Tema 4. Análisis multivariante de la varianza

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4. Análisis multivariante de la varianza"

Transcripción

1 Máster en Técnicas Estadísticas Análisis Multivariante Año Profesor: César Sánchez Sellero Tema 4 Análisis multivariante de la varianza 4 Presentación del modelo Se trata de comparar las medias de I poblaciones normales multivariantes independientes y con matriz de dispersión común Consideremos I muestras independientes Y Y 2 Y n de una población N d (µ, Σ Y 2 Y 22 Y 2 n2 de una población N d (µ 2, Σ Y I Y I2 Y I ni de una población N d (µ I, Σ Cada una de las I muestras está formada por variables independientes y con la misma distribución Se trata, por tanto, de I muestras aleatorias simples Además se supone que las I muestras son, entre sí, independientes Nótese que a las medias se les permite ser distintas, pero las varianzas se suponen todas iguales Por suponerse las varianzas iguales diremos que el modelo es homocedástico La única diferencia respecto del modelo univariante de análisis de la varianza radica en que las variables Y ij ahora pueden ser vectores 42 Descomposición de la variabilidad Contraste de igualdad de medias Podemos expresar este modelo en la forma del modelo lineal general multivariante así: Y U Y n Y µ U n U Y n = µ 2 + U n µ I Y I U I Y In I U In I Los parámetros de este modelo, que son los I vectores de medias µ,, µ I, se pueden estimar 39

2 40 Máster en Técnicas Estadísticas por mínimos cuadrados mediante el procedimiento general del modelo lineal, donde ahora n Y j n j= n 2 n 2 X X = X Y 2j Y = j= n I n I Y entonces ( X X X Y = Ȳ Ȳ 2 Ȳ I por lo que las medias muestrales resultan ser los estimadores bajo este modelo Ahora planteamos el contraste de la igualdad de todas las medias, esto es, el contraste de la hipótesis nula: H 0 : µ = µ 2 = = µ I Esta hipótesis se puede formular de modo equivalente así µ µ I = µ 2 µ I = = µ I µ I = 0 lo cual admite esta forma matricial AB = µ µ 2 µ I j= Y Ij = 0 (4 Bajo esta restricción lineal, que reduce los parámetros a una única media común µ, podemos considerar el nuevo modelo con ese único parámetro que se estimaría mediante la media global: ˆµ = I Y ij = n j= Ȳ i = Ȳ El contraste de la hipótesis de igualdad se puede llevar a cabo por el método basado en la Λ de Wilks, que compara la matriz de covarianzas de los residuos bajo el modelo general y bajo la hipótesis nula Así, si la hipótesis nula es cierta, el estadístico de contraste verica Λ(d, q, n p E + H

3 Análisis Multivariante 4 siendo E la matriz de covarianzas de los residuos bajo el modelo general y E H = E +H la matriz de covarianzas de los residuos bajo la hipótesis nula, p el número de parámetros independientes bajo el modelo general y p q el número de parámetros independientes bajo la hipótesis nula Esto da lugar a una descomposición de la matriz de covarianzas, que en este caso se suele representar mediante la llamada tabla del análisis multivariante de la varianza o tabla MANOVA: Fuente de variación Matriz de covarianzas Grados de libertad Entre poblaciones H = (Ȳi (Ȳi Ȳ Ȳ I Error E = Total E H = j= ( ( Yij Ȳi Yij Ȳi ( j= ( ( Yij Ȳ Yij Ȳ j= Observamos que esta tabla no es más que una extensión de la tabla ANOVA al caso multivariante Así, como y además sondependientes, tenemos que H Wishart d (Σ, I E Wishart d (Σ, n I Λ(d, I, n I E + H El sentido común nos invita a rechazar la hipótesis nula cuando la variabilidad proveniente de las diferencias entre poblaciones (que medimos mediante la matriz H sea grande comparada con la proveniente del error (medida por E Por tanto, rechazaremos la hipótesis nula cuando el estadístico / E + H tome un valor menor que el cuantil α de la distribución Λ(d, I, n I, siendo α el nivel de signicación jado de antemano Al igual que en el modelo lineal general multivariante, aquí también podemos plantear el procedimiento de uniónintersección para el contraste de la hipótesis nula de igualdad de todas las medias En ese caso, el estadístico de contraste sería φ max = máximo autovalor de HE y rechazaremos la hipótesis nula cuando φ max > φ max,α siendo φ max,α el cuantil α de la distribución de φ max Ejemplo 4 Sobre los datos de los lirios de Fisher, vamos a efectuar el contraste de igualdad del vector de medias para las tres especies Lo haremos suponiendo que cada individuo tiene distribución normal multivariante, las muestras sondependientes y tienen la misma matriz de covarianzas

4 42 Máster en Técnicas Estadísticas 43 Comparaciones múltiples Para un modelo lineal general tenemos { ( P a ABb a A ˆBb φ max,α a A (X X A ab Eb, a A ˆBb + φ max,α a A (X X A ab Eb } a, b = α obteniendo así un conjunto de intervalos de conanza simultáneos para a ABb, con nivel de conanza α En nuestro caso, las matrices A y B se encuentran en la expresión (4 y entonces a AB = (a, a 2,, a I (µ µ I (µ 2 µ I (µ I µ I = a (µ µ I + a 2 (µ 2 µ I + + a I (µ I µ I = c i µ i siendo c i = a i i {,, I } y c I = I a i De este modo, pasamos de considerar cualquier vector a a considerar cualquier vector (c,, c I que verique I c i = 0 De igual modo, A continuación observamos que a A ˆB = c i Ȳ i ( I a A = a,, a I, a i = (c,, c I de modo que a A ( X X A a = (c,, c I /n /n I c c I = Luego, nos queda el siguiente conjunto de intervalos de conanza simultáneos c i Ȳ c 2 i b Eb, c i Ȳ b Eb i b ( i b + (

5 Análisis Multivariante 43 para I c iµ i b con nivel de conanza α El vector (c,, c I indica qué poblaciones vamos a comparar, mientras que el vector b indica qué componentes del vector respuesta Y vamos a utilizar para la comparación De nuevo, φ max,α es el cuantil α de la distribución de φ max Así, si tomamos c r =, c s = y c i = 0 si i r, i s, quedando el vector (0,, 0,, 0,, 0,, 0,, 0, y b j =, b k = 0 si k j, para obtener b = (0,, 0,, 0,, 0, entonces (( ( Ȳ r Ȳs b ± φ max,α + b n r n Eb s r, s {,, I} j {,, d} es un conjunto de intervalos de conanza simultáneos para la comparación de las poblaciones résima y sésima en cada una de las componentes del vector Y Nótese que en este caso b Eb es la suma de cuadrados de los residuos relativos a la componente jésima En general, b Eb es la evaluación de la forma cuadrática E en el vector b, y contiene la suma de cuadrados de las combinaciones lineales de los residuos según el vector b Ejemplo 42 Sobre el ejemplo de los lirios, vamos a efectuar las comparaciones múltiples de los vectores de medias de cada especie 44 MANOVA con dos factores de variación Hasta aquí hemos considerado la comparación de poblaciones clasicadas según un único criterio En esta sección suponemos que hay dos factores: A y B Del factor A podemos distinguir I niveles, mientras que en el factor B podemos encontrar J niveles En cada una de las I J posibilidades realizamos K observaciones de un vector aleatorio Y El objetivo será estudiar la inuencia de los factores A y B, o de su interacción, en la media del vector Y Así, planteamos el siguiente modelo: Y ijk = µ + α i + β j + γ ij + U ijk k {,, K} i {,, I} j {,, J} siendo U ijk N d (0, Σ El parámetro µ representa la media global, los parámetros α i representan el efecto principal del factor A, los parámetros β j representan el efecto principal del factor B y los parámetros γ ij representan la interacción de los factores A y B Además verican α i = β j = j= γ ij = γ ij = 0 Este modelo también se puede ver como un caso particular del modelo lineal general multivariante Así, aplicaremos los resultados conocidos para el modelo lineal general, tanto en lo relativo a la estimación por mínimos cuadrados de los parámetros como en lo concerniente a contrastes de hipótesis referidas al modelo En este sentido planteamos hipótesis del tipo: H A : α i = 0 i H B : β j = 0 j j= H AB : γ ij = 0 i, j

6 44 Máster en Técnicas Estadísticas que se estudian en base a la siguiente descomposición de la variabilidad, mediante lo que llamaremos tabla MANOVA II: Fuente de variación Matriz de covarianzas Grados de libertad Factor A H A = JK (Ȳi (Ȳi Ȳ Ȳ I Factor B Interacción H B = IK H AB = K Error E = Total j= j= (Ȳ j (Ȳ j Ȳ Ȳ J (Ȳij Ȳi Ȳ j + Ȳ (I (J ( Ȳ ij Ȳi Ȳ j + K Ȳ ( ( Yijk Ȳij Yijk Ȳij IJ(K j= k= j= k= K ( Yijk Ȳ ( Yijk Ȳ IJK De este modo la hipótesis H A : α i = 0 i se contrasta en base al estadístico Λ (d, I, IJ(K E + H A la hipótesis H B : β j = 0 j se contrasta en base al estadístico Λ (d, J, IJ(K E + H B y la hipótesis H AB : γ ij = 0 i, j se contrasta en base al estadístico Λ (d, (I (J, IJ(K E + H AB Ejemplo 43 En una especie de cesped, denominada Paspalum, se está investigando el efecto que experimenta al ser infectada con un hongo Al mismo tiempo se tiene en cuenta la temperatura, dentro de un diseño con cuatro valores diferentes: 4, 8, 22, 26 o C En cada realización del experimento se miden tres variables: Y = El peso fresco de las raíces (medido en gramos Y 2 = La longitud máxima de las raíces (medida en milímetros Y 3 = El peso fresco de las hojas (medido en gramos Los datos se encuentran en el chero "tema4ejemplo3txt" Vamos a contrastar el efecto del tratamiento con hongos, el efecto de la temperatura y la posible interacción entre ambos efectos

7 Análisis Multivariante 45 Comparaciones múltiples Con la misma forma de proceder que en el MANOVA con un factor de variación, vamos a obtener intervalos de conanza simultáneos para combinaciones lineales de los parámetros de este modelo Lo haremos con los efectos principales del factor A La hipótesis H A se puede expresar en cualquiera de estas formas equivalentes: α = α 2 = = α I = 0 µ = µ 2 = = µ I µ µ I = µ 2 µ I = = µ (I µ I = 0 µ µ I µ 2 AB = µ I = 0 µ (I µ I Razonando igual que en el MANOVA I, llegamos a a AB = c i µ i con I c i = 0 De igual modo, a A ˆB = I c iȳ conjunto de intervalos de conanza simultáneos ( c i Ȳ i b c 2 i φmax,α b JK Eb, c i Ȳ i i b + Finalmente, obtenemos el siguiente ( JK b Eb para I c i µ i b con nivel de conanza α, siendo φ max,α el cuantil α de la distribución del autovalor más grande de H A E 45 Diseño por bloques aleatorizados Queremos estudiar el efecto de ciertos tratamientos sobre un vector aleatorio, pero en la experimentación debemos tener en cuenta la presencia de otro efecto debido a una variable de tipo bloque Para ello, elaboramos un diseño experimental en el que cada tipo de tratamiento se observará en cada nivel de la variable bloque No consideramos replicación Como resultado obtenemos los vectores aleatorios: Y ij que representa el vector aleatorio observado bajo el tratamiento iésimo y en el bloque jésimo Adoptamos el modelo siguiente: Y ij = µ + α i + β j + U ij i {,, I} j {,, J} siendo U ij N d (0, Σ El parámetro µ representa la media global, los parámetros α i representan el efecto del tratamiento y los parámetros β j representan el efecto bloque Observamos la gran semejanza con el modelo MANOVA II anterior, del que se diferencia en la ausencia de replicación, lo cual impide la estimación de interacciones Además, en el presente modelo distinguimos entre los tratamientos, que constituyen el objetivo primordial del estudio, y la variable bloque, que se considera únicamente para controlar su efecto sobre la variable respuesta

8 46 Máster en Técnicas Estadísticas Se verica α i = β j = 0 j= Este modelo también se puede ver como un caso particular del modelo lineal general multivariante Así, aplicaremos los resultados conocidos para el modelo lineal general, tanto en lo relativo a la estimación por mínimos cuadrados de los parámetros como en lo concerniente a contrastes de hipótesis referidas al modelo En este sentido planteamos hipótesis del tipo: H T : α i = 0 i H B : β j = 0 j que se estudian en base a la siguiente descomposición de la variabilidad: Fuente de variación Matriz de covarianzas Grados de libertad Tratamientos H T = J (Ȳi (Ȳi Ȳ Ȳ I Efecto Bloque H B = I Error E = Total j= j= j= (Ȳ j (Ȳ j Ȳ Ȳ J ( Yij Ȳi Ȳ j + Ȳ (I (J ( Y ij Ȳi Ȳ j + Ȳ ( ( Yij Ȳ Yij Ȳ IJ De este modo la hipótesis H T : α i = 0 i se contrasta en base al estadístico Λ (d, I, (I (J E + H T y la hipótesis H B : β j = 0 j se contrasta en base al estadístico Λ (d, J, (I (J E + H B Ejemplo 44 En las islas Cook se realizó un experimento en bloques aleatorizados para estudiar el efecto de seis tratamientos para combatir un parásito de las plantas de las alubias Se midieron tres variables Y = El número de parásitos por hoja Y 2 = El peso de las alubias por planta (medido en kilogramos Y 3 = sen ( p, donde p es la proporción de hojas infestadas con el parásito Los datos se encuentran en el chero "tema4ejemplo4txt" Vamos a contrastar si hay diferencias entre los tratamientos

9 Análisis Multivariante 47 Comparaciones múltiples También podemos considerar intervalos de conanza simultáneos para combinaciones lineales de los parámetros de este modelo Así, podemos obtener el siguiente conjunto de intervalos de conanza simultáneos c i Ȳ i b ( J b Eb, c i Ȳ i b + ( J b Eb para I c i µ i b con nivel de conanza α, siendo φ max,α el cuantil α de la distribución del autovalor más grande de H T E Bibliografía Johnson, RA y Wichern, DW (982 Applied multivariate statistical analysis Prentice-Hall Mardia, KV, Kent, JT y Bibby, JM (979 Multivariate analysis Academic Press Seber, GAF (984 Multivariate observations Wiley

Tema 3. El modelo lineal general multivariante

Tema 3. El modelo lineal general multivariante Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 3. El modelo lineal general multivariante 3.1. Presentación del modelo. En este tema vamos a

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

Wenceslao González Manteiga.

Wenceslao González Manteiga. ANÁLISIS MULTIVARIANTE Wenceslao.gonzalez@usc.es ÍNDICE 0. MOTIVACIÓN HISTÓRICA 1. ANÁLISIS EXPLORATORIO DE DATOS 2. REVISIÓN DE LAS DISTRIBUCIONES NOTABLES MULTIDIMENSIONALES RELACIONADAS CON LA NORMAL

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

1 El Análisis de Varianza

1 El Análisis de Varianza 1 El Análisis de Varianza Objetivo: Explicar (controlar las variaciones de una v.a. Y continua (numérica, mediante factores (variables cualitativas que definen categorías que controlamos (no aleatorios.

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Modelo de Análisis de la Covarianza. Introducción al modelo de Medidas Repetidas

Modelo de Análisis de la Covarianza. Introducción al modelo de Medidas Repetidas Modelo de Análisis de la Covariza. Introducción al modelo de Medidas Repetidas Modelo de Análisis de la Covariza Introducción El diseño por bloques se considera para eliminar el efecto de los factores

Más detalles

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo MODELO DE DISEÑO DE EXPERIMENTOS (VARIOS FACTORES) Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Los modelos de diseño de experimentos sirven, en general, para tratar de explicar

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar mcladera@uib.es Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

Diseño de Experimentos. Diseños Factoriales

Diseño de Experimentos. Diseños Factoriales Diseño de Experimentos Diseños Factoriales Luis A. Salomón Departamento de Ciencias Matemáticas Escuela de Ciencias, EAFIT Luis A. Salomón (EAFIT) Inspira Crea Transforma Curso 2016 Índice 1 Introducción

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011 Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños

Más detalles

Análisis de la varianza

Análisis de la varianza Análisis de la varianza José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

2. Modelos con regresores endógenos

2. Modelos con regresores endógenos . Introducción ema 3. Regresores Endógenos. Bibliografía: Wooldridge, 5., 5.4 y 6.2 En este tema vamos a estudiar el modelo lineal con regresores potencialmente endógenos. Veremos primero las consecuencias

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

Soluciones a los ejercicios propuestos del Tema 6

Soluciones a los ejercicios propuestos del Tema 6 Soluciones a los ejercicios propuestos del Tema 6 1 Soluciones a los ejercicios propuestos del Tema 6 6.1. Es un diseño de un factor (la estirpe). La tabla ANOVA es: actor (entre tratamientos) Error (dentro

Más detalles

Econometría II. Hoja de Problemas 1

Econometría II. Hoja de Problemas 1 Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli

Más detalles

Los estimadores mínimo cuadráticos bajo los supuestos clásicos

Los estimadores mínimo cuadráticos bajo los supuestos clásicos Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni MCO bajo los supuestos clásicos 1

Más detalles

Prácticas Tema 4: Modelo con variables cualitativas

Prácticas Tema 4: Modelo con variables cualitativas Prácticas Tema 4: Modelo con variables cualitativas Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 4.1- Se dispone de información sobre 16 familias sobre

Más detalles

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos)

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) PROBLEMA 1 Se quiere comparar la cantidad de energía necesaria para realizar 3 ejercicios o actividades: andar, correr y montar en bici.

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta Test Compara la distribución de una variable continua normal en mas de dos poblaciones (niveles o categorías) H 0 : No existen diferencias entre los k niveles H : La hipótesis nula no es cierta Parte de

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR En el análisis de la varianza con un factor (ANOVA I) se supone que hay variación debida a los tratamientos. Se aplica un tratamiento distinto a cada

Más detalles

DISEÑO EN PARCELAS DIVIDIDAS

DISEÑO EN PARCELAS DIVIDIDAS DISEÑO EN PARCELAS DIVIDIDAS Este es un diseño experimental combinado que resulta útil cuando al estudiar simultáneamente varios factores, alguno o algunos de ellos deben ser aplicados sobre unidades experimentales

Más detalles

Intervalo para la media si se conoce la varianza

Intervalo para la media si se conoce la varianza 178 Bioestadística: Métodos y Aplicaciones nza para la media (caso general): Este se trata del caso con verdadero interés práctico. Por ejemplo sirve para estimar intervalos que contenga la media del colesterol

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Tema 3 Normalidad multivariante

Tema 3 Normalidad multivariante Aurea Grané Máster en Estadística Universidade Pedagógica Aurea Grané Máster en Estadística Universidade Pedagógica Tema 3 Normalidad multivariante 3 Normalidad multivariante Distribuciones de probabilidad

Más detalles

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa

Más detalles

ANOVA mul)factorial. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff

ANOVA mul)factorial. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff ANOVA mul)factorial Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Se puede examinar más de un factor simultáneamente (ANOVA de 2 factores, de 3 factores, etc.) Por qué un único análisis

Más detalles

DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN. Diseños en bloques completos aleatorizados con dos tratamientos

DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN. Diseños en bloques completos aleatorizados con dos tratamientos DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN Los diseños en bloques utilizan una restricción en la aleatorización. Los cuadrados latinos utilizan dos restricciones en la aleatorización.

Más detalles

Análisis de la varianza (ANOVA)

Análisis de la varianza (ANOVA) Análisis de la varianza (ANOVA) Mª Isabel Aguilar, Eugenia Cruces y Bárbara Díaz UNIVERSIDAD DE MÁLAGA Departamento de Economía Aplicada (Estadística y Econometría) Parcialmente financiado a través del

Más detalles

Hipótesis Alternativa H 1 : ϑ Θ 1

Hipótesis Alternativa H 1 : ϑ Θ 1 INFERENCIA ESTADÍSTICA Tema 3.3: Contrastes de signicación Objetivos Dominar el esquema conceptual y el lenguaje propios de los contrastes de hipótesis. Construir contrastes de hipótesis para los parámetros

Más detalles

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto DISEÑOS DE MEDIDAS REPETIDAS Definición En el diseño medidas

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Análisis Multivariante de Datos

Análisis Multivariante de Datos Análisis Multivariante de Datos Curso 2016-2017 Por qué es importante realizar inferencia sobre los parámetros de la normal? La estimación máximo-verosímil (MV) de la distribución Normal son la media y

Más detalles

Anova unifactorial Grados de Biología y Biología sanitaria

Anova unifactorial Grados de Biología y Biología sanitaria Anova unifactorial Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 29 de noviembre de 2015 El problema Analizaremos la

Más detalles

Tema 8. Fundamentos de Análisis discriminante

Tema 8. Fundamentos de Análisis discriminante Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 8. Fundamentos de Análisis discriminante 8.1. Introducción. Empezamos deniendo el problema discriminante.

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

ANEXO I. ANÁLISIS DE LA VARIANZA.

ANEXO I. ANÁLISIS DE LA VARIANZA. ANEXO I. ANÁLISIS DE LA VARIANZA. El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias. Cuando se quiere comparar más de dos medias es incorrecto utilizar

Más detalles

Tema 1. Preliminares. 1.1 Resultados algebraicos

Tema 1. Preliminares. 1.1 Resultados algebraicos Tema 1 Preliminares 11 Resultados algebraicos Consideraremos habitualmente matrices con coeficientes en R y, ocasionalmente, en C Denotaremos por a i j a los elementos de una matriz A, donde el subíndice

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Modelo de Curso de nivelación Estadística y Matemática Pruebas de hipótesis, y Modelos ARIMA Programa Técnico en Riesgo, 2017 Agenda Modelo de 1 2 Asociación Medidas de asociación para variables intervalo

Más detalles

Caso particular: Contraste de homocedasticidad

Caso particular: Contraste de homocedasticidad 36 Bioestadística: Métodos y Aplicaciones 9.5.5. Caso particular: Contraste de homocedasticidad En la práctica un contraste de gran interés es el de la homocedasticidad o igualdad de varianzas. Decimos

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Universidad Nacional Autónoma de México Laboratorio de Cómputo Científico, F. C.

Universidad Nacional Autónoma de México Laboratorio de Cómputo Científico, F. C. : Un Universidad Nacional Autónoma de México Laboratorio de Cómputo Científico, F. C. : Un presenta México D.F., a 23 de Septiembre de 2010. Historia : Un La estimación de mineral recobrable es muy importante

Más detalles

Econometría Aplicada

Econometría Aplicada Econometría Aplicada Inferencia estadística, bondad de ajuste y predicción Víctor Medina Intervalos de confianza Intervalos de confianza Intervalos de confianza Intervalos de confianza La pregunta que

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales Técnicas de Inferencia Estadística II Tema 2. Contrastes de hipótesis en poblaciones normales M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 2. Contrastes

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Análisis de Correspondencias Simple

Análisis de Correspondencias Simple 1 Capítulo 4 Análisis de Correspondencias Simple 41 INTRODUCCIÓN El Análisis de Correspondencias Simple permite describir las relaciones entre dos variables categóricas dispuestas en una tabla de contingencia

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Estadística II Tema 1: Distribución normal multivariante

Estadística II Tema 1: Distribución normal multivariante Estadística II Tema 1: Distribución normal multivariante José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Algunas propiedades de los vectores aleatorios Sea X = (X 1,..., X

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

AMD - Análisis Multivariante de Datos

AMD - Análisis Multivariante de Datos Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 200 - FME - Facultad de Matemáticas y Estadística 1004 - UB - Universitat de Barcelona 715 - EIO - Departamento de Estadística

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/18

Diseños Factoriales. Diseño de experimentos p. 1/18 Diseños Factoriales Diseño de experimentos p. 1/18 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis

Más detalles

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste.

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Tema 1 (III) Estadística 2 Curso 08/09 Tema 1 (III) (Estadística 2) Contrastes de bondad de

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN Antonio Morillas A. Morillas: C. no paramétricos (II) 1 1. Contrastes de aleatoriedad. Contraste de rachas. 2. Contrastes de localización 2.1 Contraste

Más detalles

Diseños Factoriales. Diseño de experimentos p. 1/25

Diseños Factoriales. Diseño de experimentos p. 1/25 Diseños Factoriales Diseño de experimentos p. 1/25 Introducción El término experimento factorial o arreglo factorial se refiere a la constitución de los tratamientos que se quieren comparar. Diseño de

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

Diseño de experimentos Hugo Alexer Pérez Vicente

Diseño de experimentos Hugo Alexer Pérez Vicente Diseño de experimentos Hugo Alexer Pérez Vicente Métodos complementarios al análisis de varianza Comparaciones múltiples Comparación o pruebas de rangos múltiples Después de que se rechazó la hipótesis

Más detalles

Ejercicios Resueltos: Estimación de ecuaciones simultáneas

Ejercicios Resueltos: Estimación de ecuaciones simultáneas Ejercicios Resueltos: Estimación de ecuaciones simultáneas Román Salmerón Gómez Universidad de Granada 2 Consideremos el modelo de ecuaciones simultáneas dado por las dos ecuaciones siguientes: donde:

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Diseños factoriales con tres factores

Diseños factoriales con tres factores Capítulo 6 Diseños factoriales con tres factores SupongamosquehayanivelesparaelfactorA,bnivelesdelfactorBycnivelespara el factor C y que cada réplica del experimento contiene todas las posibles combinaciones

Más detalles

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992. Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4

Más detalles

Análisis de la Varianza (ANOVA) y Correlación

Análisis de la Varianza (ANOVA) y Correlación Universidad de Chile Rodrigo Assar FCFM MA34B Andrés Iturriaga DIM Víctor Riquelme Análisis de la Varianza (ANOVA) y Correlación Resumen El test ANOVA analiza la relación entre una variable numérica y

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Tema 6: Introducción a la Inferencia Bayesiana

Tema 6: Introducción a la Inferencia Bayesiana Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

Tema 13: Contrastes No Paramétricos

Tema 13: Contrastes No Paramétricos Tema 13: Contrastes No Paramétricos Presentación y Objetivos. La validez de los métodos paramétricos depende de la validez de las suposiciones que se hacen sobre la naturaleza de los datos recogidos. La

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

UNA PROPUESTA PARA LA MAXIMIZACIÓN DE LA ESTADÍSTICA Q K

UNA PROPUESTA PARA LA MAXIMIZACIÓN DE LA ESTADÍSTICA Q K Revista Colombiana de Estadística Volumen 24 (2001) N o 1, páginas 45 a 57 UNA PROPUESTA PARA LA MAXIMIZACIÓN DE LA ESTADÍSTICA Q K JOSÉ A. JIMÉNEZ M.* Resumen En este artículo mediante el método de los

Más detalles

Modelos lineales. Tema 2: Inferencia en el modelo de regresión lineal simple. 6 de febrero de Carmen Armero

Modelos lineales. Tema 2: Inferencia en el modelo de regresión lineal simple. 6 de febrero de Carmen Armero Carmen Armero 6 de febrero de 2012 Introducción Distribuciones en el muestreo Intervalos de confianza Contrastes de hipótesis El modelo de regresión lineal simple El modelo de regresión lineal simple para

Más detalles

DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO)

DISEÑO FACTORIAL MODELO JERÁRQUICO (0 ANIDADO) DISEÑO FACTORIAL Niveles de B Niveles de A 1 2 3 4 5 1 y 11 y 12 y 13 y 14 y 15 2 y 21 y 22 y 23 y y 3 y 31 y 32 y 33 y 34 y 35 4 y 41 y 42 y 43 y 44 y 45 Todos los niveles de cada factor están combinados

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Experimentos con factores aleatorios. Diseño de experimentos p. 1/36

Experimentos con factores aleatorios. Diseño de experimentos p. 1/36 Experimentos con factores aleatorios Diseño de experimentos p. 1/36 Introducción Hasta ahora hemos supuesto que los factores de un experimento son factores fijos, esto es, los niveles de los factores usados

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

ANALISIS FACTORIAL. Jorge Galbiati R.

ANALISIS FACTORIAL. Jorge Galbiati R. ANALISIS FACTORIAL Jorge Galbiati R El análisis factorial es un modelo matamático que pretende explicar la correlación entre un conjunto grande de variables observadas y un pequeño conjunto de factores

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

Contrastes para los parámetros de dos poblaciones Normales independientes. Varianzas desconocidas iguales

Contrastes para los parámetros de dos poblaciones Normales independientes. Varianzas desconocidas iguales Contrastes para los parámetros de dos poblaciones Normales independientes. Ejercicios Tema 6 (Resuelto). Problema 4 En un estudio se determinaron las tasas de ramoneo de dos especies de erizo de mar, Paracentrotus

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles