ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso"

Transcripción

1 ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras que, a lo sumo, tengan funciones estadísticas básicas. No se pueden utilizar calculadoras programables. Existe una sóla respuesta correcta por pregunta. Cada respuesta correcta se valorará con 1 punto y cada incorrecta con -1/3. Las preguntas no contestadas no se valoran. Si se marcan varias respuestas a la vez se considerará la pregunta no contestada. El valor de esta primera parte del examen es de CINCO PUNTOS sobre diez. Responder con letras mayúsculas y bolígrafo. Las respuestas elegidas que se considerarán válidas son las que se consignen en el cuadro que se adjunta a continuación. Pregunta Respuesta D C B D C A Pregunta Respuesta A C B C D A CUESTIONES 1. Si el p-valor de un contraste es p = , entonces cuál es la mejor conclusión? A. H 0 es de nitivamente falsa B. H 0 es de nitivamente verdadera C. Hay una probabilidad del 50% de que H 0 sea verdadera D. Se acepta H 0 porque probablemente sea verdadera. 2. El contraste de Kolmogorov-Smirnov: A. Si la variable en estudio es continua, se deben hacer intervalos de clase para realizar este contraste.

2 B. Es válido para contrastar la bondad de ajuste de cualquier distribución continua, excepto la normal. C. No se puede realizar si la distribución de contraste es discreta. D. Tiene el inconveniente de que si se necesitan estimar parámetros de la población mediante la muestra, varían los grados de libertad del estadístico de contraste. 3. En un modelo de regresión, la gura adjunta presenta el grá co de los residuos frente al índice ft; e t g : A. Los errores son heterocedásticos. B. Existe dependencia negativa en el error. C. Existe dependencia en el error, pero no se conoce de qué signo. D. Es necesario introducir el tiempo como variable regresora. 4. El contraste de Kruskal-Wallis: A. Si la suposición de normalidad no es asumible, permite transformar los datos para obtener normalidad. B. Contrasta la hipótesis de normalidad. C. Es una extensión de la prueba t de Student para comparar la homogeneidad de dos poblaciones. D. Es un contraste de hipótesis de tipo no paramétrico acerca de la igualdad de medias. 5. En un diseño de experimentos de un factor con cinco niveles, se representa un box-plot de los residuos para cada nivel del factor. De él se deduce:

3 A. Presencia clara de homocedasticidad. B. Falta de normalidad de los residuos. C. La varianza de los residuos no es constante para cada nivel del factor. D. Se observa una estructura de dependencia positiva en los errores. 6. En el modelo de diseño en bloques completamente aleatorizado: A. El número de parámetros a estimar es I + J: B. El número de grados de libertad del error es IJ 1: C. Siempre se asume que existe interacción. D. b Y ij = + i + j + " ij : 7. En un modelo de regresión lineal simple, el coe ciente de determinación se calcula como: A. R 2 = (by i y) 2 (y i y) 2 : B. R 2 = 1 bs 2 R bs 2 Y C. R 2 = s XY s X s Y : D. R 2 = scme scmg : = (n 2) = (n 1): 8. En un modelo de regresión lineal simple, la autocorrelación muestral de orden uno de los n = 25 residuos es r 1 = Entonces, el estadístico de Durbin-Watson es, aproximadamente A. b d = , y para = se rechaza H 0 y aceptamos la existencia de autocorrelación positiva. B. b d = , pero el contraste no es concluyente para = C. b d = , y para = se rechaza H 0 y aceptamos la existencia de autocorrelación positiva. D. b d = , y para = se rechaza H 0 y aceptamos la existencia de autocorrelación negativa. 9. En un modelo de regresión múltiple, el leverage de una observación muestral: A. Es el número equivalente de observaciones para estimar m t = E Y j! X =! x t : B. Se encuentra siempre entre 1 n y 1. C. Es mayor cuanto más próximo esté! x t de x: D. Es el i ésimo elemento de la diagonal de la matriz X t X 1 :

4 10. En un modelo de regresión lineal simple, el siguiente grá co de dispersión de X frente a Y indica: A. No existe relación lineal entre las variables, pero sí podría existir otro tipo de relación. B. Falta de normalidad de los residuos. C. Hay linealidad y heterocedasticidad. D. La pendiente de la recta no es signi cativa. 11. En un modelo de regresión lineal múltiple, si no se puede calcular la matriz inversa de X t X, entonces: A. Las variables regresoras no son normales. B. Los datos se ajustan mejor a un modelo no lineal. C. Las variables explicativas son ortogonales. D. No se puede estimar unívocamente el vector de coe cientes b. 12. El p-valor de un contraste de hipótesis sobre el parámetro se calcula mediante: A. Depende de cómo sea H 1 : B. P jdj < d b jh 0 cierta : C. p valor = : D. 2 P d < djh b 0 cierta :

5 ESTADISTICA II, Ingeniería Informática, Problemas, 22 - Diciembre Apellidos, Nombre:... D.N.I.:... Responder de forma concisa y justi cada a las siguientes cuestiones. Las respuestas se escribirán con bolígrafo a continuación de las preguntas. Cada una de las preguntas tiene una valoración máxima de 0.5 puntos sobre cinco. Para aprobar el examen es necesario obtener una puntuación igual o superior a 1 punto en cada uno de los dos problemas. Problema 1. Se desea estudiar la posible in uencia, en el "Gasto en material informático (en cientos miles de euros al año)", del "Sector al que pertenece la empresa" (S1=Alimentación, S2=Transformación de materias, S3=Servicios) y de los "Ingresos globales que tenga (en millones de euros)" (I1=Menos de 10, I2=Entre 10 y 50, I3=Más de 50). Para ello se recoge una muestra de datos de 18 empresas seleccionadas al azar. Los datos son los siguientes: I Factor Ingresos I I Factor Sector S 1 S 2 S y i = P.1. Formular el modelo del apartado anterior y detallar todas las suposiciones que se hacen en él. Calcular las estimaciones de los efectos de los factores Sector e Ingresos. P.2. Ajustar un diseño de experimentos con dos factores e interacción, completar la tabla ANOVA e indicar qué efectos son signi cativos y cuáles no (nivel de signi cación 5%). Calcular el coe ciente de determinación. P.3. Encontrar un intervalo de con anza al 90% para la desviación típica del error y para la diferencia de medias entre los sectores 1 y 2. P.4. Contrastar, con = , si el promedio de los efectos de los niveles I1 y I3 coincide con el efecto del nivel I2 del factor Ingresos. P.5. Formular el diseño de experimentos más sencillo posible que permita explicar el gasto en material informático. Justi car por qué el modelo no se puede simpli car más y dar una medida de la bondad del modelo.

6 ESTADISTICA II, Ingeniería Informática, Problemas, 22 - Diciembre Apellidos, Nombre:... D.N.I.:... Problema 2: En ha realizado un estudio sobre los ingresos de los informáticos que trabajan en empresas privadas, Para ello se han elegido cien informáticos al azar y se les ha preguntado por sus ingresos anuales en euros (I); tiempo que llevan trabajando en meses (T ) y volumen de ventas en millones de su empresa (V ): A esta muestra se le ajusta la siguiente ecuación de regresión log I = log T log V; R 2 = ; ^s 2 R = ( ) ( ) Los valores entre paréntesis debajo de los coe cientes son las desviaciones típicas de los estimadores. P.6. Qué variables regresoras son signi cativas al = ?. Calcular un intervalo de con anza al 95% para el coe ciente de regresión de la variable log V: P.7. Calcular el valor absoluto del coe ciente de correlación parcial entre las variables log I y log T en presencia de log V: Interpretar este coe ciente. En qué se diferencia del coe ciente de correlación simple? P.8. Calcular el coe ciente de correlación múltiple corregido por grados de libertad del modelo. Interpretar este coe ciente. En qué mejora este coe ciente al coe ciente de correlación múltiple? P.9. De dos observaciones muestrales A y B se ha calculado el residuo (r i ) ; el valor de in uencia a priori o leverage (h i ) y el estadístico DF F IT S; obteniendo Observación e i h i DF F IT S A B En base a estos datos caracteriza a las dos observaciones son in uyentes?, son atípicas? P.10. De la observación A se sabe que T = 54; y V = : Calcular un un intervalo de predicción al 95% para los ingresos anuales (I) de este informático.

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 26 - Junio - 2.8 Primera Parte - Test Nota : En la realización de este examen sólo esta permitido utilizar calculadoras que, a lo sumo, tengan funciones

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Econometría Universidad Carlos III de Madrid Soluciones Examen Final 27 de Mayo de 2013

Econometría Universidad Carlos III de Madrid Soluciones Examen Final 27 de Mayo de 2013 Econometría Universidad Carlos III de Madrid Soluciones Examen Final 27 de Mayo de 2013 1. [6 puntos/sobre 10] Estamos interesados en estudiar el impacto del tamaño de la familia (número de hijos) en la

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder

Más detalles

Coeficiente de Correlación

Coeficiente de Correlación Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

CORRELACION Y REGRESION

CORRELACION Y REGRESION CORRELACION Y REGRESION En el siguiente apartado se presenta como calcular diferentes índices de correlación, así como la forma de modelar relaciones lineales mediante los procedimientos de regresión simple

Más detalles

Técnicas de regresión: Regresión Lineal Simple

Técnicas de regresión: Regresión Lineal Simple Investigación: 1/7 Técnicas de regresión: Regresión Lineal Simple Pértega Díaz S., Pita Fernández S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario Juan Canalejo. A Coruña. Cad

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH.

I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH. CURSO 2009-2010 CURSO: 1º BACH. CCSS Números reales (Intervalos y entornos, valor absoluto, logaritmo). ÁREA: MATEMATICAS AP. CCSS I Polinomios y fracciones algebraicas (operaciones básicas, divisibilidad,

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

INSTITUTO UNIVERSITARIO PUEBLA HOJA: 1 DE 5

INSTITUTO UNIVERSITARIO PUEBLA HOJA: 1 DE 5 INSTITUTO UNIVERSITARIO PUEBLA HOJA: 1 DE 5 PROGRAMA ACADÉMICO: LICENCIATURA EN INGENIERIA INDUSTRIAL TIPO EDUCATIVO: INGENIERIA MODALIDAD: MIXTA SERIACIÓN: NINGUNA CLAVE DE LA ASIGNATURA: 126 CICLO: QUINTO

Más detalles

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA LICENCIATURA: ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS CURSO: CUARTO

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1 MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS

TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) PROCEDIMIENTOS ESTADISTICOS CONSTRUCCION DE MODELOS DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS Cada procedimiento es aplicable a un

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Prácticas y problemas básicos de Inferencia Estadística.

Prácticas y problemas básicos de Inferencia Estadística. Capítulo 1 Prácticas y problemas básicos de Inferencia Estadística. En este capítulo se proponen diferentes prácticas y problemas con el objetivo de repasar la estadística descriptiva de una variable unidimensional,

Más detalles

CUERPO TÉCNICO, OPCION ESTADISTICA

CUERPO TÉCNICO, OPCION ESTADISTICA CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO CONTENIDO DE CARTA DESCRIPTIVA 1.- IDENTIFICACIÓN Curso: Bioestadística Programa: Doctorado en Inmunobiología

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Modelo Econométrico sobre el Turismo

Modelo Econométrico sobre el Turismo Modelo Econométrico sobre el Turismo Ruth Rubio Rodríguez Miriam Gómez Sánchez Mercados 3ºA GMIM Índice Planteamiento del Problema..4 1. Estadísticos Descriptivos...5 2. Matriz Correlaciones 5 3. Gráfico

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo

MODELO ECONOMÉTRICO. José María Cara Carmona. Adrián López Ibáñez. Explicación del desempleo José María Cara Carmona Adrián López Ibáñez MODELO ECONOMÉTRICO Explicación del desempleo Desarrollaremos un modelo econométrico para intentar predecir el desempleo. Trataremos los diversos problemas que

Más detalles

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística Asignatura: Probabilidad y Estadistica para Investigadores en ciencias del comportamiento I Tipo: Optativa Créditos: 15 Fecha tentativa: de 12:30 a 17:00 hrs desde el 23/04/2014 Lugar: Salón 9 Cupos: 20

Más detalles

Examen de Grado Sección de Econometría Agosto y se obtienen los siguientes resultados. Observe que parte de la información ha sido omitida.

Examen de Grado Sección de Econometría Agosto y se obtienen los siguientes resultados. Observe que parte de la información ha sido omitida. Examen de Grado Sección de Econometría Agosto 2015 Pregunta 1. (40 puntos). Suponga que estamos interesados en determinar cuáles características del colegio y/o del hogar determinan el resultado de una

Más detalles

Variables estadísticas bidimensionales: problemas resueltos

Variables estadísticas bidimensionales: problemas resueltos Variables estadísticas bidimensionales: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO

Más detalles

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth

ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth ANÁLISIS DE DATOS 1 Tipos de Análisis en función de la Naturaleza de los Datos Datos cuantitativos Datos cualitativos Análisis cuantitativos Análisis cuantitativos de datos cuantitativos (Estadística)

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Tema 3. Relación entre dos variables cuantitativas

Tema 3. Relación entre dos variables cuantitativas Tema 3. Relación entre dos variables cuantitativas Resumen del tema 3.1. Diagrama de dispersión Cuando sobre cada individuo de una población se observan simultáneamente dos características cuantitativas

Más detalles

Técnicas de Investigación Social

Técnicas de Investigación Social Licenciatura en Sociología Curso 2006/07 Técnicas de Investigación Social Medir la realidad social (4) La regresión (relación entre variables) El término REGRESIÓN fue introducido por GALTON en su libro

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística I Ingeniería Industrial INB - 0403 4 0 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Análisis de la varianza

Análisis de la varianza Análisis de la varianza José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 Introducción 1 Comparación de medias 2 El pricipio de aleatorización 2 El problema de un factor

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que consta dicha opción.

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2015-2016 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

1. Objetivos. Introducción 2. ANOVA. Tema 8: Relaciones entre variables Test de hipótesis para el ANOVA. M. Iniesta Universidad de Murcia

1. Objetivos. Introducción 2. ANOVA. Tema 8: Relaciones entre variables Test de hipótesis para el ANOVA. M. Iniesta Universidad de Murcia Tema 8: Relaciones entre variables 1. Objetivos Analizar relaciones entre variables, para un único factor en el caso del ANOVA y una sola variable independiente, en el caso de Regresión. Conocer el signicado

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE

CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE CURSO ECONOMETRÍA BÁSICA MULTISOFTWARE El objetivo de este curso es la presentación de las técnicas econométricas básicas, tanto clásicas como modernas, y su tratamiento con las herramientas más adecuadas

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Prácticas y problemas de regresión lineal simple.

Prácticas y problemas de regresión lineal simple. Capítulo 1 Prácticas y problemas de regresión lineal simple. 1.1. Problemas de regresión lineal simple con ordenador. Problema 4.1. Los datos de la tabla adjunta proporcionan la distancia en línea recta

Más detalles

x + 3y 3 2x y 4 2x + y 24

x + 3y 3 2x y 4 2x + y 24 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:

Más detalles

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS 3datos 2011 Variables CUANTITATIVAS Números con unidad de medida (con un instrumento, o procedimiento, de medición formal) Ej.: Tasa cardiaca;

Más detalles

Prácticas y problemas de diseño de experimentos.

Prácticas y problemas de diseño de experimentos. Capítulo 1 Prácticas y problemas de diseño de experimentos. 1.1. Problemas de diseño de experimentos con ordenador. Problema 3.1. Datos apareados. El Ministerio de Trabajo desea saber si un plan de seguridad

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

Práctica 9 REGRESION LINEAL Y CORRELACIÓN

Práctica 9 REGRESION LINEAL Y CORRELACIÓN Práctica 9. Regresión lineal y Correlación 1 Práctica 9 REGRESION LINEAL Y CORRELACIÓN Objetivos: En esta práctica utilizaremos el paquete SPSS para estudiar la regresión lineal entre dos variables y la

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Estadística Convocatoria de Junio Facultad de Ciencias del Mar. Curso 2009/10 28/06/10

Estadística Convocatoria de Junio Facultad de Ciencias del Mar. Curso 2009/10 28/06/10 1. El Indice Climático Turístico (ICT), definido por Mieczkowski en 1985 es un índice que toma valores en una escala de 0 a 100 y tiene como objetivo valorar la calidad que ofrece el clima de una región

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2009

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2009 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. CÓDIGO 67 OBSERVACIONES IMPORTANTES: El alumno deberá responder a

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo

Obligatoria Optativa Extracurricular Curso Seminario Taller. Clave seriación 45 Laboratorio. Horas prácticas de campo Carta descriptiva Datos de identificación Programa Nombre de la asignatura Tipo de Asignatura Maestría en Economía Aplicada Econometría I Ciclo Primer semestre Obligatoria Optativa Extracurricular Curso

Más detalles

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5)

Análisis Estadístico de Datos Climáticos. Pruebas de Hipótesis (Wilks, cap. 5) Análisis Estadístico de Datos Climáticos Pruebas de Hipótesis (Wilks, cap. 5) 2015 PRUEBAS DE HIPÓTESIS (o pruebas de significación) Objetivo: A partir del análisis de una muestra de datos, decidir si

Más detalles

Matemáticas. Selectividad ESTADISTICA COU

Matemáticas. Selectividad ESTADISTICA COU Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries

Más detalles

Carrera: ADT Participantes Representante de las academias de Administración de los Institutos Tecnológicos.

Carrera: ADT Participantes Representante de las academias de Administración de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Estadística administrativa II Licenciatura en Administración ADT-0427 2-3-7 2.-

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo GUICEN041MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Cálculo de medidas de dispersión y muestreo Desafío Una población estadística está compuesta de cuatro números enteros consecutivos, siendo n el menor de ellos. La desviación

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura Créditos

ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura Créditos ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura 46497 Créditos 6 ECTS Carácter Básica Rama de Conocimiento Ciencias de la Salud Materia Fisiología Ubicación dentro del

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL Israel J. Thuissard David Sanz-Rosa IV JORNADAS INVESTIGACIÓN COEM UNIVERSIDADES 4 de marzo de 2016 Escuela de Doctorado e Investigación. Vicerrectorado

Más detalles

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística I Ingeniería Industrial INB-0403 4-0-8.- HISTORIA DEL PROGRAMA Lugar

Más detalles

UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES

UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES 1. CARRERA: Profesorado en Matemática 2. ASIGNATURA: Estadística y Probabilidad 3. AÑO LECTIVO: 2016 4. CARACTERES DE LA ASIGNATURA: Obligatoria

Más detalles

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma er. imposio Metodología eis igma Resumen Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Ejemplos de situaciones normales Ejemplos de situaciones no normales Resumen Implicaciones

Más detalles