una proporción numérica es una igualdad entre dos razones numéricas. En cualquier proporción el producto de los etremos es

Más detalles

REFUERZO - MATEMÁTICAS OBJETIVOS MÍNIMOS

REFUERZO - MATEMÁTICAS OBJETIVOS MÍNIMOS OBJETIVOS MÍNIMOS Realizar operaciones con números enteros [ ] a) 18 ( 8 ) b) [ 1 ( 1 ) ] c) [ ( 8 9) ] 7 ( ) [ ] Realizar operaciones con fracciones 7 1 a) 1 1 b) c) : 1 7 7 1 1 d) : 1 1 e) 1 : 10 1 f)

Más detalles

Actividades para preparar el examen de Proporcionalidad.

Actividades para preparar el examen de Proporcionalidad. Actividades para preparar el examen de Proporcionalidad. Departamento de Matemáticas del I.E.S. Salvador Serrano Segundo de ESO - Curso.0 -.0.- Contesta si son ciertas las siguientes afirmaciones:. a n

Más detalles

2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6

2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6 ACTIVIDADES TEMA 1 1.- Escribe con palabras los siguientes números: 1.034.456: 20.004.080: 100.060.201: 35.001.001: 2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6 3.- Ordena de

Más detalles

TEMA 2: PROPORCIONALIDAD

TEMA 2: PROPORCIONALIDAD TEMA 2: PROPORCIONALIDAD 1. MAGNITUDES DIRECTA E INVERSAMENTE PROPORCIONALES. Definición. Se dice que dos magnitudes son directamente proporcionales si al multiplicar o dividir una de ellas por un número,

Más detalles

Proporcionalidad y porcentajes

Proporcionalidad y porcentajes CLAVES PARA EMPEZAR a) 1 4 2 5 4 10 No son equivalentes. b) 12 7 16 6 4 96 No son equivalentes. c) 4 60 3 0 240 240 Sí son equivalentes. a) 3 2 6 12/3 4 b) 3 6 x 24/6 4 c) x 6 12 7 4/6 14 a) b) c) d) e)

Más detalles

Proporcionalidad. Algunas aplicaciones: ofertas de supermercados. 1. Proporción numérica 1.a. Razón y proporción. Razón entre dos números

Proporcionalidad. Algunas aplicaciones: ofertas de supermercados. 1. Proporción numérica 1.a. Razón y proporción. Razón entre dos números Proporcionalidad Algunas aplicaciones: ofertas de supermercados Continuamente vemos distintas ofertas en supermercados y comercios que intentan atraer la atención del consumidor: Llévese 3 y pague 2. La

Más detalles

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego Apuntes de Matemáticas Proporcionalidad y porcentajes Fecha: MAGNITUD: Llamaremos magnitud a todo aquello que se puede pesar, contar o medir de alguna manera. Por tanto, son magnitudes el tiempo, el peso,

Más detalles

1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196

1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196 1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196 2. Opera usando las propiedades de las potencias: a) ( 5) 4 ( 2)

Más detalles

Kg que compró en última tienda = =Kg que necesitaba - kg comprados en tiendas anteriores = = 12 - ( 4,5 + 2,75 ) = 12-7,25 = 4,75 kg

Kg que compró en última tienda = =Kg que necesitaba - kg comprados en tiendas anteriores = = 12 - ( 4,5 + 2,75 ) = 12-7,25 = 4,75 kg 61.> Vamos a cercar una finca de 145,75 m. y queremos colocar un poste cada 2,5 m. Cuántos postes necesitaremos? Partimos 145,75 m en trozos de 2,5 m = 145,75 : 2,5 = =1457,5 : 25 = 58,3 trozos y por tanto

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA El éxito no se logra sólo con cualidades especiales. Es sobre todo un trabajo de constancia, de método y de organización. J.P.

Más detalles

c) Es 91 múltiplo de 7? y 7 divisor de 91?

c) Es 91 múltiplo de 7? y 7 divisor de 91? UNIDAD 1: NÚMEROS NATURALES (1 pto) Ejercicio nº 1.- a) Escribe los diez primeros múltiplos de 15: IES EL CORONIL b) Todos los divisores del 60 c) Es 91 múltiplo de 7? y 7 divisor de 91? (1 pto) Ejercicio

Más detalles

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son

Más detalles

2º. Rellena los huecos que faltan y determina la constante de proporcionalidad:

2º. Rellena los huecos que faltan y determina la constante de proporcionalidad: TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE º ESO ª EVALUACIÓN CURSO: 3º ESO PROPORCIONALIDAD NUMÉRICA 1º. Busca los valores para que las siguientes proporciones sean ciertas:... 0 45 5 45 5............,...

Más detalles

REGLA DE TRES SIMPLE Y COMPUESTA

REGLA DE TRES SIMPLE Y COMPUESTA 1 REGLA DE TRES SIMPLE Y COMPUESTA Actividad Especial de Recuperación CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos.

Más detalles

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20 Estudiar en el libro de Texto: No PROBLEMAS. PROPORCIONALIDAD (1) Proporcionalidad directa e inversa Ejemplo 1. Proporcionalidad directa En un diario leemos que los anuncios que se pueden insertar en él

Más detalles

6º. El Quinzet 11.17

6º. El Quinzet 11.17 6º. El Quinzet 11.1 (1) Tres manzanas cuestan 1. Cuántas manzanas puedo comprar con 5? (2) Cuál es la décima parte de 30? (3) Cuántos cuartos de hora hay en 5 horas? (4) Diez cuartos de hora, cuántas horas

Más detalles

NÚMEROS NATURALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS NATURALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS NATURALES Evaluación A 1. Realiza las siguientes operaciones. a) 234 + 57 + 2 345 = b) 456 93 = c) 876 49 = d) 875 : 35 = 2. Al dividir un número entre 27 el cociente es 12 y el resto es 9. De

Más detalles

Ecuaciones de primer ysegundo grado

Ecuaciones de primer ysegundo grado 86 _ 087-098.qxd 7//07 : Página 87 Ecuaciones de primer ysegundo grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la exposición de los conceptos asociados

Más detalles

1. Números naturales y enteros

1. Números naturales y enteros . Números naturales y enteros EJERCICIO. Resuelve las siguientes operaciones con números enteros: 7 9 + + 7 + = 7 + + 8 = EJERCICIO. Calcula los siguientes productos y divisiones de números enteros: (

Más detalles

MATEMÁTICAS 2º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: Ejercicio nº 2.-

MATEMÁTICAS 2º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: Ejercicio nº 2.- MATEMÁTICAS º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: 5 6 1, 45 7 19 4 5, 5 1 4 9 Ejercicio nº.- Sitúa cada número (entero o natural) en el conjunto que

Más detalles

TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco.

TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. 2009 TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 07: MAGNITUDES PROPORCIONALES.

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

NÚMEROS DECIMALES y NÚMEROS RACIONALES.

NÚMEROS DECIMALES y NÚMEROS RACIONALES. NÚMEROS DECIMALES y NÚMEROS RACIONALES. RECORDAR: Llamamos: 0' décima, 0' 0 centésima, 0' 00 milésima, 0 00 000 0' 000 diezmilésima,... 0000 limitados decimales exactos 0,5 Tipos de decimales decimales

Más detalles

5.- De un trozo que pesaba 2,5 kilos, se han vendido un trozo de 0,6 kg y otro de 0,35 kg. Cuánto pesa el trozo que queda?

5.- De un trozo que pesaba 2,5 kilos, se han vendido un trozo de 0,6 kg y otro de 0,35 kg. Cuánto pesa el trozo que queda? Para sumar y restar con números decimales, seguimos estos pasos: 1º Se colocan los números en columna, haciendo coincidir las unidades con las unidades, las décimas con las décimas 2º Se realiza la suma

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 8. Proporcionalidad numérica 1. Proporcionalidad simple directa Una magnitud es toda cualidad de un ser que pueda medirse. Ejemplos de magnitudes son la longitud, la temperatura,

Más detalles

GUÍA No.3 REPARTOS PROPORCIONALES. Reparto Proporcional

GUÍA No.3 REPARTOS PROPORCIONALES. Reparto Proporcional 1 GUÍA No.3 REPARTOS PROPORCIONALES Reparto Proporcional Es un procedimiento de cálculo que permite repartir cierta cantidad, en partes proporcionales a otras. Se dice que el reparto es simple, cuando

Más detalles

Tema 7: Sistemas de ecuaciones lineales. 1.- Resuelve los siguientes sistemas mediante el método de sustitución: = =

Tema 7: Sistemas de ecuaciones lineales. 1.- Resuelve los siguientes sistemas mediante el método de sustitución: = = Matemáticas º ESO Ejercicios Tema Bloque II: Álgebra Tema : Sistemas de ecuaciones lineales..- Resuelve los siguientes sistemas mediante el método de sustitución: 9 0 0 0.- Resuelve los siguientes sistemas

Más detalles

1- Hay que envasar tomates en botes de 15 tomates cada uno. Si antes de envasarlos se pudren 216 tomates, cuántos botes se podrán llenar?

1- Hay que envasar tomates en botes de 15 tomates cada uno. Si antes de envasarlos se pudren 216 tomates, cuántos botes se podrán llenar? PROBLEMAS 4.º 14 CURSO 2009/2010 UNIDAD- 4 LA DIVISIÓN 1- Hay que envasar 7.056 tomates en botes de 15 tomates cada uno. Si antes de envasarlos se pudren 216 tomates, cuántos botes se podrán llenar? 2-

Más detalles

Examen de Matemáticas Unidad: Las Fracciones

Examen de Matemáticas Unidad: Las Fracciones I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas Unidad: Las Fracciones Nombre y Apellidos: Grupo: º A Fecha: 10/1/008 CALIFICACIÓN: Ejercicio nº 1.- Escribe en cada caso la

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. ENUNCIADOS Indica si los siguientes pares de magnitudes son directa o inversamente proporcionales: a) La distancia recorrida por un caminante, a velocidad constante, y la duración del paseo. b) El

Más detalles

ASIGNATURA: MATEMATICAS NOTA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3 7 JUNIO 07 DE UNIDADES

ASIGNATURA: MATEMATICAS NOTA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3 7 JUNIO 07 DE UNIDADES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3

Más detalles

π. C. Calcula la fracción generatriz de los siguientes decimales periódicos:

π. C. Calcula la fracción generatriz de los siguientes decimales periódicos: NÚMEROS RACIONALES e IRRACIONALES A. Clasifica los siguientes números situándolos en el siguiente diagrama en el conjunto correspondiente:!!. π Q R Z B. Calcula y simplifica: C. Calcula la fracción generatriz

Más detalles

Examen de Matemáticas 4º de ESO Opción A

Examen de Matemáticas 4º de ESO Opción A Examen de Matemáticas 4º de ESO Opción A 1. He invitado a María al cine y por las dos entradas me han cobrado 15. Cuánto hubiera tenido que pagar si hubiera invitado a otros 5 amigos más? 2. Una piscina

Más detalles

3º lección TEMA 3.- LA DIVISIÓN DE LOS NÚMEROS NATURALES

3º lección TEMA 3.- LA DIVISIÓN DE LOS NÚMEROS NATURALES Una división es exacta cuando su resto es cero. En una división exacta se cumple: Dividendo= divisor x cociente -. Completa la tabla. Haz los cálculos de mentalmente: Ejemplo: 3196 47 376 68 00 resto 3196=

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES URB. LA CANTERA, S/N. 988 HTTP:/WWW.MARIAAUXILIADORA.COM º ESO SISTEMAS DE ECUACIONES º. Empareja cada sistema con su solución. a) 8 0 b) c) d) ) =, = -/ ) = 8, = ) =, = ) =, = º. De entre los siguientes

Más detalles

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES º lección TEMA.- LAS OPERACIONES CON FRACCIONES Para calcular la fracción de una cantidad, dividimos la cantidad entre el denominador y el resultado lo multiplicamos por el numerador. -. Calcula: Ejemplo

Más detalles

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100 1.- Es cribe D en los pares de magnitudes directamente proporcionales, I en las inversamente proporcionales y X en las que no sean ni una cosa ni otra.. El número de personas que van en el autobús y la

Más detalles

2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I. 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es?

2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I. 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es? 2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I PÁGINA 142 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es? 3x 8 = 25 Solución: 11 Si a cierta cantidad le restas su tercera parte y le sumas

Más detalles

2º ESO EJERCICIOS DE PROPORCIONALIDAD:

2º ESO EJERCICIOS DE PROPORCIONALIDAD: 2º ESO EJERCICIOS DE PROPORCIONALIDAD: 1) Completa la siguiente tabla para que las cantidades siguientes sean magnitudes directamente proporcionales: 1 3 8 2,5 3 2.) Indica si las magnitudes de la siguiente

Más detalles

Resumen de Proporcionalidad directa e inversa

Resumen de Proporcionalidad directa e inversa Resumen de Proporcionalidad directa e inversa Proporcionalidad directa Dos magnitudes son directamente proporcionales cuando el cociente o razón de las cantidades correspondientes es constante. Esta constante

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

8 Proporcionalidad numérica

8 Proporcionalidad numérica _ 0-00.qxd //0 0:0 Página Proporcionalidad numérica INTRODUCCIÓN La proporcionalidad numérica es un concepto que resulta a los alumnos complejo y difícil de comprender si no se ha adquirido soltura en

Más detalles

NOMBRE FECHA. 2.- Las alas de los aviones se construyen uniendo planchas de aluminio de 6, 234 kilogramos.

NOMBRE FECHA. 2.- Las alas de los aviones se construyen uniendo planchas de aluminio de 6, 234 kilogramos. MATEMÁTICAS 1º ESO PROBLEMAS: DECIMALES NOMBRE FECHA 1.- La distancia de las casas de cuatro amigos a su instituto son: 1,295 1,234 1,874 y 1,527 metros respectivamente. a) Ordena las distancias de las

Más detalles

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:...

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:... FRACCIONES. - Observa el gráfico y responde: a) Cuántos cuadrados ves? b) Cuántos cuadrados negros hay? c) Qué fracción del conjunto representan los cuadrados negros? d) Qué fracción del conjunto representan

Más detalles

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9 MATEMÁTICAS 2º ESO EJERCICIOS/PROBLEMAS: PROPORCIONALIDAD NOMBRE FECHA 1.- Escribe = o entre cada par de razones según formen o no proporción 1 3 5 15 9 3 2 4 9 9 4 2 2.- Calcula el término desconocido

Más detalles

CHICOS x; CHICAS y CHICOS + CHICAS = 29 CHICAS = CHICOS + 3 x + y = 29 y = x + 3 x = 13 y = 16 En la clase hay 13 chicos y 16 chicas.

CHICOS x; CHICAS y CHICOS + CHICAS = 29 CHICAS = CHICOS + 3 x + y = 29 y = x + 3 x = 13 y = 16 En la clase hay 13 chicos y 16 chicas. 2º ESO - PROBLEMAS UNIDAD 7: ECUACIONES II 1 En una clase hay 29 alumnos y alumnas, pero el número de chicas supera en tres al de chicos. Cuántos alumnos y cuántas alumnas hay en la clase? CHICOS x; CHICAS

Más detalles

(1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay?

(1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay? 5º. P.Orales. El Quinzet 10.2 (1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay? (2) Ayer fuimos a coger moras. Yo cogí 17 y mi hermano se comió 11. Cuántas

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 22 / 09 / 15 Guía Didáctica 4-3 Desempeños:* Reconoce y aplica las propiedades

Más detalles

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES 1. Magnitudes Directamente Proporcionales Kg de café Precio ( ) 1 4 2 8 3 12 4 16 5 20 8 32 Estas dos magnitudes, peso en kg de café y su precio en, se dice

Más detalles

NOMBRE: 1. Redondea a las centenas de mil los siguientes números:

NOMBRE: 1. Redondea a las centenas de mil los siguientes números: NOMBRE: 1. Redondea a las centenas de mil los siguientes números: a) 6 342 567 b) 12 535 000 c) 542 657 000 d) 67 584 000 2. Si a = 2 3 3 5 7; b = 2 4 3 2 5 7 y c = 2 3 5 7, averigua: a) Si b es múltiplo

Más detalles

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS COMPRENDER OBJETIVO EL CONCEPTO DE RACCIÓN. IDENTIICAR SUS TÉRMINOS NOMBRE: CURSO: ECHA: Para expresar una cantidad de algo que es incompleto o partes de un total sin usar números o expresiones numéricas,

Más detalles

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar OBJETIVO CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: 0 unidades de un orden forman unidad del

Más detalles

Departamento de Matemáticas Actividades de recuperación 2º ESO (Pendientes 1º)

Departamento de Matemáticas Actividades de recuperación 2º ESO (Pendientes 1º) FICHA 1 NÚMEROS I Fecha límite de entrega: 17 de octubre 1. Rellena el cuadro: Nº en cifra Nº en letra 2.345.018 Ocho millardos 310.023 Dos billones, mil doscientos 2. Escribe en número o en letra: Tres

Más detalles

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Recordar: Una ecuación es una igualdad algebraica en la que aparecen letras (incógnitas) con valor desconocido. El grado de una ecuación viene dado por el eponente

Más detalles

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

PRUEBAS EXTRAORDINARIAS CURSO 2015/16 DEPARTAMENTO DIDÁCTICO: MATEMÁTICAS MATERIA: MATEMÁTICAS NIVEL: 1º ESO

PRUEBAS EXTRAORDINARIAS CURSO 2015/16 DEPARTAMENTO DIDÁCTICO: MATEMÁTICAS MATERIA: MATEMÁTICAS NIVEL: 1º ESO PRUEBAS EXTRAORDINARIAS CURSO 2015/16 DEPARTAMENTO DIDÁCTICO: MATEMÁTICAS MATERIA: MATEMÁTICAS NIVEL: 1º ESO CONTENIDOS MÍNIMOS Unidad 1: Números Naturales 1. Criterios de divisibilidad. 2. Descomposición

Más detalles

MATEMÁTICAS-EJERCICIOS DE APOYO

MATEMÁTICAS-EJERCICIOS DE APOYO º E.S.O. TEMA. FRACCIONES. Escribe en forma de fracción los siguientes cocientes a) b) c) d). Escribe en forma de fracción la parte que se indica en cada caso a) De problemas de Matemáticas he realizado.

Más detalles

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números?

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números? TEMA 4: INECUACIONES Y SISTEMAS SISTEMAS DE ECUACIONES NO LINEALES Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no es de primer grado. La resolución de estos sistemas se

Más detalles

Ejercicios para la recuperación de matemáticas de 2º de ESO.

Ejercicios para la recuperación de matemáticas de 2º de ESO. Ejercicios para la recuperación de matemáticas de 2º de ESO. Bloque I: Aritmética 1. Encuentra todos los números enteros que cumplen que su valor absoluto es menor que 10 y mayor que 6. 2. Calcula: a)

Más detalles

1º PCPI: MATEMÁTICAS EFA MORATALAZ (Manzanares C. Real) PROPORCIONALIDAD

1º PCPI: MATEMÁTICAS EFA MORATALAZ (Manzanares C. Real) PROPORCIONALIDAD PROPORCIONALIDAD - Proporcionalidad directa e inversa - Ejercicios y problemas de reglas de tres directas, inversas y compuestas. - Problemas de porcentajes - Problemas de repartos directa e inversamente

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS: 1. Operaciones con números fraccionarios. 2. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto

Más detalles

Materia: Matemáticas Curso 2015-2016. Alumno/a Curso: 4º ESO

Materia: Matemáticas Curso 2015-2016. Alumno/a Curso: 4º ESO Materia: Matemáticas Curso 015-016 Alumno/a Curso: º ESO A continuación se describen los aprendizajes no adquiridos, así como las actividades programadas, las estrategias y los criterios de evaluación

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS:. Operaciones con números fraccionarios.. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto. Un terreno

Más detalles

1. Calcula: a) = b) : 82 =

1. Calcula: a) = b) : 82 = MATEMÁTICAS 1º ESO ACTIVIDADES de REPASO 1. Calcula: a) 906 5437 b) 572934 : 82 2. Un transportista carga en su motocarro 4 televisores y 3 minicadenas musicales. Si cada televisor pesa como 3 minicadenas

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

4. Escribe la fracción generatriz e indica de que tipo es cada número decimal. a. 7. b. 0.16

4. Escribe la fracción generatriz e indica de que tipo es cada número decimal. a. 7. b. 0.16 REPASO NÚMEROS REALES, POTENCIAS Y RAÍCES 3ºESO Alumno/a : 1. Dibuja un diagrama que exprese las relaciones existentes entre cada uno de los conjuntos numéricos. Indica el conjunto numérico más pequeño

Más detalles

proporcionalidad numérica

proporcionalidad numérica IES Mata Jove tema 9: proporcionalidad curso 2009/2010 nombre: apellidos: proporcionalidad numérica Lee el texto siguiente y realiza las actividades propuestas Los griegos ya conocían las proporciones

Más detalles

Lee y ordena estos números : : : :... Escribe el menor y mayor número de siete cifras significativas

Lee y ordena estos números : : : :... Escribe el menor y mayor número de siete cifras significativas TEMA 1 - LOS NUMEROS Y LAS OPERACIONES Escribe los números siguientes: Medio millón:... Tres millones y medio:... Diez millones cien mil:... Cuatro millones cuatrocientos... Seis millones treinta mil:...

Más detalles

Tema 5. Proporcionalidad numérica. Porcentajes. Tabla de valores y gráficas

Tema 5. Proporcionalidad numérica. Porcentajes. Tabla de valores y gráficas Tema 5. Proporcionalidad numérica. Porcentajes. Tabla de valores y gráficas 0.- Conceptos preliminares Razón de dos números Razón es el c oc iente entre d os números o dos c antidad es c omparables entre

Más detalles

1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones:

1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones: 1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones: x + y = 0 x y = 10 Multiplicando la 1ª ecuación por y sumando el resultado se obtiene: 6x + y = 0 x y = 10 x = 10 x = 5

Más detalles

Nombre: 90 X 40= 640+ 230= Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior 1.000.000 9.386.999 599.999.

Nombre: 90 X 40= 640+ 230= Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior 1.000.000 9.386.999 599.999. Calcula el termino que falta en cada operación.8 + = 87..7 =.7 +.7 =.87. =.7 X = 8. : = X 0 =.00.7 : = Escribe el número anterior y el posterior.000.000.8... 0.000.000 00.000.000 0 X 0= 0+ 0= Escribe con

Más detalles

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas?

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas? FRACCIONES Y DECIMALES ) Qué fracción de año representan meses? Y meses? Y meses? ) Un grifo llena un depósito en horas. Qué parte del depósito llenará: primero, en horas; segundo, en horas, y tercero,

Más detalles

8. Ecuaciones de 1. er y 2. o grado

8. Ecuaciones de 1. er y 2. o grado 0 Solucionario. Ecuaciones de. er y. o grado. Ecuaciones de. er grado piensa y calcula Resuelve mentalmente: a) + = b) = c) = d) = a) = b) = c) = d) = CARNÉ CALCULISTA, : C =,; R = 0, APLICA LA TEORÍA

Más detalles

TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O.

TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O. TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O. OPERACIONES CON FRACCIONES 1.-) Calcula: a) = b) = c) = d) = 2.-) Calcula: a) b) [ = c) = d) = 3.-) Calcula: a) = b) = 4.-) Calcula: d) e) f) 5.-)

Más detalles

FUNCIONES LINEALES Y AFINES

FUNCIONES LINEALES Y AFINES www.matesronda.net José A. Jiménez Nieto FUNCIONES LINEALES Y AFINES. LA FUNCIÓN LINEAL = m El tren AVE lleva una velocidad media de 40 km/h. La siguiente tabla nos da el espacio que recorre en función

Más detalles

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima. OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..

Más detalles

Matemáticas y Tecnología. Unidad 2 Los números racionales

Matemáticas y Tecnología. Unidad 2 Los números racionales CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA Matemáticas y Tecnología Unidad Los números racionales Nota Al final del texto se encuentra la solución de los ejercicios de la página del libro Concepto

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 52 EJERCICIOS Sistema de numeración decimal 1 Escribe con cifras: a) Trece unidades y ocho milésimas 13,008 b) Cuarenta y dos cienmilésimas 0,00042 c) Trece millonésimas 0,000013 2 Expresa

Más detalles

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =...

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =... Proporcionalidad y porcentajes Esquema de la unidad Curso:... Fecha:... PROPORCIONALIDAD PROPORCIÓN Una proporción es la igualdad de...... a b = Los términos a y d se llaman... Los términos b y c se llaman...

Más detalles

GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS

GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS 1 GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos. Ejemplos Un automóvil

Más detalles