DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO"

Transcripción

1 TEMA II

2 ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo completamente al azar, modelo estructural y componentes de variación DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

3 Diseño experimental de dos grupos: definición y clasificación

4 Definición del diseño experimental de dos grupos Una de las situaciones más simples de investigación experimental, tanto en ciencias sociales como del comportamiento, es la formada por dos grupos, uno de control y otro experimental. La condición básica de cualquier experimento es la presencia de un grupo de contraste denominado grupo de no tratamiento o de control. Esto no quiere decir que el diseño experimental de dos grupos sólo se caracteriza por la ausencia o presencia de tratamiento.

5 Clasificación del diseño de dos grupos Diseño de dos grupos Diseño de dos grupos completamente al azar Diseño de dos grupos emparejados

6 Formato del diseño de dos grupos al azar

7 V. Extraña Z 1 Z 2 V. Tratamiento A 1 A 2 S S uj uj e t o s e t o s Prueba de hipótesis Y 1 Y 2 Asignación aleatoria Universo o Población de origen Muestra experimental Selección o muestreo

8 Formato del diseño de dos grupos emparejados

9 V. Tratamiento A 1 A 2 S uj S uj e t o s e t o s Prueba de hipótesis Y D = 0 Asignación aleatoria S 1, S 2 S 3, S 4 S 5, S 6 S N-1, S N Universo o Población de origen Muestra experimental Selección o muestreo

10 Estadísticos para diseños de dos grupos Grupos Datos Independientes Relacionados paramétricos t Student t Student muestras muestras no relacionadas relacionadas ordinales U Mann-Whitney T Wilcoxon nominales Probabilidad exacta McNemar de Fisher

11 Diseño experimental multigrupo

12 Concepto Los diseños multigrupo, de uso frecuente en ciencias psicológicas y sociales, son estructuras de una sola variable independiente a tres o más valores o niveles. Al seleccionar más de dos valores de la variable independiente o causal, es posible extraer la relación funcional entre la variable independiente y dependiente del experimento.

13 El diseño multigrupo totalmente al azar requiere la asignación aleatoria de los sujetos de la muestra a los distintos grupos, sin restricción alguna. Se trata de una extensión del diseño de dos grupos, ya que en esta situación se eligen de la variable de tratamiento más de dos valores o condiciones.

14 Formato del diseño multigrupo al azar

15 Tratamientos A 1 A 2 A j A a S uj e t o s S uj e t o s. S uj e t o s Muestra experimental Asignación aleatoria

16 Análisis aplicables

17 Prueba de significación general Si la V. Independiente es categórica ANOVA unidireccional Comparaciones múltiples Si la V. Independiente es cuantitativa Comparaciones múltiples Análisis de tendencias

18 Ejemplo 1 Supóngase que se pretende probar si la cantidad de repasos es una variable decisiva en la retención (memoria de recuerdo), para un conjunto de palabras monosílabas de igual valor asociativo. De la variable independiente o variable repaso se seleccionan los siguientes valores: presentación de la lista sin repaso (condición A 1 ), dos presentaciones de la lista, siendo la segunda presentación un repaso (condición A 2 ), tres presentaciones y dos repasos (condición A 3 ) y, por último, cuatro presentaciones y tres repasos (condición A 4 )..//..

19 Se instruye a los sujetos que lean en voz alta cada uno de los ítems presentados, a un ítem por segundo. Al terminar las lecturas, los sujetos realizan una prueba de memoria de recuerdo consistente en restituir o recuperar de la memoria la mayor cantidad de ítems. La medida de la variable dependiente es la cantidad de respuestas o ítems correctamente recordados. Asumiendo que cada ítem tiene la misma dificultad de recuerdo, se considera que la escala de medida es de intervalo.

20 Modelo de prueba estadística Paso 1. La hipótesis de nulidad asume que las medias de los grupos experimentales proceden de una misma población y, por consiguiente, son idénticas: H 0 : µ 1 = µ 2 = µ 3 = µ 4 Paso 2. La hipótesis experimental asume que la cantidad media de palabras recordadas variará positivamente en función de la cantidad de repasos. En términos estadísticos: H 1 : µ 1 <µ 2 <µ 3 < µ 4

21 Paso 3. Se aplica una prueba de significación general o prueba ómnibus, cuyo estadístico es la F de Snedecor. El nivel de significación deα=0.05. El tamaño de la muestra experimental y las submuestras de tratamiento son: N = 20 y n = 5. F 0.95 (3/16) = 3.24 Paso 4. Tras la ejecución del experimento, se calcula el valor empírico de F, a partir de la matriz de datos.

22 Matriz de datos del diseño

23 Matriz de datos DISEÑO MULTIGRUPO TRATAMIENTOS A 1 A 2 A 3 A Totales: Medias:

24 ANOVA unidireccional

25 Modelo estructural del ANOVA: Diseño multigrupo Yij = µ + α + j ε ij

26 Especificación de modelo del ANOVA Y ij = la puntuación del i sujeto bajo la j condición experimental o tratamiento. µ = la media global de los datos del experimento. α j = µ j -µ, es el efecto o impacto del j nivel de la variable de tratamiento A. ε ij = Y ij -µ j, es el error experimental asociado al i sujeto bajo el j tratamiento. Para que el modelo sea válido, se especifican las siguientes condiciones: Σα j = 0 y ε ij NID(0, σ²)

27 Cuadro resumen del ANOVA: Diseño multigrupo F.V. SC g.l CM F p Trat (A) (a-1)= <0.05 Error (S/A) a(n-1)= Total (T) an-1=19 F 0.95 (3/16) = 3.24

28 Modelo de prueba estadística Paso 5. Dado que el valor observado de F es mayor que el valor teórico al 5% y en función de los grados de libertad correspondientes, se rechaza la hipótesis de nulidad y se acepta la hipótesis alternativa o hipótesis experimental a este nivel de significación.

29 Supuestos del ANOVA Existen tres supuestos que han de cumplirse si queremos aplicar un ANOVA: 1. Independencia de las observaciones 2. Normalidad de los datos 3. Homogeneidad: Igualdad de las varianzas de los grupos: H 0 : σ 1 ² = σ 2 ² =... = σ j ²

30 Supuesto de homogeneidad Igualdad de las varianzas de los grupos: H 0 : σ 1 ² = σ 2 ² =... = σ j ²

31 Prueba de la homogeneidad Hartley: cuando n por grupo es constante mayor de las varianzas s² mayor F max = = menor de las varianzas s² menor

32 Prueba del supuesto de homogeneidad de las varianzas s 2 1 = 1.3 F = max s s 2 mayor 2 menor s s s = = = F F max max 2.5 = = (4 / 4) = j/(n-1)

33 Resultado de la prueba Entrando en la tabla de F max, con los parámetros correspondientes y a un nivel de significación de 0.05, el valor teórico de F max 0.95 (4/4) es Dado que el valor observado del estadístico es más pequeño que el de las tablas, se acepta la hipótesis de nulidad o supuesto de homogeneidad de las varianzas.

34 Comparaciones múltiples

35 Contrastes de medias Las comparaciones o contrastes se efectúan, por lo general, entre las medias de los grupos de tratamiento. Genéricamente, una comparación entre k medias es la combinación lineal o suma ponderada de medias. Antes de examinar los distintos procedimientos de comparaciones múltiples, proponemos una clasificación práctica para su descripción.

36 A priori o planificadas Comparaciones múltiples A posteriori o no planificadas

37 Contrastes a priori o planificados Las comparaciones a priori o planificadas se formulan de acuerdo con los intereses previos o teóricos del investigador, y se plantean antes de obtener los resultados del experimento.

38 Ejemplos de hipótesis de nulidad distintos contrastes 1. H 0 = µ 2 -µ 1 = 0 Dos lecturas de la lista (condición A 2 ) no difiere de una sola lectura (condición A 1 ) 2. H 0 = µ 3 -µ 1 = 0 Se asume la igualdad entre la condición tres (A 3 ) y uno (A 1 )..//..

39 3. H 0 = µ 4 -µ 1 = 0 Se asume la igualdad entre cuatro lecturas (condición A 4 ) y una sola lectura (condición A 1 )..//..

40 4. H 0 = µ 3-1/2(µ 1 + µ 2 ) = 0 Se establece la igualdad entre tres lecturas y el promedio entre una y dos lecturas. 5. H 0 = µ 4-1/3(µ 1 + µ 2 + µ 3 ) = 0 Se define la igualdad entre cuatro lecturas y el promedio de las restantes.

41 Reformulación de las hipótesis nulas en combinaciones lineales 1. (-1)µ 1 + (1)µ 2 + (0)µ 3 + (0)µ 4 = 0 2. (-1)µ 1 + (0)µ 2 + (1)µ 3 + (0)µ 4 = 0 3. (-1)µ 1 + (0)µ 2 + (0)µ 3 + (1)µ 4 = 0 4. (-1/2)µ 1 + (-1/2)µ 2 + (1)µ 3 + (0)µ 4 = 0 5. (-1/3)µ 1 + (-1/3)µ 2 + (-1/3)µ 3 + (1)µ 4 = 0

42 Cuadro resumen de los valores de t y F Valores t Valores F c 1 = 3.42 c 1 = c 2 = 5.53 c 2 = c 3 = 7.65 c 3 = 58..//..

43 Valores t Valores F c 4 = 4.39 c 4 = c 5 = 5.69 c 5 = 32.3

44 Entrando en la tabla de t, con los grados de libertad asociados al término de error del ANOVA y a un nivel de significación del 5%, se tiene t 0.95 (16) = 2.12 De igual modo, entrando en la tabla de F, se tienen F 0.95 (1/16) = 4.49 De esto se concluye que todos los contrastes son significativos.

45 Análisis de tendencias

46 Concepto Una de las técnicas de análisis de tendencias es el método de polinomios ortogonales. En virtud de ese procedimiento, es posible dividir la variación o Suma de Cuadrados de tratamientos en una serie de componentes independientes de tendencia como, por ejemplo, lineal, cuadrado, cúbico, etc. Cada componente ortogonal aporta información particular sobre una clase de tendencia o relación entre la variable independiente y la variable dependiente. Al mismo tiempo, este procedimiento permite verificar estadísticamente la significación de cada componente de tendencia.

47 Cuadro resumen del análisis de tendencias (a-1) Componente SC g.l. CM F p Lineal <0.05 Cuadrático >0.05 Cúbico >0.05 Error F 0.95 (1/16) = 4.49

48 Gráfico de medias V.D A1 A2 A3 A4

ESQUEMA GENERAL DISEÑO FACTORIAL

ESQUEMA GENERAL DISEÑO FACTORIAL TEMA III ESQUEMA GENERAL Definición Clasificación Efectos estimables en un diseño factorial Diseño factorial A x B completamente al azar Representación de la interacción DISEÑO FACTORIAL Definición El

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto DISEÑOS DE MEDIDAS REPETIDAS Definición En el diseño medidas

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN

TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN 1 DISEÑO DE INVESTIGACIÓN Y 1 A = a 1 a Y 1 A = 3 a 1 a a Hipótesis específicas de la investigación Cuando la variable independiente tiene

Más detalles

BIOSESTADÍSTICA AMIGABLE

BIOSESTADÍSTICA AMIGABLE BIOSESTADÍSTICA AMIGABLE EJEMPLO: Ficha solicitud Colección Reserva UNIVERSIDAD AUSTRAL DE CHILE SISTEMA DE BIBLIOTECAS Clasificación: 574.015195 MAR 2001 Vol. y/o Copia: Apellido Autor: Título: C. 1 (SEGÚN

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta Test Compara la distribución de una variable continua normal en mas de dos poblaciones (niveles o categorías) H 0 : No existen diferencias entre los k niveles H : La hipótesis nula no es cierta Parte de

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Análisis de la varianza (ANOVA)

Análisis de la varianza (ANOVA) Análisis de la varianza (ANOVA) Mª Isabel Aguilar, Eugenia Cruces y Bárbara Díaz UNIVERSIDAD DE MÁLAGA Departamento de Economía Aplicada (Estadística y Econometría) Parcialmente financiado a través del

Más detalles

Metodologías De Investigación

Metodologías De Investigación Metodologías De Investigación Pfra. Dolores Frías Navarro M. Dolores Frías http://www.uv.es/friasnav 1 Diseños Experimentales Al menos una variable independiente de tratamiento que es introducida por el

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

INFERENCIA PARÁMETRICA: RELACIÓN ENTRE DOS VARIABLES CUALITATIVAS

INFERENCIA PARÁMETRICA: RELACIÓN ENTRE DOS VARIABLES CUALITATIVAS . Metodología en Salud Pública INFERENCIA PARÁMETRICA: RELACIÓN ENTRE DOS VARIABLES CUALITATIVAS Autor: Clara Laguna 7.1 INTRODUCCIÓN Los datos categóricos o variables cualitativas son muy frecuentes en

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis

Más detalles

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN Antonio Morillas A. Morillas: C. no paramétricos (II) 1 1. Contrastes de aleatoriedad. Contraste de rachas. 2. Contrastes de localización 2.1 Contraste

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS 3datos 2011 Variables CUANTITATIVAS Valor más representativo: MEDIA aritmética Técnicas Inferenciales sobre la significación de la diferencia entre

Más detalles

CONTRASTES DE HIPÓTESIS

CONTRASTES DE HIPÓTESIS Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS M.Carmen Carollo Contrastes de hipótesis 1 Estadística.FBA I. Curso 2011-2012 CONTRASTES DE HIPÓTESIS A partir de una o varias muestras nos proponemos

Más detalles

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Práctica 2. Hipótesis de investigación

Práctica 2. Hipótesis de investigación Práctica 2. Hipótesis de investigación Teniendo en cuenta los resultados de la investigación anterior, un segundo equipo de investigadores diseña un nuevo fármaco para aumentar la extroversión. Han introducido

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles.

DCA: Es el más simple de todos los diseños, solamente se estudia el. en diferentes tratamientos o niveles. completamente aleatorizado (DCA): 1 solo factor con diferentes tratamientos. DCA: Es el más simple de todos los diseños, solamente se estudia el efecto de un factor, el cual se varía en diferentes tratamientos

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

Diseño de Experimentos. Diseños Factoriales

Diseño de Experimentos. Diseños Factoriales Diseño de Experimentos Diseños Factoriales Luis A. Salomón Departamento de Ciencias Matemáticas Escuela de Ciencias, EAFIT Luis A. Salomón (EAFIT) Inspira Crea Transforma Curso 2016 Índice 1 Introducción

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Anova unifactorial Grados de Biología y Biología sanitaria

Anova unifactorial Grados de Biología y Biología sanitaria Anova unifactorial Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 29 de noviembre de 2015 El problema Analizaremos la

Más detalles

DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas

DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas Hasta ahora hemos ido desarrollando las pruebas parámetricas para contrastar hipótesis de un grupo

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados

CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados CLAVE Laboratorio 14: Diseño en bloques completos aleatorizados 1. Digamos que estamos interesados en conducir un experimento para comparar los efectos de tres insecticidas diferentes en habichuela. Pensamos

Más detalles

Pruebas Paramétricas y No paramétricas. Para la comprobación de hipótesis

Pruebas Paramétricas y No paramétricas. Para la comprobación de hipótesis Pruebas Paramétricas y No paramétricas Para la comprobación de hipótesis Pruebas Paramétricas Se busca estimar los parámetros de una población en base a una muestra. Se conoce el modelo de distribución

Más detalles

Bloque 3 Tema 13 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS NO PARAMÉTRICAS

Bloque 3 Tema 13 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS NO PARAMÉTRICAS Bloque 3 Tema 13 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS NO PARAMÉTRICAS Todos los estadísticos y las fórmulas de contraste de z, la t de Student, y la F de Fisher, parten de unos

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar mcladera@uib.es Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

Bioestadística y uso de software científico TEMA 8 ANOVA FACTORIAL ANOVA DE MEDIDAS REPETIDAS

Bioestadística y uso de software científico TEMA 8 ANOVA FACTORIAL ANOVA DE MEDIDAS REPETIDAS Bioestadística y uso de software científico TEMA 8 ANOVA FACTORIAL ANOVA DE MEDIDAS REPETIDAS Hasta ahora... Tema Variable dependiente Variable independiente Test Tema 4 Categórica Categórica χ 2, McNemar

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

paramétrica comparar dos grupos de puntuaciones

paramétrica comparar dos grupos de puntuaciones t de Student Es una prueba paramétrica de comparación de dos muestras independientes, debe cumplir las siguientes características: Asignación aleatoria de los grupos Homocedasticidad (homogeneidad de las

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

ANOVA Análisis de la Varianza en diseño de experimentos

ANOVA Análisis de la Varianza en diseño de experimentos ANOVA Análisis de la Varianza en diseño de experimentos NATURALEZA DEL DISEÑO EXPERIMENTAL El diseño experimental tiene sus orígenes en los trabajos de Ronald Aylmer Fisher (1890 1962) desarrollados en

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR En el análisis de la varianza con un factor (ANOVA I) se supone que hay variación debida a los tratamientos. Se aplica un tratamiento distinto a cada

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Información general. Fundamentos de Análisis de datos. Obligatoria básica o de fundamentación X. Obligatoria profesional

Información general. Fundamentos de Análisis de datos. Obligatoria básica o de fundamentación X. Obligatoria profesional Guía de asignatura Formato institucional Rev. Abril 2013 Información general Asignatura Fundamentos de Análisis de datos Código Tipo de asignatura Obligatoria X Electiva Tipo de saber Número de créditos

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC.

ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC. ANÁLISIS E INTERPRETACIÓN DE DATOS EXPERIMENTALES EN EL MEJORAMIENTO GENÉTICO VEGETAL. Ing. Agr. Pablo Mansilla MGV-FCA, UNC. ALGUNAS DEFINICIONES NECESARIAS.. UNIDAD EXPERIMENTAL (UE) Porción de material

Más detalles

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS 1.- Introducción... 2 2.- Prueba U de Mann Whitney para muestras independientes... 3 3.- Prueba t de Wicoxon para muestras apareadas... 8 1.- Introducción

Más detalles

CONTRASTES DE HIPÓTESES

CONTRASTES DE HIPÓTESES CONTRASTES DE IPÓTESES 1. Contraste de hipótesis 2. Contrastes de tipo paramétrico 2.1 Contraste T para una muestra 2.2 Contraste T para dos muestras independientes 2.3 Análisis de la varianza 3. Contrastes

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

Diseño de Experimentos Experimentos factoriales

Diseño de Experimentos Experimentos factoriales Diseño de Experimentos Experimentos factoriales Dr. Héctor Escalona Definición El termino genérico de diseño factorial se aplica a aquellos experimentos donde se desea evaluar el efecto de 2 o mas factores

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

Diseño de experimentos

Diseño de experimentos Diseño de experimentos Quimiometría Por qué diseñar experimentos? Exploración: cuáles factores son importantes para realizar exitosamente un proceso Optimización: cómo mejorar un proceso Ahorro de tiempo:

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

Estadísticas y distribuciones de muestreo

Estadísticas y distribuciones de muestreo Estadísticas y distribuciones de muestreo D I A N A D E L P I L A R C O B O S D E L A N G E L 7/11/011 Estadísticas Una estadística es cualquier función de las observaciones en una muestra aleatoria que

Más detalles

La lógica del diseño experimental y del análisis estadístico de los datos

La lógica del diseño experimental y del análisis estadístico de los datos La lógica del diseño experimental y del análisis estadístico de los datos TEMA 1 Susana Sanduvete Chaves Diseños experimentales curso 2005-2006 1 TIPOS DE DISEÑO De menor a mayor control: M. observacional

Más detalles

4 Análisis de Varianza

4 Análisis de Varianza 4 Análisis de Varianza 4. Análisis de Varianza e.4.1. Quiénes obtienen mejores resultados en Matemáticas, los estudiantes que viven en zonas rurales, en pequeñas ciudades, en ciudades medias o en grandes

Más detalles

Supuestos y comparaciones múltiples

Supuestos y comparaciones múltiples Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

LECCIÓN PÚBLICA. Tema 5 Algunas Pruebas de Hipótesis. Profa. María Fátima Dos Santos

LECCIÓN PÚBLICA. Tema 5 Algunas Pruebas de Hipótesis. Profa. María Fátima Dos Santos LECCIÓN PÚBLICA Tema 5 Algunas Pruebas Profa. María Fátima Dos Santos 1 TEMARIO Fundamentos de estadística inferencial Método hipotético deductivo (Juego de hipótesis) Elementos en el contraste de hipótesis

Más detalles

ESQUEMA GENERAL DISEÑO CUASI-EXPERIMENTAL

ESQUEMA GENERAL DISEÑO CUASI-EXPERIMENTAL TEMA V ESQUEMA GENERAL Definición y clasificación del diseño cuasi-experimental Estructuras básicas: Diseño pre-experimental Diseño de grupo control no equivalente: Definición Diseño de grupo control no

Más detalles

VALIDEZ DE LA INVESTIGACIÓN: VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO, DE CONCLUSIÓN ESTADÍSTICA

VALIDEZ DE LA INVESTIGACIÓN: VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO, DE CONCLUSIÓN ESTADÍSTICA VALIDEZ DE LA INVESTIGACIÓN: VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO, DE CONCLUSIÓN ESTADÍSTICA 1 Validez de la investigación VALIDEZ INTERNA: el diseño de investigación es lo suficientemente sensible

Más detalles

VALIDEZ DE LA INVESTIGACIÓN (I): VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO

VALIDEZ DE LA INVESTIGACIÓN (I): VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO MÉTODOS Y DISEÑOS DE INVESTIGACIÓN TEMA 3 VALIDEZ DE LA INVESTIGACIÓN (I): VALIDEZ INTERNA, EXTERNA Y DE CONSTRUCTO 2011/12 1 Validez de la investigación VALIDEZ INTERNA: el diseño de investigación es

Más detalles

F X > F Y F X < F Y F X 6= F Y

F X > F Y F X < F Y F X 6= F Y Alternativas No paramétricas En el caso de comparación de medias, como se comentó, es fundamental que se cumplan los supuestos de normalidad y varianzas iguales pero, qué hay que hacer si alguno de ellos

Más detalles

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992.

Información sobre Gastos de Consumo Personal y Producto Interno Bruto ( ) en miles de millones de dólares de 1992. Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Análisis y Diseño de Modelos Econométricos Profesor: MSc. Julio Rito Vargas Avilés. Participantes: Docentes /FAREM-Carazo Encuentro No.4

Más detalles

Diseño de experimentos Hugo Alexer Pérez Vicente

Diseño de experimentos Hugo Alexer Pérez Vicente Diseño de experimentos Hugo Alexer Pérez Vicente Métodos complementarios al análisis de varianza Comparaciones múltiples Comparación o pruebas de rangos múltiples Después de que se rechazó la hipótesis

Más detalles

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS Jorge Fallas jfallas56@gmail.com 2010 1 Temario Datos experimentales y distribuciones de referencia Una media poblacional Hipótesis nula, alternativa y nivel de

Más detalles

Tema V. EL ANOVA multifactorial

Tema V. EL ANOVA multifactorial 5.1. El ANOVA de múltiples factores: - Factorial (ortogonal): los no ortogonales no los veremos - Factores fijos, aleatorios y mixtos (consecuencias prácticas) - El Anova encajado La variable que vamos

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles