Álgebra y Matemática Discreta

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra y Matemática Discreta"

Transcripción

1 Álgebra y Matemática Discreta Sesión de Teoría 4 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep Sep 2013

2 Unidades Un elemento a de Z n diremos que es una unidad cuando podamos encontrar b en Z n tal que ab 1(n), o lo que es lo mismo, ab = 1 en Z n.

3 Unidades Un elemento a de Z n diremos que es una unidad cuando podamos encontrar b en Z n tal que ab 1(n), o lo que es lo mismo, ab = 1 en Z n. Ejemplos de elementos que siempre son unidad son 1 y n 1 porque (n 1) 2 = 1+n(n 2) 1(n).

4 Unidades Un elemento a de Z n diremos que es una unidad cuando podamos encontrar b en Z n tal que ab 1(n), o lo que es lo mismo, ab = 1 en Z n. Ejemplos de elementos que siempre son unidad son 1 y n 1 porque (n 1) 2 = 1+n(n 2) 1(n). El Conjunto de unidades de Z n se denotará Z n.

5 Unidades Un elemento a de Z n diremos que es una unidad cuando podamos encontrar b en Z n tal que ab 1(n), o lo que es lo mismo, ab = 1 en Z n. Ejemplos de elementos que siempre son unidad son 1 y n 1 porque (n 1) 2 = 1+n(n 2) 1(n). El Conjunto de unidades de Z n se denotará Z n. El número de elementos de este conjunto se denotará ϕ(n) y se llama función ϕ de Euler.

6 Unidades de Z

7 Comentarios Del ejemplo anterior podemos extraer algunas consecuencias.

8 Comentarios Del ejemplo anterior podemos extraer algunas consecuencias. El producto de unidades es una unidad.

9 Comentarios Del ejemplo anterior podemos extraer algunas consecuencias. El producto de unidades es una unidad. Si un elemento es una unidad, su inverso (es decir, el que multiplicado por él nos da 1), también es una unidad.

10 Comentarios Del ejemplo anterior podemos extraer algunas consecuencias. El producto de unidades es una unidad. Si un elemento es una unidad, su inverso (es decir, el que multiplicado por él nos da 1), también es una unidad. En el caso anterior, si contamos las unidades vemos que salen 8.

11 El conjunto Z

12 Caracterización de las Unidades Un elemento a de Z n es una unidad si y sólo si a y n son coprimos.

13 Caracterización de las Unidades Un elemento a de Z n es una unidad si y sólo si a y n son coprimos. De hecho, la ecuación ab +nt = 1 nos proporciona el inverso de a, que es b.

14 Caracterización de las Unidades Un elemento a de Z n es una unidad si y sólo si a y n son coprimos. De hecho, la ecuación ab +nt = 1 nos proporciona el inverso de a, que es b. Es decir, que de nuevo el algoritmo de Euclides extendido nos da la solución a problema.

15 Caracterización de las Unidades Un elemento a de Z n es una unidad si y sólo si a y n son coprimos. De hecho, la ecuación ab +nt = 1 nos proporciona el inverso de a, que es b. Es decir, que de nuevo el algoritmo de Euclides extendido nos da la solución a problema. Este resultado nos permite calcular el valor de la función ϕ en el caso de que p sea primo, puesto que todos los elementos entre 1 y p 1 son coprimos con p, eso significa que ϕ(p) = p 1 si p es primo.

16 Fórmula General de ϕ La función ϕ tiene interesantes propiedades. Una de ellas es que si a y b son números coprimos, entonces ϕ(ab) = ϕ(a)ϕ(b).

17 Fórmula General de ϕ La función ϕ tiene interesantes propiedades. Una de ellas es que si a y b son números coprimos, entonces ϕ(ab) = ϕ(a)ϕ(b). Eso aplicado al número 15 nos dice que ϕ(15) = ϕ(3 5) = ϕ(3)ϕ(5) = (3 1)(5 1) = 8.

18 Fórmula General de ϕ La función ϕ tiene interesantes propiedades. Una de ellas es que si a y b son números coprimos, entonces ϕ(ab) = ϕ(a)ϕ(b). Eso aplicado al número 15 nos dice que ϕ(15) = ϕ(3 5) = ϕ(3)ϕ(5) = (3 1)(5 1) = 8. Ese es el valor que precisamente nos saĺıa experimentalmente.

19 Fórmula General de ϕ La función ϕ tiene interesantes propiedades. Una de ellas es que si a y b son números coprimos, entonces ϕ(ab) = ϕ(a)ϕ(b). Eso aplicado al número 15 nos dice que ϕ(15) = ϕ(3 5) = ϕ(3)ϕ(5) = (3 1)(5 1) = 8. Ese es el valor que precisamente nos saĺıa experimentalmente. Para las potencias de los primos se tiene que ϕ(p α ) = p α 1 (p 1).

20 Fórmula General de ϕ La función ϕ tiene interesantes propiedades. Una de ellas es que si a y b son números coprimos, entonces ϕ(ab) = ϕ(a)ϕ(b). Eso aplicado al número 15 nos dice que ϕ(15) = ϕ(3 5) = ϕ(3)ϕ(5) = (3 1)(5 1) = 8. Ese es el valor que precisamente nos saĺıa experimentalmente. Para las potencias de los primos se tiene que ϕ(p α ) = p α 1 (p 1). Utilizando esto y la propiedad anterior, podemos saber ϕ para cualquier número, porque si tomamos la factorización de n en primos, tenemos que ϕ(n) = ϕ(p α 1 1 pα 2 2 pαt t ) = ϕ(p α 1 1 )ϕ(pα 2 2 ) ϕ(pαt t ) y aquí aplicamos la fórmula para las potencias de primos.

21 Divisores de Cero y Unidades Los divisores de cero y las unidades están muy relacionados.

22 Divisores de Cero y Unidades Los divisores de cero y las unidades están muy relacionados. Se puede demostrar que un elemento no nulo es divisor de cero si y solo si no es una unidad.

23 Divisores de Cero y Unidades Los divisores de cero y las unidades están muy relacionados. Se puede demostrar que un elemento no nulo es divisor de cero si y solo si no es una unidad. Es decir, que los divisores de cero son todos los elementos que no están en Z n, excepto el propio 0 que no se considera divisor de 0.

24 Exponenciación Modular Planteamiento A veces es necesario calcular potencias de números en aritmética modular con exponentes muy grandes.

25 Exponenciación Modular Planteamiento A veces es necesario calcular potencias de números en aritmética modular con exponentes muy grandes. Si tenemos que calcular b e (n), una forma de hacerlo es calcular el número entero b e y luego hacer la reducción módulo n.

26 Exponenciación Modular Planteamiento A veces es necesario calcular potencias de números en aritmética modular con exponentes muy grandes. Si tenemos que calcular b e (n), una forma de hacerlo es calcular el número entero b e y luego hacer la reducción módulo n. Esta forma es totalmente inviable si e es un número grande, puesto que b e puede ser un número enormemente grande.

27 Exponenciación Modular Planteamiento A veces es necesario calcular potencias de números en aritmética modular con exponentes muy grandes. Si tenemos que calcular b e (n), una forma de hacerlo es calcular el número entero b e y luego hacer la reducción módulo n. Esta forma es totalmente inviable si e es un número grande, puesto que b e puede ser un número enormemente grande. El problema se puede resolver de una forma mucho más sencilla.

28 Exponenciación Modular Resolución del Problema Lo primero que tenemos que darnos cuenta es que hay potencias que son sencillas de calcular, concretamente las de la forma b 2i (n).

29 Exponenciación Modular Resolución del Problema Lo primero que tenemos que darnos cuenta es que hay potencias que son sencillas de calcular, concretamente las de la forma b 2i (n). Para calcularlas empezamos por i = 0, es decir b 20 = b 1 = b.

30 Exponenciación Modular Resolución del Problema Lo primero que tenemos que darnos cuenta es que hay potencias que son sencillas de calcular, concretamente las de la forma b 2i (n). Para calcularlas empezamos por i = 0, es decir b 20 = b 1 = b. Si la tenemos calculada hasta el valor i, entonces el valor i +1 se calcula elevando al cuadrado la anterior (y haciendo la reducción módulo n ( correspondiente) porque b 2i) 2 = b 2 i b 2i = b 2i +2 i = b 2i+1.

31 Exponenciación Modular Resolución del Problema Lo primero que tenemos que darnos cuenta es que hay potencias que son sencillas de calcular, concretamente las de la forma b 2i (n). Para calcularlas empezamos por i = 0, es decir b 20 = b 1 = b. Si la tenemos calculada hasta el valor i, entonces el valor i +1 se calcula elevando al cuadrado la anterior (y haciendo la reducción módulo n ( correspondiente) porque b 2i) 2 = b 2 i b 2i = b 2i +2 i = b 2i+1. Una vez que tenemos calculadas módulo n estas potencias, utilizamos la representación binaria de e = e 0 +e e t2 t y deducimos que ( b e = b e 0+e e t2 t = b e0 (b 2 ) e1 b 2t) e t (n)

32 Exponenciación Modular Resolución del Problema Lo primero que tenemos que darnos cuenta es que hay potencias que son sencillas de calcular, concretamente las de la forma b 2i (n). Para calcularlas empezamos por i = 0, es decir b 20 = b 1 = b. Si la tenemos calculada hasta el valor i, entonces el valor i +1 se calcula elevando al cuadrado la anterior (y haciendo la reducción módulo n ( correspondiente) porque b 2i) 2 = b 2 i b 2i = b 2i +2 i = b 2i+1. Una vez que tenemos calculadas módulo n estas potencias, utilizamos la representación binaria de e = e 0 +e e t2 t y deducimos que ( b e = b e 0+e e t2 t = b e0 (b 2 ) e1 b 2t) e t (n) y esta es una operación que involucra a lo sumo t multiplicaciones.

33 Exponenciación Modular Ejemplo Sea b = 74, e = 53 y n = 81, vamos a calcular b e (n). e(div) e(bin) b b e acum La primera columna son las divisiones sucesivas que nos permiten escribir e en binario en la segunda columna. Luego tenemos en la columna b las potencias sucesivas b 2i y en la cuarta columna ( b 2i) e i que es el mismo número si el exponente es 1 o 1 si el exponente es 0. La última columna nos permite acumular el producto. El resultado es pues 23.

34 Exponenciación Modular Fórmula de Euler Fórmula de Euler Sea n un número entero positivo y b una unidad en Z n, entonces b ϕ(n) 1(n) Esta propiedad es interesante por varias razones.

35 Exponenciación Modular Fórmula de Euler Fórmula de Euler Sea n un número entero positivo y b una unidad en Z n, entonces b ϕ(n) 1(n) Esta propiedad es interesante por varias razones. Una de ellas es que nos permite calcular el inverso de cualquier número utilizando el algoritmo de exponenciación modular, concretamente b ϕ(n) 1 b = b ϕ(n) = 1 y por lo tanto b ϕ(n) 1 es el inverso de b módulo n.

36 Exponenciación Modular Fórmula de Euler Fórmula de Euler Sea n un número entero positivo y b una unidad en Z n, entonces b ϕ(n) 1(n) Esta propiedad es interesante por varias razones. Una de ellas es que nos permite calcular el inverso de cualquier número utilizando el algoritmo de exponenciación modular, concretamente b ϕ(n) 1 b = b ϕ(n) = 1 y por lo tanto b ϕ(n) 1 es el inverso de b módulo n. Normalmente es más sencillo el cálculo del inverso utilizando el algoritmo de Euclides extendido, pero esta es otra alternativa que podemos considerar.

Aritmética II. Leandro Marín. Septiembre

Aritmética II. Leandro Marín. Septiembre Leandro Marín Septiembre 2010 Índice Anillos de Restos Modulares Elementos Singulares Las Unidades de Z n La Exponencial Modular La definición de Z n Definition Sea n > 1 un número entero. Dos números

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 1 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 16 Sep 2013-22 Sep 2013 Los Números Enteros El Conjunto Z Vamos a empezar por la aritmética más

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos

Más detalles

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I. Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Modular Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 39 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Aritmética Modular MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática.

Aritmética Modular MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática. Aritmética Modular MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Aritmética Modular F. Informática. UPM 1 / 30 La relación de congruencia La relación de congruencia Definición Dado

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 18 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 11 Nov 2013-17 Nov 2013 Ecuaciones Matriciales Ecuaciones Matriciales En muchas ocasiones, se plantean

Más detalles

Sistemas basados en la Teoría de Números

Sistemas basados en la Teoría de Números Criptografía de clave pública Sistemas basados en la Teoría de Números Departamento de Sistemas Informáticos y Computación DSIC - UPV http://www.dsic.upv.es p.1/20 Criptografía de clave pública Sistemas

Más detalles

Aritmética Modular. (c) 2012 Leandro Marin

Aritmética Modular. (c) 2012 Leandro Marin 0214.00 1 Aritmética Modular 3 487002 140007 (c) 2012 Leandro Marin 1. Introducción En este tema veremos el concepto de congruencia módulo n, así como los anillos de restos modulares y su estructura. Calcularemos

Más detalles

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo).

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo). En los ejercicios, cuando se hable de un entero (un número entero), se trata de un entero del lenguaje C. Por ejemplo, 10 20 es un número entero en el sentido matemático, pero muy posiblemente este entero

Más detalles

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Aritmética modular AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Objetivos Al finalizar este tema tendréis que: Saber qué es Z n. Saber operar en

Más detalles

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 5 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 30 Sep 2013-6 Oct 2013 Primeras Definiciones Grafo Un grafo está definido por dos conjuntos, un

Más detalles

Teorema Fundamental de la Aritmética y Residuos

Teorema Fundamental de la Aritmética y Residuos Teorema Fundamental de la Aritmética y Residuos Entrenamiento #2 para 3 a etapa 12-18 de marzo de 2016 Por: Lulú Resumen En este documento podrás encontrar la información necesaria para poder resolver

Más detalles

Seguridad Informática

Seguridad Informática Seguridad Informática Fundamentos Matemáticos de la Criptografía Ramón Hermoso y Matteo Vasirani Universidad Rey Juan Carlos Índice 1 Divisibilidad 2 Artimética modular 3 Grupos 4 El problema del logaritmo

Más detalles

Criptografía y Seguridad Computacional Clase 7: 13/04/2016. En esta clase introduciremos algunos algoritmos básicos en teoría de números.

Criptografía y Seguridad Computacional Clase 7: 13/04/2016. En esta clase introduciremos algunos algoritmos básicos en teoría de números. 1 ALGORITMOS PARA TEORÍA DE NÚMEROS 1 Criptografía y Seguridad Computacional 2016-01 Clase 7: 13/04/2016 Profesor: Fernando Krell Notas: Tomás Andrighetti 1. Algoritmos para teoría de números En esta clase

Más detalles

Funciones aritméticas. Una propiedad importante que le pedimos a una función aritmética es que sea sea multiplicativa,

Funciones aritméticas. Una propiedad importante que le pedimos a una función aritmética es que sea sea multiplicativa, DISTINTAS FUNCIONES EN MATEMÁTICA DISCRETA, SU IMPORTANCIA Y PROPIEDADES. Ángel Gabriel Broder María del Luján Digiovani Universidad Autónoma de Entre Ríos Facultad de Ciencia y Tecnología angel.broder@gmail.com

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

TEORÍA DE NÚMEROS Curso 2004/2005 Lista 1

TEORÍA DE NÚMEROS Curso 2004/2005 Lista 1 TEORÍA DE NÚMEROS Curso 2004/2005 Lista 1 Repaso de congruencias y divisibilidad 1. Sea H = {5, 9, 13, 17, 21,... }. Decimos que n H es H-primo si no tiene divisores propios en H. Demostrar que la factorización

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

Dominios Euclideos. Eugenio Miranda Palacios

Dominios Euclideos. Eugenio Miranda Palacios Dominios Euclideos Eugenio Miranda Palacios 4. Dominios Euclídeos 4.1. Definiciones y resultados básicos Definición 4.1. Sea A un dominio de integridad. Una función euclídea es una función φ : A {0} Z

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

Potencias de exponente entero o fraccionario y radicales sencillos

Potencias de exponente entero o fraccionario y radicales sencillos Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 2 Aritmética entera y modular 1. Los números enteros Dado un entero

Más detalles

POTENCIACIÓN Y RADICACIÓN

POTENCIACIÓN Y RADICACIÓN Potenciación POTENCIACIÓN Y RADICACIÓN La potenciación o exponenciación es una multiplicación de varios factores iguales, al igual que la multiplicación es una suma de varios sumandos iguales. En la nomenclatura

Más detalles

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta,

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

Matrices. En este capítulo: matrices, determinantes. matriz inversa

Matrices. En este capítulo: matrices, determinantes. matriz inversa Matrices En este capítulo: matrices, determinantes matriz inversa 1 1.1 Matrices De manera informal una matriz es un rectángulo de números dentro de unos paréntesis. A = a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a

Más detalles

Cálculo Simbólico. (MathCad) Ricardo Villafaña Figueroa

Cálculo Simbólico. (MathCad) Ricardo Villafaña Figueroa Cálculo Simbólico (MathCad) Ricardo Villafaña Figueroa Contenido Introducción al Cálculo Simbólico Cálculos Algebraicos Representación simbólica o algebraica de epresiones matemáticas Suma y resta algebraica

Más detalles

PREEVALUACIÓN CURSO 0 SOLUCIONES

PREEVALUACIÓN CURSO 0 SOLUCIONES PREEVALUACIÓN CURSO 0 SOLUCIONES Problema. Dado el número decimal 9, encuentra su representación binaria. Solución. Para encontrar la representación binaria del número, lo pondremos en una columna, en

Más detalles

Francisco José Vera López

Francisco José Vera López Álgebra y Matemática Discreta Matrices. Sistemas de ecuaciones. Francisco José Vera López Dpto. de Matemática Aplicada Facultad de Informática 2015 1 Matrices 2 Sistemas de Ecuaciones Matrices Una matriz

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta 2.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

2. Determine los números enteros n que satisfacen la relación planteada:

2. Determine los números enteros n que satisfacen la relación planteada: ÍÒ Ú Ö Æ ÓÒ Ð Ä Å Ø ÒÞ Ä Ò ØÙÖ Ò Å Ø Ñ Ø ÔÐ Ì ÓÖ Æ Ñ ÖÓ ÈÖÓ ÓÖ ÊÓ ÖØÓ ÇÚ Ó Å ÖØ Ò Ê ÑÓ 1 1. Divisibilidad. 1. a) ( ) El producto de dos números naturales m y n aumenta en 132 si cada uno de ellos aumenta

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

1º ESO B Contenidos para la convocatoria extraordinaria de septiembre

1º ESO B Contenidos para la convocatoria extraordinaria de septiembre 1º ESO B 2011-2012 Contenidos para la convocatoria extraordinaria de septiembre U1 Los números naturales Lectura y escritura de números Aproximación por redondeo Resolver problemas con números naturales

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

I.E.S. El Galeón Curso CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O.

I.E.S. El Galeón Curso CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O. Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. MATEMÁTICAS 1º E.S.O. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) -Potencias con

Más detalles

Ecuaciones Diofánticas

Ecuaciones Diofánticas 2 Ecuaciones Diofánticas (c) 2011 leandromarin.com 1. Introducción Una ecuación diofántica es una ecuación con coeficientes enteros y de la que tenemos que calcular las soluciones enteras. En este tema

Más detalles

OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS

OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS Juan F. Dorado Diego F. López Laura B. Medina Juan P. Narvaez Roger Pino Universidad de San Buenaventura, seccional Cali OPEN KNOWLEDEGE CURSO DE METODOS NUMERICOS

Más detalles

Teoría de Números. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Teoría de Números. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Esta presentación brinda una breve revisión de nociones de la teoría elemental de números, concernientes

Más detalles

Cálculo de Determinantes. (c) 2012 Leandro Marin

Cálculo de Determinantes. (c) 2012 Leandro Marin 8. Cálculo de Determinantes 3 487 83 (c) Leandro Marin . Introducción El determinante de una matriz cuadrada es un problema que se puede resolver de diversas formas. Una de ellas es mediante una fórmula

Más detalles

Gu ıa Departamento. Matem aticas U.V.

Gu ıa Departamento. Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar

Más detalles

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log Para empezar a tratar el tema de los logaritmos tenemos que tener en muy en cuenta, la definición de logaritmo, así como las tres propiedades más importantes de los logaritmos. Definición de logaritmo:

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Factorización Algebraica Olimpiada de Matemáticas en Tamaulipas 1. Introducción El matemático, físico y astrónomo Carl Friedrich Gauss (1777-1855) fue uno de los más importantes personajes

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos

Más detalles

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1

CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1 BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números

Más detalles

Anexo: El anillo de polinomios K[x].

Anexo: El anillo de polinomios K[x]. El anillo de polinomios K[x] 1 Anexo: El anillo de polinomios K[x]. 1. Construcción del anillo de polinomios K[x]. Dado un cuerpo K, se define m K[x] = { a i x i a i K, i = 0,..., m, m N {0}}, i=0 donde

Más detalles

Si el producto de dos números es cero

Si el producto de dos números es cero Matemáticas I, 2012-I Si el producto de dos números es cero Empezamos con un acertijo: Silvia tiene dos números. Si los multiplica sale 0 y si los suma sale 256. Cuáles son estos dos números que tiene

Más detalles

4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

Algoritmos de cifrado

Algoritmos de cifrado 11 de junio de 2015 Estructuración 1 Conceptos generales 2 3 4 5 El problema de la Criptografía tux@linux# Internet -----BEGIN PGP MESSAGE----- Version: GnuPG v1.4.10 (GNU/Linux) FcelCIKc+xEzuVo1Wbg5v91kEGDaXHhjJ1

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

4.2 Números primos grandes. MATE 3041 Profa. Milena R. Salcedo Villanueva

4.2 Números primos grandes. MATE 3041 Profa. Milena R. Salcedo Villanueva 4.2 Números primos grandes MATE 3041 Profa. Milena R. Salcedo Villanueva 1 Números primos grandes Existe una cantidad infinita de números primos ¹ ¹Resultado aprobado por Euclides alrededor del año 300

Más detalles

Clase 2: Algoritmo de Euclídes

Clase 2: Algoritmo de Euclídes Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos

Más detalles

Factorización de polinomios. Profa. Anneliesse Sánchez y Profa. Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico

Factorización de polinomios. Profa. Anneliesse Sánchez y Profa. Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico Factorización de polinomios Profa. Anneliesse Sánchez y Profa. Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico Introducción Factorizar un polinomio es hallar factores de éste.

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

Divisibilidad (en N = N {0})

Divisibilidad (en N = N {0}) Divisibilidad (en N = N {0}) Dados dos números naturales a y c, se dice que c es un divisor de a si existe q N tal que a = q c (es decir, si en la división a c el resto es 0). c a significa que c es divisor

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 23 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 2 Dic 2013-8 Dic 2013 Introducción La existencia de bases ortonormales es los espacios es muy útil

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades GUICEN002MT21-A16V1. Si N es un número entero, entonces la expresión

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades GUICEN002MT21-A16V1. Si N es un número entero, entonces la expresión GUÍA DE EJERCITACIÓN AVANZADA Potencias y propiedades Programa Entrenamiento Desafío Si N es un número entero, entonces la expresión Matemática I) N N siempre es un número real. II) (N ) N es un número

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

Ejercicios del tema 7

Ejercicios del tema 7 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos

Más detalles

Aritmética Computacional

Aritmética Computacional CINVESTAV francisco@cs.cinvestav.mx Anuncios Importantes examen Proyecto: propuesta, avance y Presentación 30 puntos 70 puntos Quizzes [punto cada uno] Teoría elemental de números: definiciones y teoremas

Más detalles

Euclides Extendido y Teorema Chino del Resto

Euclides Extendido y Teorema Chino del Resto Euclides Extendido y Teorema Chino del Resto Taller de Álgebra I Segundo cuatrimestre de 2013 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS: DEFINICIÓN Y EJEMPLOS. La Teoría de Grupos tiene muchas aplicaciones desde Cristalografía hasta Criptografía, pasando por la resolución de ecuaciones. Nosotros vamos a

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

Viernes 14 evaluación ÁLGEBRA II. Propiedad Intelectual Propiedad Cpech Intelectual Cpech

Viernes 14 evaluación ÁLGEBRA II. Propiedad Intelectual Propiedad Cpech Intelectual Cpech Viernes 14 evaluación ÁLGEBRA II Álgebra II Propiedad Intelectual Propiedad Cpech Intelectual Cpech Aprendizajes esperados Reconocer y resolver productos notables. Interpretar geométricamente productos

Más detalles

Matemáticas Financieras. Sesión 1 Fundamentos Matemáticos

Matemáticas Financieras. Sesión 1 Fundamentos Matemáticos Matemáticas Financieras Sesión 1 Fundamentos Matemáticos Contextualización de la Sesión 1 Los fundamentos matemáticos son de vital importancia, en este tema se abordan y revisan algunos conceptos básicos

Más detalles

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9 ÍNDICE Presentación... 9 Unidad I Conjuntos 10 Antes de empezar... 12 1 Idea intuitiva de un conjunto... 13 2 Cardinalidad de un conjunto... 20 3 Concepto de conjunto universal, subconjunto; conjuntos

Más detalles

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces MA3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

Módulo 10 Postulados de campo

Módulo 10 Postulados de campo Módulo 10 Postulados de campo OBJETIVO: Conocerá los postulados de campo y su aplicación; utilizara postulados de campo en proposiciones de números reales Ahora, estamos interesados en ver el comportamiento

Más detalles

1. Números naturales y sistema de numeración decimal

1. Números naturales y sistema de numeración decimal 1. Números naturales y sistema de numeración decimal Conocer el sistema de numeración decimal y relacionarlo con los números naturales. Representación en la recta real de los mismos. Realizar operaciones

Más detalles

INTRODUCCIÓN A LA MATEMÁTICA FI- NANCIERA

INTRODUCCIÓN A LA MATEMÁTICA FI- NANCIERA ESTUDIOS OPERACIONES Í N D I C E 1 GUÍA DE ESTUDIO UNIDAD 1 INTRODUCCIÓN A LA MATEMÁTICA FI- NANCIERA 1. DIVISIBILIDAD 1.1. MÚLTIPLOS DE UN NÚMERO 1.2. DIVISORES DE UN NÚMERO 1.2.1. Cuándo un número es

Más detalles

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo. Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como:

El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como: Materia: Matemática de 5to Tema: Definición de Determinantes Marco Teórico Un factor determinante es un número calculado a partir de las entradas de una matriz cuadrada. Tiene muchas propiedades e interpretaciones

Más detalles

Notas sobre polinomios

Notas sobre polinomios Notas sobre polinomios Glenier Bello 1. Definiciones y conceptos básicos 1.1. Un polinomio es una función f : C C del tipo f(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, donde n es un entero no negativo

Más detalles

Funciones aritméticas, Fermat,Euler, Wilson y teorema chino del residuo

Funciones aritméticas, Fermat,Euler, Wilson y teorema chino del residuo Funciones aritméticas, Fermat,Euler, Wilson y teorema chino del residuo Entrenamiento #3 para el nacional 1-4 de Octubre del 2015 Por: Argel Resumen Bienvenidos sean de nuevo al mágico mundo de la teoría

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 4 Matrices con coeficientes en un cuerpo 1. Matrices Sean I = {1,

Más detalles

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental.

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental. 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: olinomios Álgebra vs Aritmética La Aritmética siempre opera sobre números concretos. El Álgebra hace cálculos simbólicos en los que las

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles