TEMA 5. POLINOMIS - I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 5. POLINOMIS - I"

Transcripción

1 1 EXPRESSIÓ ALGEBRAICA TEMA POLINOMIS - I Professor de r ESO Roger Maurco Grañó Ua epressó algebraca és s u cout de ombres lletres llgats amb els símbols, -,, : ( )) a : ( ) S les epressos algebraques cotee u símbol s gual (=), dstgm: Formules fucos: Igualtats: Idettats: Equacos: 1= 1= S = π r = Igualtat certa Igualtat falsa 1 v t a t S les epressos algebraques presete cògtes, dstgm: ( a b) (a b) = a b Vàlda per a qualsevol valor de les cògtes = Vàlda per a valors cocrets de les R Maurco cògtes 1 Epressó algebraca Moom ÍNDEX DE CONTINGUTS Operacos amb mooms Suma, resta, producte dvsó Defcó de polom 1 Tpus de poloms Prcp d gualtat d etre poloms 6 Valor umèrc d u d polom Operacos amb poloms Suma, resta producte 8 Potèces de poloms productes otables 9 Dvsó de poloms R Maurco MONOMI U moom és s ua epressó algebraca formada pel producte de la part lteral (cògta amb epoets aturals) el coefcet o part t umèrca al davat y y Part lteral Coefcet Aomeem grau del moòm a la suma dels epoets de la la part lteral y y Coefcet Varable Part lteral Grau ; y y - R Maurco

2 Defcos prèves MONOMI Mooms semblats: : Dem que dos mooms só s semblats qua la part lteral dels mooms só s dètques y y y y Mooms semblats Mooms o semblats Mooms oposats: Só mooms semblats que tee coefcets cotrars y y y y Mooms oposats Mooms o oposats R Maurco OPERACIONS AMB MONOMIS Dvsó de mooms Per dvdr mooms cal que l epoet l de cada varable del umerador sgu maor o gual que les de les varables del deomador Dvdrem els coefcets les parts lterals per separat y y = y y = y Feu-vos que el grau del moom resultat és s la resta dels graus dels mooms a dvdr Pàga 1 Fotocòpes d eerccsd Eercc 1, Apartat Tots els apartats R Maurco Tots els apartats OPERACIONS AMB MONOMIS Els mooms es pode sumar, restar multplcar dvdr Suma resta de mooms Per poder sumar o restar mooms cal que aquests sgu semblats s Es sume o reste els coefcets es dea la matea part lteral l 6 = ( ) = 1 = ( ) = = Aquests mooms o es pode sumar perquè o só s semblats =?? Producte de dos mooms Per multplcar mooms, multplquem els coefcets etre s les parts lterals etre s Feu-vos que la ova part lteral tét u epoet suma dels aterors a b = a b ( ) ( ) R Maurco 6 ( ) ( ) = ( ( ) )( ) = U polom amb ua varable és epressó algebraca formada per la suma de mooms de graus dferets p () = a o, a, a, a dque: DEFINICIÓ DE POLINOMIS a1 a a : el grau del polom p() (grau (p()( p()) ) És s u ombre atural ( N) ) és l epoet més m s gra de tots a : els coefcets reals (a( R, =1,,) ) del polom p() [1] a : moom de grau del polom p() a : terme depedet del polom p() També és s el coefcet del moom de grau zero : determada o varable del polom p() [1] R Maurco 8 S els coefcets a R dem que p() R[], és s a dr que el polom tét coefcets reals

3 1 TIPUS DE POLINOMIS Algus poloms s aomee s de forma dferet e fucó del ombre de mooms que els forme E aquest cas parlem de mooms, boms o troms S tee més m s de tres mooms s aomee s poloms de forma geeral Polom reduït: Polom que o tét mooms semblats p () = Polom complet: : Polom que tét tots els mooms de grau meor que él grau del polom p () = Polom ordeat: : Polom que tét tots els seus mooms ordeats de maor a meor grau o a l revl revés p() = p () = R Maurco 9 PRINCIPI D IGUALTAT Dem que dos poloms só s guals s tee el mate grau grau(p())=grau(q()) s tots els coefcets d gual d grau só s cocdets dos a dos Cosdereu els poloms p() = 1 q() = a b c d Quat ha de valer a, b, c d perquè els poloms sgu guals? p( ) = 1 Pel prcp d gualtat tem que: a = 1 b = b = 1 c = d = q( ) = a b c d c = d = R Maurco 11 1 TIPUS DE POLINOMIS 6 VALOR NUMÈRIC D UN POLINOMI S substtuïm m la varable per u valor b R,, dem que p(b) és s el valor umèrc del polom per a = b val: p () = a a1 a a p (b) = a a1 b a b a b p () = S, = -: 8 p( ) = ( ) ( ) 8 ( ) = El valor del polom p () = 8 és - qua val - escrurem: : p(-) = - R Maurco 1 R Maurco 1

4 OPERACIONS AMB POLINOMIS OPERACIONS AMB POLINOMIS Suma de poloms Sgu dos poloms P() Q() amb grau (P()( P()) ) < grau (Q()( Q()) p() = a a1 a a,m N m m < q() = b b1 b bm Aleshores defm la suma de poloms (P()( Q()) ) com: p () q() = (a m b ) (a1 b1) (a b ) (a b ) ( bm ) De la suma deduïm m que: grau(p()q() P()Q()) màm ( grau (P()( P()), grau(q() Q())) p() = 8 q() = 1 p() q() = 1 6 grau(p() q()) ma(grau(p(),q())) R Maurco 1 ma(,) R Maurco 1 Propetats de la suma de poloms Propetat assocatva ( p () q() ) r() = p() ( q() r() ) Propetat commutatva OPERACIONS AMB POLINOMIS p () q() = q() p() Estèca del polom eutre respecte la suma p () () = p() () = v Estèca de l elemet smètrc respecte la suma p() p * () = p * () = p() L elemet eutre respecte la suma és s el polom zero L elemet smètrc respecte la suma és s el polom oposat R Maurco 1 a Producte de poloms Sgu els poloms p() q() OPERACIONS AMB POLINOMIS p() = a a1 a a amb,m N m q() = b b1 b bm Defm el producte de poloms (p()( p() q() q()) com la suma de tots els productes de mooms dos a dos p() q() = m = 1 = 1 a b El producte es mostra mllor a la taula de la següet et dapostva R Maurco 16

5 p() a a 1 a a q() OPERACIONS AMB POLINOMIS b a b a 1 b a b a b b 1 a b 1 a 1 b 1 a b a b 1 a b Del producte de poloms veem que es comple que: grau(p() q()) = grau(p()) grau(q()) b a b a 1 b a b b m m a b m m a 1 b m m1 a b m m a b m m R Maurco 1 OPERACIONS AMB POLINOMIS A la pràctca farem el producte aplcat l algortme clàssc de la multplcacó p() = p() q() q() = R Maurco OPERACIONS AMB POLINOMIS p() = q() = p () q() = 1 6 R Maurco 18 b Propetats del producte de poloms Propetat assocatva ( p () q()) r() = p() ( q() r() ) Propetat commutatva p () q() = q() p() OPERACIONS AMB POLINOMIS Propetat dstrbutva respecte la suma de poloms ( p () q() ) r() = p() r() q() r( ) v Estèca del polom eutre respecte el producte p () () = p() () = 1 v No este l elemet smètrc respecte el producte R Maurco

6 OPERACIONS AMB POLINOMIS 8 POTÈNCIES DE POLINOMIS I PRODUCTES NOTABLES S Calculeu: (a b) (a b) (a b) (a b) = (a b) (a b) = (a = (a b) (a b) = (a ab b ) (a b) = a ab b ) (a b) = a a b ab a b ab (a b) (a b) = (a ab b ) (a ab b ) = = a a b 6a b ab b = (a b) (a b) = (a a b ab b ) (a b) = = a a b 6a b ab b (a b) (a b) = (a ab b ) (a ab b ) = = a a b 6a b ab b = (a b) (a b) = (a a b ab b ) (a b) = = a a b 6a b ab b b b R Maurco 1 R Maurco 8 POTÈNCIES DE POLINOMIS I PRODUCTES NOTABLES 1 Potèces de poloms Sgu p() u polom de grau Sgu m u ombre atural m N La potèca m-èsma de p() (escrurem [p()] m ] s escru com: 8 POTÈNCIES DE POLINOMIS I PRODUCTES NOTABLES [p()] m = m) p() p() El resultat que s obts obté és s u polom de grau m (grau( [p()]m = m ) Productes otables Boms al quadrat A r d ESO heu de coèer els següets productes otables (a b) = a b ab (a b) = a b ab (a b) (a b) = a b A r d ESO qualsevol altra potèca R Maurco es dedurà a partr d aquests tres productes R Maurco

7 9 DIVISIÓ DE POLINOMIS 1 Defcó de dvsó Sgu p() q() dos poloms qualssevol, amb grau (p()( p()) grau (q()( q()) S estee dos poloms c() r(),, que aomearem polom quocet polom resta respectvamet, que complee: p () = c() q() r() drem que p() és s dvsble per q() El polom p() s aomea polom dvded el polom q() s aomea polom dvsor S el resdu de la dvsó és zero,, dem que la dvsó és eacta Es mportat remarcar que sempre es complrà que: grau (r()) < grau (q()) grau (c()) = grau (p()) - grau (q()) R Maurco ( / 1 8 ( 8 9 DIVISIÓ DE POLINOMIS p() = Dvdu els poloms p() q() / ) 19 q() = 1 ) 1 R Maurco 9 DIVISIÓ DE POLINOMIS H ha tres mètodes m per dvdr poloms L aplcacó de la defcó de dvsó (t ESO, 1r BATX) L algortme de la dvsó (r ESO) La dvsó per Ruff (r ESO) (Plateamet d u d sstema d equacos) d A determar L algortme de la dvsó (r ESO) Per dvdr el polom p() (dvded) etre el polom q() (dvsor) dsposarem els poloms de la següet forma p() r() q() c() R Maurco 6 R Maurco 8

Anomenem grau del monòmi a la suma dels exponents de la la part literal.

Anomenem grau del monòmi a la suma dels exponents de la la part literal. Tema. Poliomis I Tema. Poliomis I... Epressió algebraica. Ua epressió algebraica és u cojut de ombres i lletres lligats amb els símbols, -,, : i ( ). Per eemple, a : ( ). Si les epressios algebraiques

Más detalles

DE FORMA ALGEBRAICA CERTES SITUACIONS

DE FORMA ALGEBRAICA CERTES SITUACIONS EXPRESSAR OBJECTIU DE FORMA ALGEBRAICA CERTES SITUACIONS NOM: CURS: DATA: LLENGUATGE NUMÈRIC I LLENGUATGE ALGEBRAIC El llenguatge en què intervenen nombres i signes d operacions l anomenem llenguatge numèric.

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UIDIMESIOAL L estadístca és u mètode per predre decsos, per axò s utltza e molts estuds cetífcs. L estadístca es pot dvdr e estadístca descrptva, que s ocupa de comptar, ordear classfcar les

Más detalles

2 = = + Es tracta de calcular: CÁLCUL DE LÍMITS ( I ) Resolució: Límits de successions : un quocient de polinomis

2 = = + Es tracta de calcular: CÁLCUL DE LÍMITS ( I ) Resolució: Límits de successions : un quocient de polinomis 1 CÁLCUL DE LÍMITS ( I ) 1. Calcular lim ( 7) (1 0) 7 7 lim ( 7) = lim 1 lim lim 1 = = + Límits de successios : u quociet de poliomis Es tracta de calcular: Podem distigir tres casos A) p > q. Es divideix

Más detalles

TEMA 3: Polinomis 3.1 DEFINICIONS:

TEMA 3: Polinomis 3.1 DEFINICIONS: TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient

Más detalles

Els nombres complexos

Els nombres complexos Els ombres complexos Els ombres complexos Defiició Oposat Represetació Forma bioòmica z = a + bi, o bé z = (a, b) esset a la part real i b, la part imagiària. a = r cos α b = r si α z = a bi Cojugat z

Más detalles

POLINOMIS. Divisió. Regla de Ruffini.

POLINOMIS. Divisió. Regla de Ruffini. POLINOMIS. Divisió. Regla de Ruffini. Recordeu: n Un monomi en x és una expressió algebraica de la forma a x on a és un nombre real i n és un nombre natural. A s anomena coeficient i n s anomena grau del

Más detalles

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere Les Arcades Molló del terme Ermita la Xara Esglèsia Sant Pere Pàg. 2 Monomi Un monomi (mono=uno) és una expressió algebraica de la forma: *+,-=/, 1 on R N., rep el nom d indeterminada o variable del monomi,

Más detalles

Successió. Una successió és un conjunt ordenat d infinits nombres a1,a2,a3,...,an,...

Successió. Una successió és un conjunt ordenat d infinits nombres a1,a2,a3,...,an,... Mª Àgels Lojedo SUCCESSIONS. PROGRESSIONS ARITMÈTIQUES. PROGRESSIONS GEOMÈTRIQUES. Successió. Ua successió és u cojut ordeat d ifiits ombres a,a,a,...,a,... que represetem { } a. Cadascu d ells s aomea

Más detalles

Polinomis i fraccions algèbriques

Polinomis i fraccions algèbriques Tema 2: Divisivilitat. Descomposició factorial. 2.1. Múltiples i divisors. Cal recordar que: Si al dividir dos nombres enters a i b trobem un altre nombre enter k tal que a = k b, aleshores diem que a

Más detalles

POLINOMIS i FRACCIONS ALGEBRAIQUES

POLINOMIS i FRACCIONS ALGEBRAIQUES POLINOMIS i FRACCIONS ALGEBRAIQUES. Polinomis: introducció.. Definició de polinomi.. Termes d un polinomi.. Grau d un polinomi.. Polinomi reduït..5 Polinomi ordenat..6 Polinomi complet..7 Polinomi oposat..8

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

9.1. Funcions lineals. Solució gràfica. Les funcions lineals, també anomenades rectes són expressions algebraiques del tipus

9.1. Funcions lineals. Solució gràfica. Les funcions lineals, també anomenades rectes són expressions algebraiques del tipus Tema 9. Fucios lieals i quadràtiques Tema 9. Fucios lieals i quadràtiques 9.. Fucios lieals. Solució gràfica. Les fucios lieals, també aomeades rectes só epressios algebraiques del tipus m ; m, R o m s

Más detalles

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D En vermell comentaris per al professorat Construcció d una escultura 3D 1/8 Es disposen en grups de tres o quatre i se ls fa lliurament del dossier. Potser és bona idea anar donant per parts, segons l

Más detalles

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 4 POTÈNCIES I ARRELS

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 4 POTÈNCIES I ARRELS M Operacios umèriques Uitat Potècies i arrels UNITAT POTÈNCIES I ARRELS M Operacios umèriques Uitat Potècies i arrels Què treballaràs? E acabar la uitat has de ser capaç de... Resoldre operacios amb potècies.

Más detalles

Construcció d una escultura 3D

Construcció d una escultura 3D 1/8 Construcció d una escultura 3D L'ajuntament de Sant Boi ens ha encarregat construir una escultura geomètrica de ferro. Decidim una com la que figura a continuació, de forma que tota ella està feta

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS 1 Epresoes Algebrcs es l uó de úmeros y vrbles medte opercoes de sum, rest, multplccó, dvsó, poteccó y rdccó. Epresó lgebrc rcol: se llm sí quells e ls que ls vrbles está fectds

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Po tres ejemplos de úmeros reales que o sea racoales, y otros tres ejemplos de úmeros reales que o sea rracoales. Respuesta aberta. Tres úmeros reales que o sea racoales:,

Más detalles

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES Suma de monomis. 1. Realitza les següents operacions: + 8 4 9 9 6 + 4 5 5 1 + 4 4 4 11 7 f) 6 7 1 8. Realitza les següents operacions: 1 + 5 5 + 1 y + y + y

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Escrito. 1) Transforma a las bases indicadas:

Escrito. 1) Transforma a las bases indicadas: Escrto ) Trasforma a las bases dcadas: a. 765 base (0) b. AB base 7 0 (6) base ) Halla los dígtos a y b sabedo que: aam 6 ( 5 ) mam( 6 ) 3) Trasforma a la base dcada usado ua tabla de correspodeca.. 00

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83 5 Expressions algebraiques Objectius Crear expressions algebraiques a partir d un enunciat. Trobar el valor numèric d una expressió algebraica. Classificar una expressió algebraica en monomi, binomi,...

Más detalles

TEMA 4 : Matrius i Determinants

TEMA 4 : Matrius i Determinants TEMA 4 : Matrius i Determinants MATRIUS 4.1. NOMENCLATURA. DEFINICIÓ Una matriu és un conjunt de mxn elements distribuïts en m files i n columnes, A= Aquesta és una matriu de m files per n columnes. És

Más detalles

ESTADÍSTICA. Objectius 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA. Objectius 1. ESTADÍSTICA DESCRIPTIVA Departamet de Matemàtques Escola Tècca Professoal del Clot ESTADÍSTICA Objectus Freqüèces d ua sère estadístca. Càlcul represetacó. Estud dels paràmetres estadístcs: o Mesures de cetraltzacó: Mtjaa artmètca

Más detalles

(Véase el Ejercicio 13 Beneficio de los bancos )

(Véase el Ejercicio 13 Beneficio de los bancos ) étodos de Regresó- Grado e Estadístca Empresa Tema 3 /3 étodos de Regresó- Grado e Estadístca Empresa Tema 3 /3 Tema 3. El modelo de regresó múltple. Hpótess báscas. El modelo. as pótess báscas. Estmacó

Más detalles

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( )

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( ) Los úmeros complejos surje a ra de ecuacoes de la forma x + 0 Exste u certo paralelsmo etre este cuerpo el plao, cocretamete, lo que ha es ua correspodeca buívoca, es decr, ua relacó bectva etre C R R

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Els polinomis. Un polinomi és una expressió algebraica amb una única lletra, anomenada variable. Exemple: 9x 6 3x 4 + x 6 polinomi de variable x

Els polinomis. Un polinomi és una expressió algebraica amb una única lletra, anomenada variable. Exemple: 9x 6 3x 4 + x 6 polinomi de variable x Els polinomis Els polinomis Un polinomi és una expressió algebraica amb una única lletra, anomenada variable. Exemple: 9x 6 3x 4 + x 6 polinomi de variable x Elements d un polinomi Els termes: cadascun

Más detalles

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT CC-SS

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT CC-SS Treball Estiu Matemàtiques CCSS r Batillerat EXERCICIS MATEMÀTIQUES r BATXILLERAT CC-SS. Aquells alumes que tigui la matèria de matemàtiques pedet, haura de presetar els eercicis el dia de la prova de

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas 5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

POLINOMIS. p(x) = a 0 + a 1 x + a 2 x a n x n,

POLINOMIS. p(x) = a 0 + a 1 x + a 2 x a n x n, POLINOMIS Un monomi és una expressió de la forma ax m, on el coeficient a és un nombre real o complex, x és una indeterminada i m és un nombre natural o zero. Un polinomi és una suma finita de monomis,

Más detalles

Els alumnes miren sorpresos el tauler amb les dades de l embassament.

Els alumnes miren sorpresos el tauler amb les dades de l embassament. SOLUCIONARI Els alumnes miren sorpresos el tauler amb les dades de l embassament. Ens diu la veritat? No n estic segur. Informació sobre l embassament CAPACITAT 9,7 hm Justifica si el guia ha fet bé els

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

4 EXPRESSIONS ALGEBRAIQUES

4 EXPRESSIONS ALGEBRAIQUES 4 EXPRESSIONS ALGEBRAIQUES EXERCICIS PROPOSATS 4.1 4. 4.3 4.4 4.5 4.6 Indiquem amb la lletra c el costat d un heàgon regular. a) Com epressaries el seu perímetre? b) Quin és el valor del perímetre si el

Más detalles

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CPIULO 2º FUNCIONES DE VECORES Y MRICES_ Ig. Dego lejadro Patño G. M.Sc, Ph.D. Fucoes de Vectores y Matrces Los operadores leales so fucoes e u espaco vectoral, que trasforma u vector desde u espaco a

Más detalles

Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen.

Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen. Els nombres enters Els nombres enters Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen. Enters positius: precedits del signe + o de cap signe.

Más detalles

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) VALORES Y VECTORES PROPIOS UNIDAD Nº 6. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 6 ÁLGEBRA II (LSI PI) UNIDAD Nº 6 VALORES Y VECTORES PROPIOS Facultad de Cecas Exactas y Tecologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO aa Error! No hay texto co el estlo especfcado e el documeto.

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

Del correcto uso de las fracciones parciales.

Del correcto uso de las fracciones parciales. Del correcto uso de las fraccoes parcales. Rubé Emauel Madrd García. E este opúsculo haré u aálss de lo que hoy llamamos fraccoes parcales, lo cual o es otra cosa que la descomposcó del cocete etre dos

Más detalles

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç

Más detalles

MATEMÀTIQUES APLICADES A LES CIÈNCIES SOCIALS. 1r BATXILLERAT

MATEMÀTIQUES APLICADES A LES CIÈNCIES SOCIALS. 1r BATXILLERAT MATEMÀTIQUES APLICADES A LES CIÈNCIES SOCIALS 1r BATXILLERAT Llibre utilitzat: Matemàtiques aplicades a les ciències socials 1, Editorial Castellnou UNITAT 1. ELS NOMBRES REALS 1.1 Classificació dels nombres

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

TEMA 1: Divisibilitat. Teoria

TEMA 1: Divisibilitat. Teoria TEMA 1: Divisibilitat Teoria 1.0 Repàs de nombres naturals. Jerarquia de les operacions Quan en una expressió apareixen operacions combinades, l ordre en què les hem de fer és el següent: 1. Les operacions

Más detalles

4. EQUACIONS DE PRIMER GRAU AMB UNA INCÒGNITA

4. EQUACIONS DE PRIMER GRAU AMB UNA INCÒGNITA Definició d'equació. Equacions de primer grau amb una incògnita 1. EQUACIONS: DEFINICIONS Equació: igualtat entre dues expressions algebraiques. L'expressió de l'esquerra de la igualtat rep el nom de PRIMER

Más detalles

Problemes de Sistemes de Numeració. Fermín Sánchez Carracedo

Problemes de Sistemes de Numeració. Fermín Sánchez Carracedo Problemes de Sistemes de Numeració Fermín Sánchez Carracedo 1. Realitzeu els canvis de base que s indiquen a continuació: EF02 16 a binari natural b) 235 10 a hexadecimal c) 0100111 2 a decimal d) FA12

Más detalles

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis.

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis. POLINOMIS I FUNCIONS POLINÒMIQUES. 1. Els polinomis.. Operacions amb polinomis: La suma, la resta i el producte de polinomis. 3. Identitats notables. El binomi de Newton. 4. Divisió de polinomis. Regla

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó

Más detalles

LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial

LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció eponencial La funció eponencial és de la forma f () = a, on a > 0, a 1 El valor a s anomena base de la funció eponencial.

Más detalles

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos.

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos. UNIDAD 1: NÚMEROS RACIONALES. Este primer apartado es repaso de coceptos que ya coocemos, pero es bueo que lo tegamos. 1.1 NÚMEROS ENTEROS. OPERACIONES CON NÚMEROS ENTEROS. Clasificació de los úmeros:

Más detalles

TEORIA DE ERRORES. Fuentes De error. Error Final

TEORIA DE ERRORES. Fuentes De error. Error Final TEORIA DE ERRORES Fuetes De error Errores heretes: (EI) So los errores que afecta a los datos del prolema umérco puede teer dsttos orígees. Por ejemplo puede ser el resultado de la certdumre e cualquer

Más detalles

Título: mar 6-1:39 PM (Página 1 de 20)

Título: mar 6-1:39 PM (Página 1 de 20) TEMA 5. ÁLGEBRA El lenguaje algebraico es un lenguaje matemático que combina números y letras unidos mediante operaciones aritméticas (+, -,, :) para expresar la realidad de forma concisa, inequívoca y

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

SOLUCIONARI Unitat 1

SOLUCIONARI Unitat 1 SOLUCIONARI Unitat Comencem En un problema de física es demana el temps que triga una pilota a assolir una certa altura. Un estudiant, que ha resolt el problema correctament, arriba a la solució t s. La

Más detalles

CAPÍTULO 20: NÚMEROS COMPLEJOS (II)

CAPÍTULO 20: NÚMEROS COMPLEJOS (II) CAPÍTULO 0: ÚMEROS COMPLEJOS (II) Date Guerrero-Chaduví Pura, 05 FACULTAD DE IGEIERÍA Área Departametal de Igeería Idustral y de Sstemas CAPÍTULO 0: ÚMEROS COMPLEJOS (II) Esta obra está bajo ua lceca Creatve

Más detalles

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base

Más detalles

Polinomis i fraccions. algèbriques BLOC 1. ARITMÈTICA I ÀLGEBRA. 1. Polinomis 1.1. Valor numèric d un polinomi 1.2. Arrels d un polinomi

Polinomis i fraccions. algèbriques BLOC 1. ARITMÈTICA I ÀLGEBRA. 1. Polinomis 1.1. Valor numèric d un polinomi 1.2. Arrels d un polinomi # BLOC. ARITMÈTICA I ÀLGEBRA Polinomis i fraccions algèbriques q. Polinomis.. Valor numèric d un polinomi.. Arrels d un polinomi q. Operacions amb polinomis.. Suma.. Resta.3. Multiplicació.. Divisió.5.

Más detalles

FUNCIONS REALS. MATEMÀTIQUES-1

FUNCIONS REALS. MATEMÀTIQUES-1 FUNCIONS REALS. 1. El concepte de funció. 2. Domini i recorregut d una funció. 3. Característiques generals d una funció. 4. Funcions definides a intervals. 5. Operacions amb funcions. 6. Les successions

Más detalles

Tema II: Mesures de centralització 1) Mediana 2) Moda 3) Mitjana Aritmètica

Tema II: Mesures de centralització 1) Mediana 2) Moda 3) Mitjana Aritmètica TEMA I: Coceptes Geerals d estadística ) Població i Mostra. ) Variable Estadística a) Variable qualitativa b) Variable quatitativa: i) discreta ii) cotiua. ) Taula de distribució de Freqüècia. a) Variable

Más detalles

Esta t d a í d s í titcos o TEMA 3.3

Esta t d a í d s í titcos o TEMA 3.3 TEMA 3.3 Defcó úmero obtedo a partr del aálss de ua varable estadístca. Procedmeto de cálculo be defdo: aplcacó de fórmula artmétca Cuatfca uo o varos aspectos de la formacó (cofrmacó de tabla o gráfco)

Más detalles

Feina d estiu Matemàtiques 4 rt eso

Feina d estiu Matemàtiques 4 rt eso 1 TRIGONOMETRIA Feina d estiu Matemàtiques 4 rt eso Els alumnes que tinguin suspesa l assignatura de matemàtiques de 4art d ESO hauran de fer els exercicis que venen en aquest dossier. INDICACIONS Els

Más detalles

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico. Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar

Más detalles

TEMA 4: NÚMEROS COMPLEJOS

TEMA 4: NÚMEROS COMPLEJOS TEMA : COMPLEJOS 1 EN FOMA BINÓMICA 1.1 DEFINICIONES Sabemos que la resolucó de alguas ecuacoes de º grado coduce a ua raíz cuadrada de u º egatvo. Dcha raíz o tee setdo e el cojuto de los úmeros reales.

Más detalles

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal GUÍA DE EJERCICIOS Área Matemátca Álgebra leal Resultados de apredzaje. Recoocer exsteca de subespaco vectoral. Cotedos 1. Espacos vectorales. 2. Subespacos vectorales. Debo saber Se debe recordar que

Más detalles

TEMA 1: Trigonometria

TEMA 1: Trigonometria TEMA 1: Trigonometria La trigonometria, és la part de la geometria dedicada a la resolució de triangles, es a dir, a determinar els valors dels angles i dels costats d un triangle. 1.1 MESURA D ANGLES

Más detalles

TEMA 3 : Nombres Racionals. Teoria

TEMA 3 : Nombres Racionals. Teoria .1 Nombres racionals.1.1 Definició TEMA : Nombres Racionals Teoria L'expressió b a on a i b son nombres enters s'anomena fracció. El nombre a rep el nom de numerador, i b de denominador. El conjunt dels

Más detalles

SOLUCIONARI Unitat 8. a) De tercer grau i amb dos termes. Comencem. b) De quart grau i amb cinc termes. c) De segon grau i amb un terme.

SOLUCIONARI Unitat 8. a) De tercer grau i amb dos termes. Comencem. b) De quart grau i amb cinc termes. c) De segon grau i amb un terme. SOLUCIONARI Unitat 8 Comencem Utilitza les potències de base 0 per descompondre aqests nombres: 56;,05;,; 005 i tres milions i mig. 56 0 5 0 6 0,05 0 5 0 0, 0 005 0 5 milions i mig 0 6 5 0 5 Troba el valor

Más detalles

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS Números complejos SOLUCIONARIO Números complejos LITERATURA Y MATEMÁTICAS Las trbulacoes del estudate Törless Dme, etedste be todo esto? Qué? Ese asuto de los úmeros magaros. Sí, o es ta dfícl. Lo úco

Más detalles

Problemas discretos con valores iniciales

Problemas discretos con valores iniciales Problemas dscretos co valores cales Gustavo Adolfo Juarez Slva Iés Navarro El presete trabajo pretede dfudr problemas dscretos co valores cales (e adelate PVID), a partr de ecuacoes e dferecas leales co

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 0 Matemàtiques Sèrie SOLUCIONS, CRITERIS DE CORRECCIÓ

Más detalles

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES. Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado. d) 8xy 3... = 3 b) 5 x y... = h) 3 c) 7 x y y...

1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado. d) 8xy 3... = 3 b) 5 x y... = h) 3 c) 7 x y y... Tema 5 ALGEBRA º E.S.O. EXPRESIONES ALGEBRAICAS Página nº 1 Los monomios 1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado.... = 8y... =...= y 5 y... =... =...= 7

Más detalles

Tema 1: TRIGONOMETRIA

Tema 1: TRIGONOMETRIA Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

Unitat didàctica 2. Polinomis i fraccions algebraiques

Unitat didàctica 2. Polinomis i fraccions algebraiques Unitat didàctica. Polinomis i fraccions algebraiques Refleiona L Andrea té una bona col lecció d espelmes que decoren la seva habitació. Totes les espelmes cilíndriques tenen la mateia alçària: cm. Epressa,

Más detalles

Nom i Cognoms: Grup: Data:

Nom i Cognoms: Grup: Data: n BATX MA ) Raoneu la certesa o falsedat de les afirmacions següents: a) Si A és la matriu dels coeficients d'un sistema d'equacions lineals i Ampl és la matriu ampliada del mateix sistema. Rang(A) Rang

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

Partes de un monomio

Partes de un monomio Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

6.3 Monomios y Polinomios. 1. Las siguientes expresiones algebraicas: 3x 2 (a + b), x + y Corresponden a: d) x + (x 2) = 18 e) x + (x + 2) = 18

6.3 Monomios y Polinomios. 1. Las siguientes expresiones algebraicas: 3x 2 (a + b), x + y Corresponden a: d) x + (x 2) = 18 e) x + (x + 2) = 18 6. MONOMIOS 6. Monomios y Polinomios 1. Las siguientes expresiones algebraicas: x 2 (a + b), x + y Corresponden a: a) Dos monomios b) Dos binomios c) Dos trinomios d) Un monomio y un binomio e) Un binomio

Más detalles

Manual per a consultar la nova aplicació del rendiment acadèmic dels Graus a l ETSAV

Manual per a consultar la nova aplicació del rendiment acadèmic dels Graus a l ETSAV Manual per a consultar la nova aplicació del rendiment acadèmic dels Graus a l ETSAV Versió: 1.0 Data: 19/01/2017 Elaborat: LlA-CC Gabinet Tècnic ETSAV INDEX Objectiu... 3 1. Rendiment global dels graus...

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles