Teorema de Cauchy. Derivar el Teorema de Cauchy mediante la observación de varias transformaciones de contorno. Problema. o pts.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teorema de Cauchy. Derivar el Teorema de Cauchy mediante la observación de varias transformaciones de contorno. Problema. o pts."

Transcripción

1 Teorema de Cauchy Problema Derivar el Teorema de Cauchy mediante la observación de varias transformaciones de contorno. Parámetros pts o step o pts o step o pts Solución Se definen los rangos para el controno a transformar a o o step o b o o step o c o o step o d o o step o a o b o c o d o El contorno arbitrario a transformar es: () s = s j 3 3 Capítulo VI - Nyquist de Sistemas de Control

2 Caso fs () = s f j En f(s) hay un cero en s = Caso fs () s = f s j j En f(s) hay un cero en s = y un polo en s = - Capítulo VI - Nyquist de Sistemas de Control

3 Caso 3 fs () = f s j En f(s) hay un polo en s = -.5 Caso 4 fs () s = f s.5 j j.5 En f(s) hay un cero en s = y un polo en s = -.5 Discusión Si un contorno encierra Z ceros y P polos de f(s) y no pasa a través de ningún polo y/o cero de f(s) a medida que se viaja en sentido horario, entonces, el contorno transformado encierra al origen (, ) en el plano f(s) un número N = Z - P en sentido horario. Capítulo VI - Nyquist 3 de Sistemas de Control

4 En el último caso se tiene: fs () s = f s.5 j.5 j En f(s) hay un cero en s = y un polo en s = -.5 Dado que f(s) = + g(s), el contorno trasnformado en el plano g es: s gs () = fs () = g s.5 j.5 j En g(s) hay un polo en s = -.5 Teorema de Cauchy Si un contorno encierra Z ceros y P polos de + g(s) y no pasa a través de ningún polo y/o cero de + g(s) a medida que se viaja en sentido horario sobre, entonces, el contorno transformado encierra al punto (-, ) en el plano g(s) un número N = Z - P en sentido horario. Capítulo VI - Nyquist 4 de Sistemas de Control

5 Criterio de Nyquist para Sistemas Continuos Problema Ilustrar el Criterio de Nyquist para determinar la estabilidad de sistemas lineales continuos tipo SISO. Parámetros pts 5 o step o pts r o r step r o pts Solución Se definen los rangos para el controno a transformar r a r b r o r c r o r step r o r d r o r o r step a o b o o step c step o d o El Contorno de Nyquist es: () s s Este contorno encierra todo el semiplano derecho; es decir a todos los polos y ceros inestables. Nótese que si P (Z) son los polos (ceros) inestables, entonces, Cauchy indica que el contorno transformado en el plano g(s) encierra N = Z - P veces al punto (-, ). Capítulo VI - Nyquist 5 de Sistemas de Control

6 Caso gs () s.5 En g(s) hay un polo en s = -.5 P = N = por lo tanto Z = Caso gs () ( s ) 3.5 En g(s) hay un polo múltiple en s = -.5 P = N = por lo tanto Z = Capítulo VI - Nyquist 6 de Sistemas de Control

7 Caso 3 gs () exp(.9s) s.5 En g(s) hay un polo en s = -.5 P = N = por lo tanto Z = Caso 4 gs () s.5 ( s.5) ( s.7).5.5 En g(s) hay un cero en s = -.5, un polo en s =.5 y un polo en s =.7 P = N = por lo tanto Z = Criterio de Nyquist Un sistema realimentado es estable si y sólo si el contorno en el plano gr(s) encierra el punto (-/k, ) en sentido antihorario un número de veces igual al número de polos inestables de gr(s). Capítulo VI - Nyquist 7 de Sistemas de Control

8 M.G. y M.F. en Nyquist y Bode Continuos Problema Sistema de levitación magnética. Parámetros R L 5 3 g 9.8 d.5 l.3 m.5 k i 3 3 a. K 4.5 l.5 Modelo. d dt i = e R L L i d dt x = v d dt v Condiciones Iniciales y Entradas. k i i = g m l x a K m l x d m v x o 5 l y(t) m d k a x(t) R i(t) L + e(t) - la corriente if para tener la bola a 3 cm desde el piso en t = es, 3 x f i f k k i gm l gm x f gm a Kx f l Kl l Kl x f Kl a Kx f Kx f a i Variables de Estado por lo que la tensión ef a aplicar es, d x = i a x = x x 3 = t x = v e f i f R e f 3.44 las c.i. son entonces, i i f x x f v Modelo Lineal i o i x o x v o v e o e f d A k i m R L i l x a k i i m l x a K m d m L b c ( ) Funciones de Transferencia en L.A. h xe ( s) c( sidentity( 3) A) b simplify float ( s. ) 5. 7 s 3. 8 s Capítulo VI - Nyquist 8 de Sistemas de Control

9 Error en S.S. Entrada Escalón - Sistema en L.C. de Voltaje - Controlador k c, con k a =, y k st =. e esc_ss e esc_ss.4 k c Re e esc_ss h xe ( ) k c k a k st MF.88 ljw g.475i w g MG db log( MG) MG db 6.63 arg l jw g t r t w r g Retardo Crítico h c () s k c w w Given ljw w o Find w w ls () h xe ()h s c () s = arg l j w w o w o w g w p 8 MF 8 arg l jw g MF 8.39 MG = MG ljw p MG ljw p 6.75i 7 Nyquist Rango para el Nyquist pts 5 o r o o step r pts o r step k r pts a r step r o a o r b b step 3 3 Capítulo VI - Nyquist 9 de Sistemas de Control

10 Bode n max 5 Mn ( ) log l( j w( n) ) n n max Pn ( ) w max w wn ( ) w min nratio max ratio log w min n max 8 if arg( l( jw( n) )) arg( l( jw( n) )) arg( l( jw( n) )) w min w g w p w g w p MG db 9 Magnitud Fase 8MF Simulación Sistema en L.C. de Posición - Controlador k c. A r A bk c c b r Dt ( x) A r x x x 3 T bk c b r x d () t delta i, x, xd c r c CI ( ) T t f 8 l f 5 Z c rkfixed CI t f l f D 3 ll l f t f t t l f f e() t k c x d () t Z ctlf t f 3 delta e x d () t x o ( t ) 6 4 e esc_ss Capítulo VI - Nyquist de Sistemas de Control

11 Error en S.S. Entrada Rampa - Sistema en L.C. de Voltaje - Controlador k c /s, con k a =, y k st =. e ram_ss.4 k c Re e ram_ss k a h xe ( ) A c b c k c c c d c simplify h c () s c c s A c b c float6 s ls () h xe ()h s c () s MF w w Given.456 ljw g.89i MG db log( MG) MG db 6.75 arg l j w g t r t w r.45 g Nyquist Retardo Crítico.49 ljw p 3.4i 7 Rango para el Nyquist pts 5 o r o o step r pts o r step k r pts a r step r o a o r b b step ljw w o Find w w = arg l j w w o w o w g w p 8 MF 8 arg l jw g MF 6.88 MG = MG ljw p MG Capítulo VI - Nyquist de Sistemas de Control

12 Bode n max 5 n n max w min w max ratio log w max w min n max wn ( ) w min nratio Mn ( ) log l( j w( n) ) Pn ( ) 8 if arg( l( jw( n) )) arg( l( jw( n) )) arg( l( jw( n) )) w g w p w g w p MG db 9 8MF Magnitud Fase Simulación Sistema en L.C. de Posición - Controlador k c /s. A r stack augment A bd c c bc c x d () t x o ( t ) Dt ( x) A r x x x x 3 4 T augmenta c b c c b r x d () t delta i, x, xd CI ( ) T b r stack bd c b c 3 c r augment c c c Z c rkfixed CI t f l f D e() t c c Z ctlf t f 5 delta e Capítulo VI - Nyquist de Sistemas de Control

13 Criterio de Nyquist para Sistemas Discretos Problema Ilustrar el Criterio de Nyquist para determinar la estabilidad de sistemas lineales continuos tipo SISO. Parámetros pts 5 step pts T e exp( ) Solución Se definen los rangos para el controno a transformar step a T T step b T T T T c step 3 T T T T d 3 3 step T T T T El Contorno de Nyquist es: ( z) z Este contorno encierra porción del plano complejo donde las raíces estables pueden estar. Nótese que este sistema tiene n polos y que + kg(z) tiene a su vez n ceros. Si P (Z) son los polos (ceros) fuera del círculo unitario, entonces dentro del círculo hay n - P (n - Z) polos (ceros). Cauchy indica que el contorno transformado en el plano g(z) encierra N = (n - Z) - (n - P) = P - Z al punto (-/k, ). Capítulo VI - Nyquist 3 de Sistemas de Control

14 Caso gz ( ) z.5 En g(z) hay un polo en z =.5 P = N = por lo tanto Z = Caso gz ( ).5 z( z.5) En g(z) hay un polo en z = z =.5 P = N = - por lo tanto Z = Capítulo VI - Nyquist 4 de Sistemas de Control

15 Caso 3 gz ( ).4 z ( z.5) En g(z) hay un polo en z =.5 z = doble P = N = por lo tanto Z = Caso 4 gz ( ) z. z( z.) ( z.3) En g(z) hay un cero en z = -., un polo en z =, en z =. y en z =.3 P = N = - por lo tanto Z = Criterio de Nyquist Un sistema realimentado es estable si y sólo si el contorno en el plano gr(z) encierra el punto (-/k, ) en sentido horario un número de veces igual al número de polos inestables de gr(z). Capítulo VI - Nyquist 5 de Sistemas de Control

16 M.F. y M.G. en el Nyquist de un Sistema Discreto Problema El estanque es controlado con un sistema discreto que tiene sólo una ganancia. y u Estanque Parámetros. Variable de Estado f e Modelo Continuo Modelo Discreto de la Planta Controlador Discreto F. de T. en L.D. lz ( ) c k zidentity( ) A k b k c ck ( 4) zidentity( ) A ck b ck d ck Nyquist. Rango para el Nyquist pts 5 step pts f s A e.5 x = h d dt ht () = vt () f A s () t A t b t e e A t c e A t e T T T.5 A k b k c A k e k e A e A ck b ck El Nyquist es c ck k c k c d ck 5 y d (kt) + - e(kt) h c (z) controlador x y c z - v(kt) y s (kt) cos sin T T step 3 T T S/H S v(t) Válvula h a(s) h 3 3 step d T T T f e (t) h st(s) + Sensor/Transmisor l f s (t) Estánque - As l f s x T h(t) MG MF Given arg l exp j T p g o o = l exp j T = o Find MG l exp j p T MG.5 MF 8 arg l exp j g T MF MG db log( MG) MG db l exp j p T 4.54i l exp j g T 8.83i g.6 arg l exp j g T N r N r.4 g T Capítulo VI - Nyquist 6 de Sistemas de Control

17 Bode n max 5 n n max min max T max ratio log ( n) min n min nratio P ( n) arglexpj( n) T max 8 Mn ( ) log lexpj( n) T Pn ( ) if P ( n) P ( n) P ( n) 4 g p g p 9 8MF Magnitud Fase 8 MG db Capítulo VI - Nyquist 7 de Sistemas de Control

18 Problema Modelo Discreto de la Planta F. de T. en L.D. El estanque es controlado con un sistema discreto que tiene sólo una ganancia. Ahora la válvula tiene un retardo igual al tiempo de muestreo. T Controlador T Discreto A A k e b k e k c k lz ( ) c k zidentity( ) A k b k c ck ( 4) zidentity( ) A ck b ck d ck c T T El Nyquist es MG Given arg l exp jt MG l exp j p T MG.545 = p Find MG db log( MG) MG db l exp j p T MF Given.9i 7 l exp jt 8 = g Find MF 8 arg l exp j g T MF l exp j g T A ck b ck c ck k c k c d ck.535i step 3 T T 3 3 step Nyquist. Rango para el Nyquist pts 5 step pts d T T T 5 x cos y arg l exp j g T N r N r.4 g T sin T Capítulo VI - Nyquist 8 de Sistemas de Control

19 Bode n max 5 n n max min max T max ratio log ( n) min n min nratio P ( n) arglexpj( n) T max 8 Mn ( ) log lexpj( n) T Pn ( ) if P ( n) P ( n) P ( n) 4 g p g p 9 8MF Magnitud MG db Fase Capítulo VI - Nyquist 9 de Sistemas de Control

20 Margen de Fase Exacto y Aproximado Problema Parámetros Solución Mostrar gráficamente la curva exacta y aproximada de Margen de Fase de un sistema de segundo orden. pts r step pts Se definen ambas funciones r step MF ex MF ap atan valor exacto valor aproximado SP exp Factor de Amortiguamiento Sobrepaso [%] Margen de Fase ( ) Margen de Fase ( ) Nótese que el Sobrepaso [%] más el Margen de Fase [ ] suman aprox. 7, para sobrepasos de hasta un 5%. Capítulo VI - Nyquist de Sistemas de Control

PRÁCTICA Nº 10. ANÁLISIS DE LA RESPUESTA EN FRECUENCIA UTILIZANDO MATLAB. DIAGRAMA DE NYQUIST

PRÁCTICA Nº 10. ANÁLISIS DE LA RESPUESTA EN FRECUENCIA UTILIZANDO MATLAB. DIAGRAMA DE NYQUIST PRÁCTICA Nº 10. ANÁLISIS DE LA RESPUESTA EN FRECUENCIA UTILIZANDO MATLAB. DIAGRAMA DE NYQUIST 10. DIAGRAMA DE NYQUIST... 1 10.1. OBJETIVOS... 1 10.. CARACTERÍSTICAS DE LA RESPUESTA EN FRECUENCIA... 1 10.3.

Más detalles

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2 DIAGRAMA DE BODE Semestre 2010/2 El Diagrama de BODE se conforma por dos gráficas logarítmicas de: La magnitud de una función de transferencia senoidal: 20log G(jw) ; La unidad de medida que se usa, es

Más detalles

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2 DIAGRAMA DE NYQUIST Semestre 2010/2 La respuesta en frecuencia se basa en la respuesta en estado estacionario de un sistema ante una entrada senoidal. Un sistema lineal invariante en el tiempo, si es afectado

Más detalles

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Análisis de Sistemas Lineales Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia Sistemas SISO (Single Input Single Output) Los sistemas de una sola entrada y

Más detalles

4. Análisis de Sistemas Realimentados

4. Análisis de Sistemas Realimentados 4. Análisis de Sistemas Realimentados Parte 2 Panorama: Estabilidad y respuesta en frecuencia El criterio de estabilidad de Nyquist Márgenes de estabilidad Robustez CAUT1 Clase 6 1 Estabilidad y respuesta

Más detalles

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12.

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12. 1. Criterio de estabilidad de Nyquist 1.1 Gráfica de Nyquist Gráfica de L(jω) G(jω)H(jω) en coordenadas polares de Im[L(jω)], Re[L(jω)] con ω variando desde hasta 0. Características: provee información

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

Tema 6 (3): Márgenes de estabilidad relativa BA BC!

Tema 6 (3): Márgenes de estabilidad relativa BA BC! Tema 6 (3): Márgenes de estabilidad relativa BC! G G ( c jω ) Introducción Criterio de Nyquist: Estabilidad en bucle cerrado a partir de propiedades de bucle abierto. Basado en modelo de G(s) o en datos

Más detalles

Como ejemplo, consideremos la función compleja P(s)= s 2 +1.

Como ejemplo, consideremos la función compleja P(s)= s 2 +1. Criterio de Estabilidad de Nyquist El criterio de Estabilidad de Nyquist está basado en un teorema de la variable compleja. Para entender este criterio primero se utilizarán los conceptos de transferencia

Más detalles

1 Problemas Resueltos

1 Problemas Resueltos 1) Con la intención de plantear mejoras en un sistema de control de composición, se realizaron experiencias sobre el sistema a lazo abierto y se obtuvo su respuesta frecuencial, la cual se muestra en la

Más detalles

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto G p ( s) k s( s + )( s + 5) a)para el sistema en lazo abierto, y suponiendo el valor k : Obtener la expresión analítica

Más detalles

1 Problemas Resueltos

1 Problemas Resueltos 1) Para un sistema de control de retroaliementación unitaria se conoce el diagrama de bode de la función de transferencia a lazo abierto, la cual se muestra en la Fig. 1.1. A partir esta información se

Más detalles

DISEÑO DE COMPENSADORES USANDO LOS DIAGRAMAS DE BODE

DISEÑO DE COMPENSADORES USANDO LOS DIAGRAMAS DE BODE DISEÑO DE COMPENSADORES USANDO LOS DIAGRAMAS DE BODE INTRODUCCIÒN Se abordará a continuación el problema de especificar los parámetros de compensadores eléctricos típicos, que son las formas aproximadas

Más detalles

Estabilidad en el dominio de la frecuencia Márgenes de estabilidad. Elizabeth Villota

Estabilidad en el dominio de la frecuencia Márgenes de estabilidad. Elizabeth Villota Estabilidad en el dominio de la frecuencia Márgenes de estabilidad Elizabeth Villota 1 Función de transferencia de lazo Función de transferencia de lazo: 2 Función en lazo cerrado: 2 Diagrama de Nyquist

Más detalles

Serie 10 ESTABILIDAD

Serie 10 ESTABILIDAD Serie 0 ESTABILIDAD Condición de estabilidad U u Gu U R r + + - Gc Gv Gp C G V G P + c C H G( G (. G (. G (. H ( C V P + G( 0 G( G φ 80 Localización de las raíces Plano s E S T A B L E I N E S T A B L

Más detalles

Diferencia entre análisis y síntesis

Diferencia entre análisis y síntesis Diferencia entre análisis y síntesis ANÁLISIS Excitación conocida Respuesta? Circuito conocido xt () y()? t SÍNTESIS Y DISEÑO Excitación conocida Circuito? Respuesta deseada valores elementos? xt () yt

Más detalles

Control Automático I - Certamen 2 Pauta de Correción

Control Automático I - Certamen 2 Pauta de Correción Control Automático I - Certamen 2 Pauta de Correción 7 de Septiembre 215 1. 1.1. Un sistema electro-mecánico tiene el modelo nominal G (s) = 1 (s+2), cuya salida es la velocidad angular de un eje. Los

Más detalles

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis Diseño de controladores por el método de respuesta en frecuencia de sistemas discretos. (método gráfico) CONTROL DIGITAL 07--0 Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

Más detalles

Dominio de la Frecuencia. Sistemas Electrónicos de Control

Dominio de la Frecuencia. Sistemas Electrónicos de Control Dominio de la Frecuencia Sistemas Electrónicos de Control 10 de Abril de 2014 (SECO) Dominio de la Frecuencia 10/04/2014 1 / 69 Índice 1 Introducción 2 Representaciones Gráficas Diagrama de Bode Diagrama

Más detalles

. (4.5) 3. Obtener el módulo de G(jω): . (4.6) 4. Calcular el ángulo de fase : (4.7)

. (4.5) 3. Obtener el módulo de G(jω): . (4.6) 4. Calcular el ángulo de fase : (4.7) Problemas Resueltos de Análisis de Sistemas Lineales Continuos m j A 1 i1 ( ) zi j (45) r n j ( j) 1 j1 p j 3 Obtener el módulo de (jω): ( j) Aj 1 j 1 j 1 z z z 1 2 r ( j) j 1 j 1 j 1 p p p 1 2 m n (46)

Más detalles

ANALISIS DE SISTEMAS DINÁMICOS

ANALISIS DE SISTEMAS DINÁMICOS UACM SAN LORENZO TEZONCO 2014 ANALISIS DE SISTEMAS DINÁMICOS JOSE ALFREDO MARTINEZ PEREZ ANALISIS DE UN SISTEMA DINAMICO DE TERCER ORDEN 17-12-2014 ANALISIS DE UN SISTEMA DINAMICO DE TERCER ORDEN Introducción

Más detalles

ESTABILIDAD DE SISTEMAS REALIMENTADOS CRITERIO DE ESTABILIDAD DE NYQUIST

ESTABILIDAD DE SISTEMAS REALIMENTADOS CRITERIO DE ESTABILIDAD DE NYQUIST ESTABILIDAD DE SISTEMAS REALIMENTADOS CRITERIO DE ESTABILIDAD DE NYQUIST Condición de etabilidad: G( ) N( ) D( ) p n a 1 b 1 p1 n1...... a b p1 n1 a b n p p n z z... z N () 1 2 p G( ) p n D( ) p p... p

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción Pontificia Universidad Católica del Perú ICA624: 1.Introducción Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 19 Objetivos básicos del control realimentado

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte Respuestaenfrecuencia: Hacereferenciaalarespuestadeunsistemaen estadoestacionario td t i a una entradasinusoidal.

Más detalles

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático:

El modelo matemático tiende a ser lo más simple posible, con una representación. A la hora de desarrollar un modelo matemático: Modelo matemático de procesos 1. Modelo Matemático Un modelo matemático muy exacto implica un desarrollo matemático muy complejo. Por el contrario, un modelo matemático poco fino nos deparará un desarrollo

Más detalles

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Ingeniería en Control y Automatización TEORÍA DE CONTROL 1: GUÍA PARA EL EXAMEN EXTRAORDINARIO (TEORÍA) Nombre: Grupo

Más detalles

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO ANALISIS DE SISTEMAS EN TIEMPO CONTINUO Dinámica de Sistemas 4. 4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO 4..- Efecto de los polos en el comportamiento del sistema. 4..- Estabilidad. 4.3.- Análisis de

Más detalles

Lugar Geométrico de las Raíces o Método de Evans

Lugar Geométrico de las Raíces o Método de Evans Lugar Geométrico de las Raíces o Método de Evans Lugar de la Raíz El lugar de la raíz (root locus es un método gráfico de encontrar la posición de los polos de lazo cerrado de la función de transferencia:

Más detalles

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL A continuación se incluyen preguntas de examen de los últimos años, tanto de teoría como de problemas. Lo indicado entre paréntesis es la puntuación

Más detalles

Hoja de ejercicios n 2-A. Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia.

Hoja de ejercicios n 2-A. Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia. Hoja de ejercicios n 2-A Transformada de Laplace. Función y matriz de Transferencia. Respuesta temporal. Respuesta en frecuencia. 1) Transformada de Laplace a) Determine la transformada de Laplace de las

Más detalles

ANALISIS EN FRECUENCIA

ANALISIS EN FRECUENCIA ANALISIS EN FRECUENCIA Con el término respuesta en frecuencia, nos referimos a la respuesta de un sistema en estado estable a una entrada senoidal. En los métodos de la respuesta en frecuencia, la frecuencia

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática 6.003: Señales y sistemas Otoño 2003 Examen final Martes 16 de diciembre de 2003 Instrucciones: El examen consta

Más detalles

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA Profesor: Adrián Peidró (apeidro@umh.es) OBJETIVOS Afianzar los conocimientos

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño

Más detalles

ÍNDICE INTRODUCCIÓN...17

ÍNDICE INTRODUCCIÓN...17 ÍNDICE INTRODUCCIÓN...17 HISTORIA, PRINCIPIOS E INSTALACIÓN DE SCILAB...21 1.1 BREVE HISTORIA DE SCILAB...21 1.2 LICENCIA DE SCILAB...25 1.3 POR QUÉ OPEN SOURCE?...26 1.4 OBTENCIÓN E INSTALACIÓN DE SCILAB...28

Más detalles

Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido TEMA 5.- Análisis de respuesta en frecuencia 5.1. Análisis de

Más detalles

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL 1.-Introducción. 2.-Criterio de estabilidad de Nyquist. 3.-Estabilidad relativa. 3.1.-Margen de ganancia. 3.2.-Margen de fase. 4.-Estabilidad mediante

Más detalles

Sintonización de Controladores

Sintonización de Controladores Sistemas de Control Automáticos Sintonización de Controladores Acciones de control Las acciones de los controladores las podemos clasificar como: Control discontínuo Control ON OFF Control contínuo Controles

Más detalles

Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso

Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso 2007-2008 I INTRODUCCIÓN La práctica descrita en este documento pretende familiarizar al alumno con los conceptos

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

Análisis temporal de sistemas

Análisis temporal de sistemas Control de Procesos Industriales 3. Análisis temporal de sistemas por Pascual Campoy Universidad Politécnica Madrid Control de Procesos Industriales 1 Análisis temporal de sistemas Estabilidad y ganancia

Más detalles

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa

2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.

Más detalles

4.6.- CRITERIO DE ESTABILIDAD DE NYQUIST. Se puede decir que un sistema es estable cuando al ser excitado, la parte transitoria

4.6.- CRITERIO DE ESTABILIDAD DE NYQUIST. Se puede decir que un sistema es estable cuando al ser excitado, la parte transitoria 4.6.- CRITERIO DE ESTABILIDAD DE NYQUIST. Se puede decir que un sistema es estable cuando al ser excitado, la parte transitoria de su respuesta decae conforme aumenta el tiempo. Para esto, se necesita

Más detalles

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18.1. DIAGRAMAS POLARES En análisis dinámico de sistemas en el dominio de la frecuencia, además de emplearse los diagramas y el criterio de Bode, se utilizan

Más detalles

CONTROL BÁSICO. Sistemas de Control Realimentados. Coeficientes estáticos de error. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1

CONTROL BÁSICO. Sistemas de Control Realimentados. Coeficientes estáticos de error. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1 CONTROL BÁSICO TEMAS: - Diseño de reguladores en bucle cerrado or método frecuencial Facultad de Ingeniería UNER Carrera: Bioingeniería Planes de estudios: 2008 y 993 Sistemas de Control Realimentados

Más detalles

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación Análisis de estabilidad Determinar el comportamiento transitorio y estacionario del sistema Especificar e identificar las condiciones de operación El primer paso al analizar un sistema de control es establecer

Más detalles

Técnicas de Frecuencia

Técnicas de Frecuencia Teoría del Control Técnicas de Frecuencia Cesáreo Raimúndez Depto. de Ingeniería de Sistemas y Automática ETSII-Vigo Teoría del Control p. 1/46 TEMA 6: Análisis en frecuencia de sist. continuos Respuesta

Más detalles

CIDEAD. TECNOLOGÍA INDUSTRIAL II. 1ª Evaluación. Tema 7.- La función de transferencia.

CIDEAD. TECNOLOGÍA INDUSTRIAL II. 1ª Evaluación. Tema 7.- La función de transferencia. CIDEAD. TECNOLOGÍA INDUSTRIAL II. ª Evaluación. Desarrollo del tema.. Introducción.. Concepto de función de transferencia. 3. Operaciones con los diagramas de bloques. 4. Estabilidad. Criterio de Routh.

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota MT227 Sistemas Lineales. Función de transferencia Elizabeth Villota 1 Sistemas Lineales Sistema no lineal, forma espacio de estados: Sea la salida correspondiente a la condición inicial y entrada escrita

Más detalles

Clase 08.doc Aproximación de Controladores Continuos. 1. Aproximación de Controladores Continuos 1

Clase 08.doc Aproximación de Controladores Continuos. 1. Aproximación de Controladores Continuos 1 . Aproximación de Controladores Continuos. Aproximación de Controladores Continuos.. Introducción.. Aproximación Basada en la Función de Transferencia... Aproximación de Tustin... Problemas en el dominio

Más detalles

1. Aproximación de Controladores Continuos... 1

1. Aproximación de Controladores Continuos... 1 . Aproximación de Controladores Continuos. Aproximación de Controladores Continuos..... Introducción..... Aproximación Basada en la Función de Transferencia...... Aproximación de Tustin...... Problemas

Más detalles

Tema 5. Análisis de sistemas muestreados

Tema 5. Análisis de sistemas muestreados Ingeniería de Control Tema 5. Análisis de sistemas muestreados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Relacionar la estabilidad

Más detalles

Respuesta en Frecuencia de Sistemas Continuos

Respuesta en Frecuencia de Sistemas Continuos espuesta en Frecuencia e Sisteas Continuos UeC - DIE Problea Caso Ilustrar el Diagraa e Boe a partir e una F. e T. y/o e una representación {A, b, c, }. Masa suspenia. Paráetros l o :=.5 :=.5 k:= x(t k

Más detalles

HORARIO DE CLASES SEGUNDO SEMESTRE

HORARIO DE CLASES SEGUNDO SEMESTRE HORARIO DE CLASES LUNES MIERCOLES 17 a 18:15 hs 17 a 18:15 hs Ln 14/08/17: CRONOGRAMA DE CLASES y PARCIALES CONTROL I -AÑO 2017- SEGUNDO SEMESTRE Introducción a los sistemas de Control. Definiciones de

Más detalles

Desempeño Respuesta en frecuencia. Elizabeth Villota

Desempeño Respuesta en frecuencia. Elizabeth Villota Desempeño Respuesta en frecuencia Elizabeth Villota 1 Desempeño SLIT 2do orden transiente estado estacionario respuesta a un escalón unitario ω o autovalores sistema λ(a) propiedades de la respuesta a

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo V Controladores PID D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Motivación Estructura

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

INGENIERÍA ELÉCTRICA CIRCUITOS III EJERCICIOS

INGENIERÍA ELÉCTRICA CIRCUITOS III EJERCICIOS INGENIEÍA EÉTIA IUITOS III EJEIIOS Transformada de aplace y función de transferencia. Para el siguiente circuito calcular v c (t) t 0. = 2 Ω, = 0,5 H, = 0,25 F, = e t cos 2t V, v c (0 ) = V, i (0 ) = A

Más detalles

ESTABILIDAD. El procedimiento en el criterio de estabilidad de Routh es el siguiente: 1) Escriba el polinomio en s en la forma siguiente:

ESTABILIDAD. El procedimiento en el criterio de estabilidad de Routh es el siguiente: 1) Escriba el polinomio en s en la forma siguiente: ESTABILIDAD Un sistema dinámico es estable si para cualquier entrada comprendida entre un límite superior y otro inferior la salida también resulta acotada sin importar las condiciones iniciales del sistema.

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

PS Respuesta Temporal de Sistemas La Función de Transferencia

PS Respuesta Temporal de Sistemas La Función de Transferencia PS35 - Respuesta Temporal de Sistemas La Función de Transferencia William Colmenares 4 de junio de 006 Índice. Respuesta Temporal. Polos y Ceros.. ejemplos numéricos.......................... 3 3. Señales

Más detalles

Criterio de Estabilidad de Nyquist- Aplicación al análisis de la Estabilidad de Sistemas de Control continuos y LTI.

Criterio de Estabilidad de Nyquist- Aplicación al análisis de la Estabilidad de Sistemas de Control continuos y LTI. Criterio de Estabilidad de Nyquist- Aplicación al análisis de la de Control continuos y LTI. 1. Prefacio. La experiencia de los últimos años, en relación con la comprensión del análisis de la Estabilidad

Más detalles

Sistemas Lineales 2 - Práctico 8

Sistemas Lineales 2 - Práctico 8 Sistemas Lineales 2 - Práctico 8 Estabilidad Interna y Estabilidad de sistemas realimentados 2 do semestre 203 ) El esquema de la figura muestra un sistema electro-mecánico movido por un motor eléctrico

Más detalles

PRACTICA: MODOS DE CONTROL. Sistemas de Control y Controladores

PRACTICA: MODOS DE CONTROL. Sistemas de Control y Controladores Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Laboratorio de Instrumentación y Control, Código 02 33 905L. Profesor: Tito González. San Cristóbal, Jueves 04 de

Más detalles

Respuesta en frecuencia. Elizabeth Villota

Respuesta en frecuencia. Elizabeth Villota Elizabeth Villota 1 Desempeño en el dominio de la frecuencia SLIT 2do orden (masa-resorte-amortiguador) Forma espacio de estados Forma función de transferencia respuesta a un escalón diagramas de Bode

Más detalles

F L (t) = K i(t)2 z(t) 2. El peso del tren, que se opone a esta fuerza, viene dado por. F = mg

F L (t) = K i(t)2 z(t) 2. El peso del tren, que se opone a esta fuerza, viene dado por. F = mg Examen de Análisis Dinámico de Sistemas (2 o Teleco) Problema 1. Los trenes de levitación magnética 1 circulan suspendidos en el aire, sin contacto físico con el suelo, gracias a la levitación magnética.

Más detalles

SECO 2014-V ([1, 2, 3, 4])

SECO 2014-V ([1, 2, 3, 4]) SECO 214-V ([1, 2, 3, 4]) Félix Monasterio-Huelin y Álvaro Gutiérrez 2 de mayo de 214 Índice Índice 19 Índice de Figuras 19 Índice de Tablas 11 26.Lugar de Raíces: Introducción 111 26.1. Ejemplo de semiasíntotas

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

El método del lugar de las raíces.

El método del lugar de las raíces. El método del lugar de las raíces. Las características de un sistema de lazo cerrado son determinadas por los polos de lazo cerrado. Los polos de lazo cerrado son las raíces de la ecuación característica.

Más detalles

PRÁCTICO Nº 6 y PRÁCTICO Nº7

PRÁCTICO Nº 6 y PRÁCTICO Nº7 Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Carrera: Ingeniería Electrónica Área CONTROL Asignatura: CONTROL I GUIA DE APRENDIZAJE Y AUTOEVALUACION

Más detalles

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho

Más detalles

Sistemas de Primer y Segundo Orden

Sistemas de Primer y Segundo Orden Sistemas de Primer y Segundo Orden Oscar Duarte Facultad de Ingeniería Universidad Nacional de Colombia p./66 Sistema Continuo. er Orden Un sistema continuo de primer orden, cuya función de transferencia

Más detalles

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota

MT227 Sistemas Lineales. Función de transferencia. Elizabeth Villota MT227 Sistemas Lineales. Función de transferencia Elizaeth Villota 1 Sistemas Lineales Sistema no lineal, forma espacio de estados: Sea la salida correspondiente a la condición inicial y entrada escrita

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL 1 0 0 1 2 3 4 5 6 7-1 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8-2 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL OBJETIVO Práctica N

Más detalles

Circuitos SC (Switched Capacitors)

Circuitos SC (Switched Capacitors) ircuitos S (Switched apacitors) V I V I O V O V I V I O V O Q T S φ 1 : se carga hasta V = V I φ 2 : se descarga hasta V = V O ; Q = (V I V O ) orriente promedio: Î = Q T s = (V I V O ) T s = (V I V O

Más detalles

CONTROL BÁSICO CONTROL de PROCESOS

CONTROL BÁSICO CONTROL de PROCESOS CONRO BÁSICO CONRO de PROCESOS EMA: - Diseño de reguladores PID Facultad de Ingeniería UNER Carrera: Bioingeniería Planes de estudio: 1993/008 Integral - Derivativo (PID Consideramos el lazo básico de

Más detalles

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta:

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta: INSTITUTO TECNOLÓGICO DE COSTA RICA II SEMESTRE 2013 ESCUELA DE INGENIERIA EN ELECTRÓNICA CURSO: EL-5408 CONTROL AUTOMÁTICO MEDIO: Examen 3 PROF: ING. EDUARDO INTERIANO Nombre: Carné Ordinal Parte I preguntas

Más detalles

Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009

Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009 Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009 Estructura de un curso teórico práctico básico de ciencias Estructura de un curso teórico práctico con proyecto de materia Importancia

Más detalles

Sistemas de primer orden

Sistemas de primer orden 5 Sistemas de primer orden En los capítulos anteriores se ha visto cómo obtener la función de transferencia para cualquier sistema lineal e invariante en el tiempo y cómo utilizar esa función de transferencia,

Más detalles

Dominio de la Frecuencia

Dominio de la Frecuencia Dominio de la Frecuencia Sistemas Electrónicos de Control Álvaro Gutiérrez 17 de Marzo de 2015 aguti@etsit.upm.es www.robolabo.etsit.upm.es Índice 1 Introducción 2 Representaciones Gráficas Diagrama de

Más detalles

Víctor M. Alfaro. Sistemas de control. proporcional, integral y derivativo. Algoritmos, análisis y ajuste

Víctor M. Alfaro. Sistemas de control. proporcional, integral y derivativo. Algoritmos, análisis y ajuste Víctor M. Alfaro Sistemas de control proporcional, integral y derivativo Algoritmos, análisis y ajuste Dr. Víctor M. Alfaro Departamento de Automática Escuela de Ingeniería Eléctrica Universidad de Costa

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles

Dominio de la Frecuencia

Dominio de la Frecuencia Dominio de la Frecuencia Álvaro Gutiérrez & Félix Monasterio-Huelin 3 de enero de 205 Índice. Introducción 2 2. Representaciones Gráficas 5 2.. Diagrama de Bode........................ 5 2.2. Diagrama

Más detalles

19. DISEÑO DE CONTROLADORES

19. DISEÑO DE CONTROLADORES 381 19. DISEÑO DE CONTROLADORES 19.1. INTRODUCCION Con los diagramas de Bode de la respuesta de un lazo abierto se pueden diseñar controladores con las especificaciones del margen de ganancia, el margen

Más detalles

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA

Más detalles

TEORIA DE CONTROL Ing. ELECTRICA. TEORIA DE CONTROL I Ing. ELECTRONICA

TEORIA DE CONTROL Ing. ELECTRICA. TEORIA DE CONTROL I Ing. ELECTRONICA UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIAS PROGRAMA DE TEORIA DE CONTROL Ing. ELECTRICA TEORIA DE CONTROL I Ing. ELECTRONICA Docente a cargo: Jefe de Trab. Práct.:

Más detalles

10. Diseño avanzado de controladores SISO

10. Diseño avanzado de controladores SISO 10. Diseño avanzado de controladores SISO Parte 2 Panorama de la Clase: Repaso: Parametrización Afín (PA) Consideraciones de diseño: grado relativo rechazo de perturbaciones esfuerzo de control robustez

Más detalles

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano Control Automático Regulador PID y ajuste del PID Eduardo Interiano Contenido Regulador PID PID ideal PID real Ajuste empírico del PID (Ziegler-Nichol Ejemplos Ejercicios Referencias 2 El PID ideal El

Más detalles

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Carrera: Ingeniería Electrónica Área CONTROL Asignatura: CONTROL I GUIA DE APRENDIZAJE Y AUTOEVALUACION

Más detalles

Introducción al control de fuentes conmutadas.

Introducción al control de fuentes conmutadas. Introducción al control de fuentes conmutadas. En una fuente conmutada ideal la tensión de salida es una función de la tensión de entrada y del valor del ciclo de trabajo definido. En la práctica existirán

Más detalles

Tema 6. Diseño de controladores discretos

Tema 6. Diseño de controladores discretos Ingeniería de Control Tema 6. Diseño de controladores discretos Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Como obtener el

Más detalles

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL

Más detalles

Análisis de la Estabilidad de un Sistema Realimentado Se trata de analizar la estabilidad del sistema realimentado neativamente, M(, a partir de la re

Análisis de la Estabilidad de un Sistema Realimentado Se trata de analizar la estabilidad del sistema realimentado neativamente, M(, a partir de la re Tema 7 Análisis Frecuencial de los Sistemas Realimentados Gijón - Junio 5 1 Indice 7.1. Análisis de la estabilidad de un sistemas realimentado 7.. Maren de ase y de anancia 7..1. Diarama de Bode 7... Diarama

Más detalles

EJEMPLOS DE UTILIZACIÓN DE BODE ROUTH

EJEMPLOS DE UTILIZACIÓN DE BODE ROUTH EJEMPLOS DE UTILIZACIÓN DE BODE ROUTH UN BREVE COMENTARIO Algunos de estos ejemplos han sido sacados de los libros Ingeniería de Control Moderna (Ed. Prentice Hall, 2ª edición) y Sistemas de Control en

Más detalles

Respuesta en la Frecuencia

Respuesta en la Frecuencia Respuesta en la Frecuencia Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 08 Junio 2012 1 Desempeño en el dominio de la frecuencia SLIT 2do orden (masa-resorte-amortiguador)

Más detalles

Ingeniería de Control I Tema 11. Reguladores PID

Ingeniería de Control I Tema 11. Reguladores PID Ingeniería de Control I Tema 11 Reguladores PID 1 Tema 11. Reguladores PID Introducción Especificaciones de funcionamiento Acciones básicas de control Ajuste empírico de reguladores. Métodos de Ziegler-

Más detalles