INTERÉS COMPUESTO. Alejandro Vera Trejo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTERÉS COMPUESTO. Alejandro Vera Trejo"

Transcripción

1 INTERÉS COMPUESTO Alejandro Vera Trejo

2 Objetivo Se manejarán los factores que intervienen en el modelo de interés compuesto aplicándolos en el planteamiento y resolución de problemas. Se solucionaran situaciones reales a través de casos concretos que conlleven a la deducción de lo que representa el modelo de interés compuesto. Se platearán y solucionarán ejercicios sobre el cálculo del monto compuesto, tasas nominales y efectivas, así como la ecuación de valor.

3 Qué es el interés compuesto? Es la operación financiera en la cual el capital aumenta al final de cada periodo por adición de los intereses vencidos. Una transacción trabaja a interés compuesto cuando el capital inicial y los intereses generados en cada periodo ganan intereses en periodos subsiguientes. El interés compuesto es el interés devengado por el principal al final de un período y que devenga interés en el período o períodos subsiguientes.

4 Cómo se obtiene el interés compuesto? El interés compuesto se deduce de la siguiente manera: VF =VA + VAi = VA(1+i) Donde VF es el monto o valor futuro al final de periodo e incluye el Capital VA o valor inicial más los intereses devengados por el capital en el periodo VAi. Si al final del periodo ni el capital ni los intereses se retiran, al final del segundo periodo de tendrá que el nuevo monto es:

5 Cómo se obtiene el interés compuesto? VF 2 = VA(1 + i)(1 + i) = VA(1 + i) 2 Si al final del segundo periodo sucede lo mismo que en el primero. Al final del tercer periodo se tendrá. VF 3 = VA(1 + i)(1 + i)(1 + i) = VA(1 + i) 3 Generalizando para n periodos de composición se tiene que la formula general de interés compuesto está dada por:

6 Cómo se obtiene el interés compuesto? VF = VA(1 + i) n Donde: VF VA i n = Monto o Valor Futuro = Capital o Valor Inicial = Tasa efectiva = número de periodos n Plazo Total de la Inversión Días del periodo

7 Cómo se obtiene el interés compuesto? Supóngase que se depositan $1,000 en una cuenta bancaria que paga el 0.5% de interés compuesto mensualmente Cuál es el monto al final de año y medio? VF = VA (1+i) n VF = 1,000 ( ) 18 VF = 1,000 (1.005) 18 VF = 1,000 ( ) VF = $1,

8 Cómo se obtiene el interés compuesto? Si se invierten $10,000 a una tasa del 12% anual capitalizable mensualmente, durante 90 días Cuánto se genera de intereses? VF = VA (1+i) n VF = 10,000 (1+ (0.12*30/360)) (90/30) VF = 10,000 ( ) (90/30) VF = 10,000 ( ) VF = $10, I = VF-VA = 10, ,000 = $303.01

9 Cómo se obtiene el interés compuesto? El Banco ofrece a un ahorrador una tasa de 10% de interés capitalizable semestralmente. Si el ahorrador deposita $2, el 1 de enero de 2010, y no hace movimientos en su cuenta Cuánto tendrá el 1 de enero de 2012? VF = VA (1+i) n VF = 2,000 (1+ 0.1) 4 VF = 2,000 (1.1) 4 VF = 2,000 (1.4641) VF = 2,928.20

10 Cómo se obtiene el interés compuesto? Con los datos de ejercicio anterior, calcular el plazo de inversión. VF = VA (1+i) n 2, = 2,000 (1+ 0.1) n Aplicando logaritmos en ambos miembros de la ecuación. log (VF) = log VA(1+i) n log (VF) = log VA + n log(1+i) n=(log ( ) log (2000))/log(1+0.1)=4

11 Cómo se obtiene el interés compuesto? Se desea encontrar el plazo n que se requiere para obtener un monto M de $8, con un capital C de $5,800 y una tasa de interés anual del 5%. Sea M = C (1+i) n Aplicando logaritmos en ambos miembros de la ecuación. log (M) = log C(1+i) n log (M) = log C + n log(1+i) n=(log ( ) log (5800))/log(1+0.05) = 7

12 Tasa Nominal, Efectiva y Equivalente Si un capital invertido a interés compuesto se capitaliza cada año, el monto compuesto al final del primer año es igual al interés simple a un año. Sin embargo, si la capitalización se efectúa más de una vez al año; el monto compuesto al final de un año es mayor que el obtenido por interés simple. Cuando esto sucede se puede determinar una tasa efectiva de interés.

13 Tasa Nominal, Efectiva y Equivalente Ejemplo: Cuál es la tasa efectiva que se recibe de un depósito bancario de $10,000 pactada al 20% de interés anual capitalizable mensualmente? M = 10,000 (1 + (0.20/ 12)) 12 = 12, I = 12, ,000 = 2,193.9 Tasa Efectiva: i = 2,193.9 / 10,000 = ó 21.94% De aquí se puede deducir que la tasa efectiva es: Tasa Efectiva = [(1 + i) n 1] Tasa Efectiva = [(1+(0.20/12)) 12 ) -1] Tasa Efectiva = ó % A una tasa nominal del 20%, se recibe una tasa efectiva del 21.94%.

14 Tasa Nominal, Efectiva y Equivalente Ejemplo: Cuál es la tasa efectiva que se recibe de un depósito bancario de $1,000 pactada a 18% de interés anual capitalizable mensualmente? Tasa efectiva = [(1+i) n 1] Tasa efectiva = [(1+(0.18/12)) 12 )-1] Tasa efectiva = 19.56% Intereses = C [(1+(0.18/12))12)-1] Intereses = $1,000 [(1+(0.18/12))12)-1] Intereses = $ Lo que significa que a tasa nominal del 18%, el inversionista ganó la tasa efectiva de 19.56%

15 Tasa Nominal, Efectiva y Equivalente Ejemplo: Cuál es la tasa efectiva que se paga por un préstamo bancario de $250,000 que se pactó a 16% de interés anual capitalizable trimestralmente? Tasa efectiva = [(1+i) n 1] Tasa efectiva = [(1+(0.16/4)) 4 )-1] Tasa efectiva = 16.98% Intereses = C [(1+(0.16/4)) 4 )-1] Intereses = $250,000 [(1+(0.16/4)) 4 )-1] Intereses = $42, Lo que significa que a tasa nominal del 16%, el banco ganó la tasa efectiva de 16.98%

16 Tasa Nominal, Efectiva y Equivalente Se dice que dos tasas son equivalentes cuando operando de manera diferente arrojan el mismo resultado. Una tasa puede capitalizar mensualmente y la otra semestralmente, o bien en forma trimestral y la otra en forma anual etc. Cuando sucede que dichas tasas con capitalizaciones diferentes arrojan el mismo interés, se está en presencia de una tasa equivalente.

17 Tasa Nominal, Efectiva y Equivalente Ejemplo: Un inversionista deposita 10,000 USD a una tasa de interés del 8% anual convertible trimestralmente durante un año. M = 10,000 [( / 4) 4 ] = 10, Tasa nominal = ([(10,824.32/10,000) (1/4) ]-1)4 = 0.08 ó 8% Tasa efectiva = [(10,824.32/10,000) 1 ]-1 = ó % Tasa Equivalente M = 10,000 ( / 4) 4 = 10, Con Tasa Nominal M = 10,000 ( ) 1 = 10, Con Tasa Efectiva

18 Tasa Nominal, Efectiva y Equivalente Ejemplo: Hallar la tasa equivalente que iguala una tasa capitalizada bimestralmente a una tasa nominal del 36% Se plantea la ecuación capitalizando ambas tasas durante un año. (1+j/6) 6 = (1+0.36) 1 j = [((1+0.36) 1 ) 1/6-1]6 j = ó %

19 Tasa Nominal, Efectiva y Equivalente Ejemplo: Hallar la tasa compuesta trimestralmente que equivale a 2.5% mensual. Se plantea la ecuación capitalizando ambas tasas durante un año. (1+j/4) 4 = ( ) 12 j = [(( ) 12 ) 1/4-1]4 j = ó %

20 Qué es una ecuación de valor? En el ámbito de las operaciones financieras un deudor puede desear remplazar un conjunto de deudas previamente contraídas con un determinado acreedor, por otro conjunto que le sean equivalentes, pero con otras cantidades y fechas de vencimiento. Para lograr esto último es necesario plantear una ecuación de valor.

21 Qué es una ecuación de valor? Una ecuación de valor es una igualdad que establece que la suma de los valores de un conjunto de deudas es igual a la suma de los valores de un conjunto de deudas propuesto para remplazar al conjunto original, una vez que sus valores de vencimiento han sido trasladados a una fecha común, llamada fecha focal o fecha de valuación.

22 Qué es una ecuación de valor? Un inversionista tiene una deuda que debe ser saldada en la siguiente forma: $1, en este momento y $2, dentro de un mes. Si desea saldar completamente su deuda el día de hoy, cuánto tendrá que pagar, si la tasa de interés es del 35%? a) Se elabora la gráfica de tiempo y valor.

23 Qué es una ecuación de valor? b) Se determina la fecha focal que es hoy o mes cero. 1,470 hoy X pago propuesto 2,600 1 mes c) Se plantea la ecuación de valor. X = 1,470 + [2,600 / (1+(0.35/12)) 1 ]= X = 1, ,600/( ) X = 1, , = 3, Valor de deudas originales = Valor de deudas propuesto.

24 Qué es una ecuación de valor? b) Supóngase que la fecha focal es en el segundo mes. 1,470 hoy X pago propuesto 2,600 1 mes 2 mes c) Se plantea la ecuación de valor. X (1+(0.35/12)) 2 = 1,470(1+(0.35/12)) 2 + 2,600(1+(0.35/12)) X = 1,470( ) + 2,600( ) X = (1, , )/ X= 4, / = 3, igual que el anterior

25 Qué es una ecuación de valor? Un inversionista debe $5,700 a pagar dentro de cuatro meses y $7,440 a pagar dentro de 8 meses. Una negociación con su acreedor le permitirá pagar mediante dos pagos de igual cuantía; el primero a efectuar dentro de 10 meses y el otro al cabo de un año. Cuál será el pago, si ambos acuerdan una tasa de interés del 40%? a) Se elabora la gráfica de tiempo y valor.

26 Qué es una ecuación de valor? b) Se determina la fecha focal en el mes 12 Cuánto debe pagar? 5,700 7, c) Se determina la ecuación de valor M 1 = 5,700[1+(0.40/12)] 8 = 7, M 2 =7,440[1+(0.40/12)] 4 = 8, M 3 = X [1+(0.40/12)] 2 = X ( ) M 4 = X x x meses Ecuación de valor M 1 + M 2 = M 3 + M 4 7, , = ( ) X + X 15, = X X = $7, se deben hacer dos pagos de esta cantidad.

27 Qué es una ecuación de valor? Si la fecha focal es el quinto mes, cuánto debe pagar? 5,700 7, x meses x M 1 = 5,700[1+(0.40/12)] 1 = 5,890 VP 2 =7,440 / [1+(0.40/12)] 3 = 6, VP 3 = X / [1+(0.40/12)] 5 = X ( ) VP 4 = X / [1+(0.40/12)] 7 = X ( ) Ecuación de valor M 1 + VP 2 = VP 3 + VP 4 5, , = X ( ) + X ( ) 12, = X X = $7, se deben hacer dos pagos por esta cantidad.

28 BIBLIOGRAFIA 1. Villalobos José Luis, "Matemáticas Financieras, 2a Edición 2001 por Prentice Hall. 2. Alfredo Díaz Mata, Víctor Manuel Aguilera Gómez Matemáticas Financieras", Tercera edición 1999 por Mc Graw Hill Interamericana. 3. Carlos Ramírez Molinares, Milton García Barbosa, Cristo Pantoja Algarín, Ariel Zambrano Meza Fundamentos de Matemáticas financieras, Universidad Libre Sede Cartagena Centro de Investigaciones 2009.

29 INTERÉS COMPUESTO Alejandro Vera Trejo

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 3 Nombre: Interés compuesto. Tasas de interés Objetivo Al término de la sesión el estudiante aplicará los conceptos de tasas de interés nominal, efectiva

Más detalles

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno:

Unidad 3. Interés compuesto. Objetivos. Al finalizar la unidad, el alumno: Unidad 3 Interés compuesto Objetivos Al finalizar la unidad, el alumno: Calculará el monto producido por un cierto capital colocado a una tasa de interés compuesto convertible anualmente, semestralmente

Más detalles

ELABORO:L.A.E. MARIA DE LA LUZ MARTINEZ LEON

ELABORO:L.A.E. MARIA DE LA LUZ MARTINEZ LEON 2013. AÑO DEL BICENTENARIO DE LOS SENTIMIENTOS DE LA NACIÓN ELABORO:L.A.E. MARIA DE LA LUZ MARTINEZ LEON LA PAZ, MARZO 2013 Í NDICE 1 Introducción 2 Importancia de las Matemáticas Financieras Tema : 1.1,

Más detalles

Unidad 7. Descuento Compuesto

Unidad 7. Descuento Compuesto Unidad 7 Descuento Compuesto En muchas operaciones bancarias se otorgan préstamos en cuyos documentos se mencionan descuentos compuestos. Antes de estudiar los diferentes tipos de descuentos, es conveniente

Más detalles

PROBLEMARIO MATEMÁTICAS FINANCIERAS

PROBLEMARIO MATEMÁTICAS FINANCIERAS PROBLEMARIO MATEMÁTICAS FINANCIERAS CONVERSIÓN DE TIEMPOS Realizar las siguientes conversiones: 1. 4 cuatrimestres a meses R.- 16 meses 2. 5 años a trimestres R.- 20 trimestres 3. 12 meses a cuatrimestres

Más detalles

MATEMÁTICAS FINANCIERAS II

MATEMÁTICAS FINANCIERAS II MATEMÁTICAS FINANCIERAS II MATEMÁTICAS FINANCIERAS II USIAS OCHOA LOPEZ RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO S.C. Viveros de Asís 96, Col. Viveros de la Loma,

Más detalles

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (.

INTERÉS SIMPLE $15000 + $15 000. Monto. Capital Interés 15000(.08) = 1200 15 000 + 1 200 = 16 200. Tasa de interés: 8% mensual (. INTERÉS SIMPLE Capital Interés $15 000 Tasa de interés: 8% mensual (.08) $15000 + 15000(.08) = 1200 1 mes 15 000 + 1 200 = 16 200 Monto INTERÉS SIMPLE Capital Interés C Tasa de interés: i C + I Ci 1 periodo

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 11 Nombre: Amortización. Fondos de amortización Objetivo Al término de la sesión el estudiante solucionaría problemas de amortización con fondos de amortización,

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 4 Nombre: Interés compuesto. Calculo de Monto, Valor actual y tiempo. Objetivo Al término de la sesión el estudiante aplicará el cálculo del valor actual

Más detalles

Guía de Estudios Matemática Financiera Quinto Bachillerato en Administración Prof. Cristobal Escalante O.

Guía de Estudios Matemática Financiera Quinto Bachillerato en Administración Prof. Cristobal Escalante O. Quinto Bachillerato en Administración Prof. Cristobal Escalante O. Temas a Evaluar 1. Porcentajes 2. Repartición Proporcional a. Directa b. inversa 3. Interés Simple 4. Interés Compuesto a. Monto compuesto

Más detalles

TEMA 10: Operaciones financieras. El interés

TEMA 10: Operaciones financieras. El interés UNO: Básicos de interés simple. 1. Calcula el interés que en capitalización simple producen 10.000, al 5% anual durante 3 años. 2. Cuál será el montante obtenido de la operación anterior? 3. Un inversor

Más detalles

Operaciones Financieras

Operaciones Financieras Operaciones Financieras Módulo Instruccional Programático Barquisimeto, 2014 UNIDAD I - DESCUENTO SIMPLE OBJETIVO GENERAL Aplicar el Descuento Simple en las diferentes actividades comerciales desarrollando

Más detalles

Regla Comercial y Descuento compuesto.

Regla Comercial y Descuento compuesto. Regla Comercial y Descuento compuesto. Regla comercial: consiste en calcular el monto que se acumula durante los periodos de capitalización completos, utilizando la fórmula de interés compuesto, para luego

Más detalles

Capítulo 6 Amortización

Capítulo 6 Amortización Capítulo 6 Amortización Introducción El objetivo de este capítulo es calcular, analizar e interpretar el comportamiento de deudas de largo plazo al extinguirse gradualmente en el tiempo Se explicará cómo

Más detalles

Interés: Es el rendimiento del capital entregado en préstamo. Es la renta que gana un capital. Es la ganancia producida por un capital.

Interés: Es el rendimiento del capital entregado en préstamo. Es la renta que gana un capital. Es la ganancia producida por un capital. UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS ECONOMICAS CURSO: MATEMATICAS III, AREA COMUN UNIDAD No. 1 INTERES SIMPLE SEGUNDO SEMESTRE 2009. GENERALIDADES DEL INTERES: Interés: Es el rendimiento

Más detalles

Universidad José Carlos Mariátegui Sede Puno Docente: Marcelino Aguilar Condori

Universidad José Carlos Mariátegui Sede Puno Docente: Marcelino Aguilar Condori Interés Simple e Interés Compuesto El interés pagado y recibido puede considerarse como simple o compuesto. 1. Interés Simple El interés simple, es pagado sobre el capital primitivo que permanece invariable.

Más detalles

Unidad de Aprendizaje: Interés Compuesto

Unidad de Aprendizaje: Interés Compuesto Carlos Mario Morales C 2012 56 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier

Más detalles

Interés Simple y Compuesto

Interés Simple y Compuesto Interés Simple y Compuesto Las finanzas matemáticas son la rama de la matemática que se aplica al análisis financiero. El tema tiene una relación cercana con la disciplina de la economía financiera, que

Más detalles

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término.

1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 1. El 5to. término de una progresión aritmética es 7 y el 7mo. término es 8 1/3. Hallar el 1er. término. 2. Hallar el 8vo. Término de la siguiente progresión geométrica: 6: 4:. 3. La razón de una progresión

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS PRIMERA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 25/10/2 008 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO 1.- Tenemos que pagar una deuda de 1.500 dentro de 3 años. Si se adelanta su pago al momento presente, qué cantidad tendremos que pagar sabiendo

Más detalles

Rendimiento de cualquier inversión de capital. ³

Rendimiento de cualquier inversión de capital. ³ Definición de interés Cuando una persona pide dinero en préstamo, el que otorga el préstamo, o prestamista por entregarlo debe recibir un beneficio; a dicho beneficio se le llama interés. ¹ Es el alquiler

Más detalles

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de

MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de MATEMATICAS FINANCIERAS TEMA 1. CONCEPTOS GENERALES EJERCICIOS PROPUESTOS TEMARIO 1 1) Una inversión realizada hoy por $ 1.200.000 genera al final de un año la suma de $1.536.000. Se pide: a) La suma ganada

Más detalles

está determinado por su precio; la fuente de dicho valor puede ser el trabajo que se

está determinado por su precio; la fuente de dicho valor puede ser el trabajo que se CAPÍTULO I EL VALOR DEL DINERO A TRAVÉS DEL TIEMPO Todos los bienes o servicios que existen en una economía poseen un valor que comúnmente está determinado por su precio; la fuente de dicho valor puede

Más detalles

UNIDAD 4 AMORTIZACIÓN. Introducción a la unidad

UNIDAD 4 AMORTIZACIÓN. Introducción a la unidad UNIDAD 4 AMORTIZACIÓN Introducción a la unidad Una de las aplicaciones más importantes de las anualidades en las operaciones de negocios está representada por el pago de deudas que devengan intereses.

Más detalles

Matemáticas Financieras Avanzadas

Matemáticas Financieras Avanzadas Matemáticas Financieras Avanzadas 1 Sesión No. 1 Nombre: Interés simple Objetivo Al término de la sesión el estudiante solucionará problemas aplicando los conceptos de interés simple, a través de la resolución

Más detalles

Herramientas básicas de Matemática Financiera

Herramientas básicas de Matemática Financiera UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS CÁTEDRA: SISTEMAS DE INFORMACIÓN CONTABLE II ( B ) SERIE DE CUADERNILLOS CONTABLES Coordinador: Mgter. Gustavo Sader Cuadernillo Nº 4

Más detalles

APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES.

APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES. 1 APUNTES DE MATEMATICAS FINANCIERAS. C.P. CELIA GABRIELA CAMACHO MONTES. GENERALIDADES. Las matemáticas Financieras es una rama de las matemáticas utilizada para el cálculo de los diferentes tipos de

Más detalles

MATEMATICAS FINANCIERAS

MATEMATICAS FINANCIERAS 1. Hallar el valor equivalente de un monto de $94 000.000 en 450 días suponiendo una tasa de interés bancaria del 12% ES. o Valor inicial o presente: 94 millones o Tasa de interés: 12% ES o Periodo de

Más detalles

Unidad de Aprendizaje: Anualidades y gradientes

Unidad de Aprendizaje: Anualidades y gradientes Carlos Mario Morales C 2012 1 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma o por cualquier

Más detalles

UNIDAD 2 INTERÉS COMPUESTO. Introducción a la unidad

UNIDAD 2 INTERÉS COMPUESTO. Introducción a la unidad UNIDAD 2 INTERÉS COMPUESTO Introducción a la unidad Al invertir un dinero o capital a una tasa de interés durante un cierto tiempo, nos devuelven ese capital más los beneficios o intereses, que ahora se

Más detalles

Capítulo 2 Interés y descuento simple

Capítulo 2 Interés y descuento simple Capítulo 2 Interés y descuento simple Introducción Los problemas de la teoría del interés son relativamente elementales, cada problema se restringe a calcular las siguientes variables: a) El capital invertido

Más detalles

33 El interés compuesto y la amortización de préstamos.

33 El interés compuesto y la amortización de préstamos. 33 El interés compuesto y la amortización de préstamos. 33.0 El interés compuesto. 33.0.0 Concepto. 33.0.02 Valor actualizado de un capital. 33.0.03 Tiempo equivalente. 33.02 Amortización de préstamos.

Más detalles

MATEMATICAS FINANCIERAS

MATEMATICAS FINANCIERAS MATEMATICAS FINANCIERAS 1 MATEMATICAS FINANCIERAS OBJETIVO GENERAL: Dominio y uso de las herramientas básicas para realizar los cálculos matemáticos, frecuentemente utilizados en el medio financiero. Particularmente

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS. 1.Una mina en explotación tiene una producción anual de PROBLEMAS RESUELTOS DE ANUALIDADES ORDINARIAS 1.Una mina en explotación tiene una producción anual de 600 000 dólares y se calcula que se agotará en 5 años. Cuál es el valor actual de la producción si

Más detalles

Asignatura: Matemática Financiera.

Asignatura: Matemática Financiera. Unidad No. I. Interés simple. Asignatura: Matemática Financiera. En todas las actividades financieras se acostumbra a pagar un rédito por el uso del dinero prestado. La mayor parte de los ingresos de bancos

Más detalles

MATEMATICAS FINANCIERAS

MATEMATICAS FINANCIERAS MATERIA UNIVERSIDAD TECNOLÓGICA ECOTEC FACULTAD DE CIENCIAS ECONOMICAS Y EMPRESARIALES CODIGO FIN 220 PROGRAMA ANALÍTICO MATEMATICAS FINANCIERAS 1. DESCRIPCIÓN Las Matemáticas Financieras constituyen una

Más detalles

Capítulo 3 Interés compuesto

Capítulo 3 Interés compuesto Capítulo 3 Interés compuesto Introducción Cuando un banco o cualquier otra institución financiera aumentan el número de periodos en el año en los que pagan intereses, el capital aumenta más rápidamente

Más detalles

Carlos Mario Morales C 2012

Carlos Mario Morales C 2012 Glosario de términos Carlos Mario Morales C 2012 1 Matemáticas Financieras No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni la transmisión de ninguna forma

Más detalles

Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas.

Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas. Valor del Dinero en el Tiempo Uno de los principios más importantes en todas las finanzas. El dinero es un activo que cuesta conforme transcurre el tiempo, permite comprar o pagar a tasas de interés periódicas

Más detalles

c) Inversiones Complementarias: a) Inversiones en el sector privado: b) Inversiones en el sector público: Costo Anual Equivalente: Equivalencia:

c) Inversiones Complementarias: a) Inversiones en el sector privado: b) Inversiones en el sector público: Costo Anual Equivalente: Equivalencia: CONCEPTOS BASICOS MATEMATICA FINANCIERA Compilación: Doris Amalia Alba Sánchez, 2014 A continuación se presenta una recopilación de los conceptos fundamentales que se deben manejar para desarrollar y comprender

Más detalles

JORGE LUIS GONZÁLEZ ESCOBAR

JORGE LUIS GONZÁLEZ ESCOBAR 1. Se invierten 200.000 en un depósito a término fijo de 6 meses en un banco que paga el 28,8% Nominal Mensual. Determinar el monto de la entrega al vencimiento. R/230.584,30. 2. Una persona debe pagar

Más detalles

En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes

En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes CLASES DE TASAS DE INTERES En Evaluaciones y Análisis Financiero, La TASA DE INTERES recibe diferentes Nombres según las Condiciones en que esté Operando, y es así como encontramos los siguientes Términos

Más detalles

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A

Más detalles

Capítulo 1 Interés Simple

Capítulo 1 Interés Simple Capítulo 1 Interés Simple 1.1 Tanto por ciento En matemáticas el tanto por ciento es una forma de expresar un número en proporción cien (de ahí el nombre por ciento ), y se denota con el símbolo %. El

Más detalles

Si conocemos el monto para tiempo y tasa dados, el problema será entonces hallar el capital, en

Si conocemos el monto para tiempo y tasa dados, el problema será entonces hallar el capital, en Interés Simple El interés simple, es pagado sobre el capital primitivo que permanece invariable. En consecuencia, el interés obtenido en cada intervalo unitario de tiempo es el mismo. Es decir, la retribución

Más detalles

Gestión Financiera 2º AF 1

Gestión Financiera 2º AF 1 LEY FINANCIERA DE INTERÉS SIMPLE Gestión Financiera 2º AF 1 1.1 Concepto Operación financiera cuyo objeto es la sustitución de un capital presente por otro equivalente con vencimiento posterior, mediante

Más detalles

LICENCIATURA EN ADMINISTRACIÓN APUNTES MATEMÁTICAS FINANCIERAS PARA LA ASIGNATURA

LICENCIATURA EN ADMINISTRACIÓN APUNTES MATEMÁTICAS FINANCIERAS PARA LA ASIGNATURA 1 LICENCIATURA EN ADMINISTRACIÓN APUNTES PARA LA ASIGNATURA MATEMÁTICAS FINANCIERAS 2005 1 2 Colaboradores Coordinación general L. A. C.y Mtra. Gabriela Montero Montiel Coordinación académica L.A.C. Francisco

Más detalles

Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez

Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez Anexo 11 ELABORADO POR: Simón Sarabia Sánchez Ma. Del Rosario Durán Hernández Ariadna Perdomo Báez 681 Tabla de contenido 1.0 EJERCICIO DE INTERES SIMPLE... 684 2.0 EJERCICIO DE INTERES COMPUESTO... 687

Más detalles

UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE ECONOMIA Y CIENCIAS EMPRESARIALES SYLLABUS

UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE ECONOMIA Y CIENCIAS EMPRESARIALES SYLLABUS UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE ECONOMIA Y CIENCIAS EMPRESARIALES SYLLABUS MATERIA: MATEMÁTICAS FINANCIERAS CÓDIGO: FIN 220 (01) CRÉDITOS: 3 PREREQUISITO(S): CÁLCULO I CÓDIGO:

Más detalles

Valor del dinero en el Tiempo: INTERÉS COMPUESTO

Valor del dinero en el Tiempo: INTERÉS COMPUESTO Valor del dinero en el Tiempo: INTERÉS COMPUESTO 1. CONCEPTO La modalidad de Interés Compuesto, como ya se anotó, asume la posición de que los montos de intereses generados pero no cancelados renten, así

Más detalles

Aritmética. Preguntas Propuestas

Aritmética. Preguntas Propuestas 7 Preguntas Propuestas 1 ... Regla de interés 1. El monto de un capital impuesto durante 6 años es S/.15 800. Si el mismo capital se hubiera impuesto al mismo rédito durante 7 años y medio, el monto sería

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno:

Unidad 2. Interés simple. Objetivos. Al finalizar la unidad, el alumno: Unidad 2 Interés simple Objetivos Al finalizar la unidad, el alumno: Calculará el interés simple producido por un cierto capital colocado a una tasa determinada durante un periodo de tiempo dado. Calculará

Más detalles

CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación

CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación CAPÍTULO IV VALOR FUTURO y VALOR PRESENTE - DESCUENTO COMPUESTO- Inflación 74 4..- VALOR FUTURO y VALOR PRESENTE -DESCUENTO COMPUESTO- Inflación En el capítulo de Interés Simple se comentó sobre el tema

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE CIENCIAS FINANCIERAS Y CONTABLES SILABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE CIENCIAS FINANCIERAS Y CONTABLES SILABO ASIGNATURA: MATEMÁTICA FINANCIERA CODIGO: CCC212 I. DATOS GENERALES 1.1 Departamento : Finanzas y Contabilidad 1.2 Escuela Profesional : Finanzas y Contabilidad 1.3 Especialidad : Contabilidad 1.4 Nombre

Más detalles

Unidad 13. Amortización y Fondos de Amortización

Unidad 13. Amortización y Fondos de Amortización Unidad 13 Amortización y Fondos de Amortización INTRODUCCION En la sección 6.8 se mencionó que la palabra amortizar proviene del latín y que su significado literal es "dar muerte". En matemática financiera

Más detalles

VALUACIÓN DE LOS FLUJOS FUTUROS DE EFECTIVO

VALUACIÓN DE LOS FLUJOS FUTUROS DE EFECTIVO VALUACIÓN DE LOS FLUJOS FUTUROS DE EFECTIVO Uno los aspectos más importantes de las Finanzas tomando como herramienta a las Matemáticas Financieras, a considerar es: Cuál es el valor presente de un flujo

Más detalles

TALLER DE INTERES SIMPLE JORGE ALFREDO GARCÍA FONTALVO PRESENTADO A: PATRICIA RODRIGUEZ MAGISTER EN ADMINISTRACIÓN DE EMPRESAS

TALLER DE INTERES SIMPLE JORGE ALFREDO GARCÍA FONTALVO PRESENTADO A: PATRICIA RODRIGUEZ MAGISTER EN ADMINISTRACIÓN DE EMPRESAS TALLER DE INTERES SIMPLE JORGE ALFREDO GARCÍA FONTALVO PRESENTADO A: PATRICIA RODRIGUEZ MAGISTER EN ADMINISTRACIÓN DE EMPRESAS UNIVERSIDAD ANTONIO NARIÑO FACULTAD DE ADMINISTRACION DE EMPRESAS ESPECIALIZACION

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS SEGUNDA PRUEBA INTEGRAL LAPSO 2 008-2 734-1/5 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 10/01/2 009 Cód. Carrera: 610-612 - 613 MODELO DE RESPUESTAS OBJ 1 PTA

Más detalles

Unidad 9. Interés Compuesto

Unidad 9. Interés Compuesto Unidad 9 Interés Compuesto INTRODUCCION En los problemas de interés simple, el capital que genera los intereses permanece constante todo el tiempo de duración del préstamo. En cambio, cuando el interés

Más detalles

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital 1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital inicial necesario para obtener un capital de 20.000

Más detalles

Fundamentos y Aplicación de las Matemáticas Financieras

Fundamentos y Aplicación de las Matemáticas Financieras CAPITULO 3 INTERÉS COMPUESTO OBJETIVO Al finalizar el estudio de éste capítulo el estudiante podrá: Definir el interés compuesto y la diferencia con el interés simple. Deducir de un valor presente, valor

Más detalles

Las Tasas de Interés Efectiva y Nominal

Las Tasas de Interés Efectiva y Nominal 1 Las Tasas de Interés Efectiva y Nominal En el presente documento se explican los diferentes tipos de tasas de interés que normalmente se utilizan en el mercado financiero. Inicialmente veremos la diferencia

Más detalles

Manual didáctico de Matemáticas Financieras. Informe Final de Investigación IFI. Rafael Serna Espitia. Gerardo Rojas.

Manual didáctico de Matemáticas Financieras. Informe Final de Investigación IFI. Rafael Serna Espitia. Gerardo Rojas. Manual didáctico de Matemáticas Financieras Informe Final de Investigación IFI Rafael Serna Espitia Gerardo Rojas Universidad EAN Facultad de Postgrados Especialización en Administración Financiera Bogotá,

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Financieras Manuel León Navarro 2 Capítulo 1 Ejercicios lección 2 1. Determinar el capital equivalente a (1000000,2020) en 2012

Más detalles

UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE ECONOMÍA Y CC.EE. SYLLABUS

UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE ECONOMÍA Y CC.EE. SYLLABUS UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE ECONOMÍA Y CC.EE. SYLLABUS A.- DATOS GENERALES MATERIA CÓDIGO NOMBRE DEL PROFESOR Matemáticas Financiera Ufín-220 Víctor Roca Silvestre CRÉDITOS

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 1 GUÍA DE ESTUDIO No. 1 IDENTIFICACIÓN UNIDAD ACADÉMICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: MATEMATICAS FINANCIERAS UNIDAD TEMÁTICA COSTO DEL DINERO COMPETENCIA El estudiante: RESULTADOS DE APRENDIZAJE

Más detalles

UNIDAD 3 ANUALIDADES. Introducción a la unidad

UNIDAD 3 ANUALIDADES. Introducción a la unidad UNIDAD 3 ANUALIDADES Introducción a la unidad En préstamos, como en adquisiciones de bienes, generalmente los pagos que se efectúan son iguales en intervalos de tiempo y todo indica que la medida común

Más detalles

Curso de Finanzas PROF. ALFREDO VENTO ORTIZ

Curso de Finanzas PROF. ALFREDO VENTO ORTIZ Curso de Finanzas PROF. ALFREDO VENTO ORTIZ DEFINICIÓN DE FINANZAS Entendemos por finanzas todo aquello que esta relacionado con la obtención y uso eficiente del dinero o sus equivalentes. En particular:

Más detalles

Universidad Michoacana de San Nicolás de Hidalgo

Universidad Michoacana de San Nicolás de Hidalgo Universidad Michoacana de San Nicolás de Hidalgo Facultad de Contaduría y Ciencias Administrativas Cuaderno de trabajo de la materia de MATEMÁTICAS FINANCIERAS M.E. MARÍA LÓPEZ LARREA FEBRERO 2009 INDICE

Más detalles

EJERCICIOS SOBRE ANUALIDADES

EJERCICIOS SOBRE ANUALIDADES UNIVERSIDAD DE LOS ANDES TÁCHIRA Dr PEDRO RINCÓN GUTIERREZ DEPARTAMENTO DE CIENCIAS EJERCICIOS SOBRE ANUALIDADES 1. Se depositan $ 150 pesos al final de cada mes en un banco que paga el 3 % mensual capitalizable

Más detalles

VALOR DEL DINERO EN EL TIEMPO

VALOR DEL DINERO EN EL TIEMPO VALOR DEL DINERO EN EL TIEMPO Tema 1.4 Licenciatura en Economía y Finanzas 7º semestre. Dr. José Luis Esparza A. Introducción En la empresa como en la vida personal, constantemente se deben tomar decisiones,

Más detalles

Recuerdan la Fórmula del Interés Compuesto????; Pues Podemos Utilizarla para Obtener Nuestro Valor Futuro. F = P ( 1 + i ) n

Recuerdan la Fórmula del Interés Compuesto????; Pues Podemos Utilizarla para Obtener Nuestro Valor Futuro. F = P ( 1 + i ) n VALOR FUTURO Conocida o Dada la Cantidad de Dinero Invertido o Prestado HOY, $P, se Denomina Valor Futuro, a $F, que representa aquella Cantidad de Dinero o Valor que Equivale a $P en un Periodo n, de

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Interés compuesto UNIDAD 2: INTERÉS COMPUESTO OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad de conceptuar

Más detalles

INGENIERIA ECONOMICA

INGENIERIA ECONOMICA INGENIERIA ECONOMICA Fundamentalmente la ingeniería económica implica formular, estimar y evaluar los resultados económicos cuando existan alternativas disponibles para llevar a cabo un propósito definido.

Más detalles

UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS

UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS UNIVERSIDAD VERACRUZANA SISTEMA DE ENSEÑANZA ABIERTA CURSO DE MATEMÁTICAS FINANCIERAS CONTENIDO Tema 1: INTERÉS SIMPLE Tema 2: INTERÉS COMPUESTO Tema 3: ANUALIDADES Tema 4: AMORTIZACIÓN Tema 5: DEPRECIACIÓN

Más detalles

Capitalización y descuento compuesto

Capitalización y descuento compuesto Unidad 4 Capitalización y descuento compuesto 4.1. Capitalización compuesta 4.1.1. Magnitudes derivadas 4.2. Comparación entre la capitalización simple y compuesta 4.3. Equivalencia de tantos en capitalización

Más detalles

UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA ESCUELA DE CIENCIAS DE LA ADMINISTRACIÓN

UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA ESCUELA DE CIENCIAS DE LA ADMINISTRACIÓN UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA ESCUELA DE CIENCIAS DE LA ADMINISTRACIÓN PROGRAMA DE BACHILLERATO Y LICENCIATURA ADMINISTRACIÓN DE EMPRESAS GUÍA DE ESTUDIO DE LA ASIGNATURA MATEMÁTICA

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS 1 MATEMÁTICAS FINANCIERAS Plan 2012 Clave: Créditos: 8 Licenciatura: CONTADURÍA Semestre: 1º Área: Horas de asesoría: Requisitos: Horas por semana: 4 Tipo de asignatura: Obligatoria ( X ) Optativa ( )

Más detalles

Unidad Curricular: Matemática Financiera. Carrera: Contaduría. Semestre: Cuarto Código: MAF-443. Horas Semanales: 4

Unidad Curricular: Matemática Financiera. Carrera: Contaduría. Semestre: Cuarto Código: MAF-443. Horas Semanales: 4 INSTITUTO UNIVERSITARIO JESÚS OBRERO PROGRAMA DE ESTUDIO Unidad Curricular: Matemática Financiera Carrera: Contaduría Semestre: Cuarto Código: MAF-443 Horas Semanales: 4 Horas Teóricas: 2 Horas Prácticas:

Más detalles

PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN

PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN PRIMERA RELACIÓN. LEYES FINANCIERAS DE CAPITALIZACIÓN 1º.- Un capital colocado al 10% simple durante un tiempo se transformó en 8.257 88, pero si hubiera estado colocado al 15% durante el mismo período

Más detalles

Unidad 10. Anualidades Simples Vencidas

Unidad 10. Anualidades Simples Vencidas Unidad 10 Anualidades Simples Vencidas INTRODUCCIÓN Una anualidad es una serie de pagos, por lo general iguales, efectuados a intervalos iguales de tiempo. El término anualidad parece implicar que los

Más detalles

CAPÍTULO II INTERÉS COMPUESTO

CAPÍTULO II INTERÉS COMPUESTO CAPÍTULO II INTERÉS COMPUESTO 71 2.1.- INTERÉS COMPUESTO 2.1.1. Conceptos básicos y ejercicios: Recuerda que la metodología para el cálculo del interés compuesto es similar al interés simple. En todo momento

Más detalles

Matemática financiera

Matemática financiera Matemática financiera Evaluación En la sucesión, /, /, /, / calcula la suma de sus términos. a) b) No tiene solución. c) / Un artículo cuesta 00. En unas primeras rebajas su valor disminuye un 0 % pero

Más detalles

Área Académica: Escuela Superior Huejutla. Profesor: L.A. Ismael Bautista Hernández

Área Académica: Escuela Superior Huejutla. Profesor: L.A. Ismael Bautista Hernández Área Académica: Escuela Superior Huejutla Tema: Valor del dinero Profesor: L.A. Ismael Bautista Hernández Periodo: Julio Diciembre 2011 Keywords: Valor del dinero, valor presente y futuro, valor del dinero

Más detalles

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de

El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de El descuento bancario o comercial es el interés del valor nominal, y se determina mediante el interés entre el vencimiento de la deuda y la fecha de descuento a cierta tasa, valuada ésta sobre el valor

Más detalles

Unidad 9. Fondo de amortización. Objetivos. Al finalizar la unidad, el alumno:

Unidad 9. Fondo de amortización. Objetivos. Al finalizar la unidad, el alumno: Unidad 9 Fondo de amortización Objetivos Al finalizar la unidad, el alumno: Calculará el valor de los depósitos de un fondo de amortización. Construirá tablas de fondos de amortización. Calculará el fondo

Más detalles

La solución del ejemplo 1 está disponible en: http://youtu.be/cqvqzzqlj2y

La solución del ejemplo 1 está disponible en: http://youtu.be/cqvqzzqlj2y UNIDAD II. INTERÉS Y DESCUENTO SIMPLE Al evaluar las tasas de interés o de descuento por día, el año puede ser considerado de 360 días o con 365 días; al primer caso se le conoce como interés simple ordinario

Más detalles

El valor del dinero en el tiempo, matemáticas financieras

El valor del dinero en el tiempo, matemáticas financieras El valor del dinero en el tiempo, 1 Introducción Todos los días afrontamos problemas financieros, por ejemplo, al comprar un televisor tenemos varias opciones: pagar de contado, a un determinado precio;

Más detalles

Técnicas Financieras. www.unipamplona.edu.co. Programas de Estudio a Distancia. Esperanza Paredes Hernández Rectora

Técnicas Financieras. www.unipamplona.edu.co. Programas de Estudio a Distancia. Esperanza Paredes Hernández Rectora Programas de Estudio a Distancia Técnicas Financieras www.unipamplona.edu.co Esperanza Paredes Hernández Rectora María Eugenia Velasco Espitia Decana Facultad de Estudios a Distancia PROLOGO Este libro

Más detalles

Continuación: Valor presente y Procesos de Descuento

Continuación: Valor presente y Procesos de Descuento 1 Continuación: Valor presente y Procesos de Descuento De forma hipotética, si el Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores (IPC) descendiera por ejemplo dos puntos porcentuales

Más detalles

ALGUNOS MÉTODOS DE CÁLCULO DE LA RENTABILIDAD FINANCIERA EN PROYECTOS DE INVERSIÓN CON FUNCIONES DE EXCEL

ALGUNOS MÉTODOS DE CÁLCULO DE LA RENTABILIDAD FINANCIERA EN PROYECTOS DE INVERSIÓN CON FUNCIONES DE EXCEL ALGUNOS MÉTODOS DE CÁLCULO DE LA RENTABILIDAD FINANCIERA EN PROYECTOS DE INVERSIÓN CON FUNCIONES DE EXCEL RESUMEN Teresa García López 1 El trabajo que aquí se presenta continúa con la serie de documentos

Más detalles

FICHERO MUESTRA Pág. 1

FICHERO MUESTRA Pág. 1 FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 3 del libro Gestión Financiera, Teoría y 800 ejercicios, y algunas de sus actividades propuestas. TEMA 3 - CAPITALIZACIÓN COMPUESTA 3.15.

Más detalles

CARRERA ADMINISTRACION DE NEGOCIOS INTERNACIONALES SEPARATA MATEMATICA FINANCIERA

CARRERA ADMINISTRACION DE NEGOCIOS INTERNACIONALES SEPARATA MATEMATICA FINANCIERA CARRERA ADMINISTRACION DE NEGOCIOS INTERNACIONALES SEPARATA MATEMATICA FINANCIERA El presente documento es una recopilación de información obtenida en libros de autores prestigiosos y diversos sites de

Más detalles

Facultad Ciencias Económicas y Administrativas. Programa: ADMINISTRACION DE NEGOCIOS

Facultad Ciencias Económicas y Administrativas. Programa: ADMINISTRACION DE NEGOCIOS Facultad Ciencias Económicas y Administrativas Programa: ADMINISTRACION DE NEGOCIOS GUIA ACADEMICA I. FICHA TECNICA NOMBRE DE LA MATERIA MATEMATICAS FINANCIERAS 1. Número de créditos académicos : (3) TRES

Más detalles

II OBJETIVOS GENERALES

II OBJETIVOS GENERALES UNIVERSIDAD DE SAN CARLOS DE GUATEMALA CENTRO UNIVERSITARIO JUTIAPA ADMINISTRACION DE EMPRESAS CUARTO SEMESTRE 2013 CURSO: MATEMÁTICA III CODIGO: 04444 PROFESOR: LIC. MARIO ISMAEL VALDEZ GONZALEZ COORDINADOR:

Más detalles

El valor del dinero en el tiempo, matemáticas financieras

El valor del dinero en el tiempo, matemáticas financieras El valor del dinero en el tiempo, matemáticas financieras D.R. Universidad TecVirtual del Sistema Tecnológico de Monterrey México, 2012. 1 Índice Inicio... 3 - Introducción - Objetivo - Temario - Antecedentes

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS SEGUNDA PRUEBA INTEGRAL LAPSO 2 007-2 734-1/6 Universidad Nacional Abierta MATEMÁTICA III ( 734 ) Vicerrectorado Académico Fecha: 15/12/2 007 Cód. Carrera: 610-612 - 613 PRUEBA DE DESARROLLO / CORRECCIÓN

Más detalles

UNIDAD 6 APLICACIONES. Introducción a la unidad

UNIDAD 6 APLICACIONES. Introducción a la unidad UNIDAD 6 APLICACIONES Introducción a la unidad Es común que las empresas públicas o privadas necesiten de importantes capitales para financiar sus proyectos, de tal manera que les sería prácticamente imposible

Más detalles