RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace)"

Transcripción

1 ádr d Torí d ircio pn d Plo onormdo nrodcción RESPEST TEMPORL: PLSOS ONFORMDOS Dominio dl impo y Dominio d Lplc S mpln con ñl priódic o d orm pcil, l q dcomponn n ncion clón, rmp y dplzmino mporl Dominio dl Timpo - Tipo d Fncion Plo Tringlr Figr N m/ m/ m-/ Figr N ' '' En dond l orc mbién pd cribir como: El mimo rgmno d, pro con - impo propio d l xcición Págin d 5 rión 4-5-7

2 ádr d Torí d ircio pn d Plo onormdo Págin d 5 rión Eclr Figr N 4 Trn d implo Figr N δ δ δ δ δ 5 rbirri: Ejmplo Figr N 5 4 4

3 ádr d Torí d ircio pn d Plo onormdo 6 Fnción Rmp niri Rprnr ρ ρ ρ 4 ρ 6 E l problm invro, indo ρ dinid como l nción rmp niri: ρ pr < pr 6 4 Figr N 6 7 Din d Sirr m/ - - Rmp priódic dplzd Smipriódic Figr N 7 ρ n n 8 Fnción Eclón nglr ω nπ ω nπ n n on ωα dinid nálogmn q Enonc: Págin d 5 rión 4-5-7

4 ádr d Torí d ircio pn d Plo onormdo [ n ω ω n ω π ω π ] [ n ω ω n ω π ω π ] Gricndo: π π π ω Figr N 8 ndo n circio xci con ñl, pd llr l rp d cd componn ncillo y lgo plic prpoición Por llo convin r n m d ncion lmnl, pro no prodco 9 Ejmplo N Hllr R n l co d l igr, indo l igin igr: Figr N 9 Figr N Solción: S rlv cd componn: Págin 4 d 5 rión 4-5-7

5 ádr d Torí d ircio pn d Plo onormdo R R -, pr > ; R, pr > R R R R Figr N Ejmplo N Hllr c Figr N r po Figr N Págin 5 d 5 rión 4-5-7

6 ádr d Torí d ircio pn d Plo onormdo Págin 6 d 5 rión Pr : con igin ig Rp R i Figr N 4 Prcindindo d : R p d nyo cc B K n : Priclr : Homogn B B B B p B B i B Solción ompl: { n c c k 44 onn d ingrción: K K

7 ádr d Torí d ircio pn d Plo onormdo Enonc: / Figr N 5 Nor q r n g, rpco d l xcición Pr y procd n orm nálog L m d rp d c xprión lrg S rprnción rl: Ejmplo N gl l problm pro con c-/ Figr N 6 Págin 7 d 5 rión 4-5-7

8 ádr d Torí d ircio pn d Plo onormdo Figr N 7 Figr N 8 El circio pd xprr como: Figr N 9 i Págin 8 d 5 rión 4-5-7

9 ádr d Torí d ircio pn d Plo onormdo c Figr N con od l condicion inicil nl, o ci k : i k c k i k : k : i con c k -/ Figr N Or Form: L ólo conidrn con l r componn L rolción cláic como plo rí: d : Págin 9 d 5 rión 4-5-7

10 ádr d Torí d ircio pn d Plo onormdo Págin d 5 rión k k con d : Dcrg libr, primro y q nconrr l pr l nvo impo d l nrior y con : k k q n orm dirn d xprr l mimo rldo Dominio d Lplc - Tipo d Fncion Lo plo conormdo dmin r rdo con l rnormd d Lplc in inconvnin Por jmplo: Ejmplo N Figr N b b [ ] [ ] [ ] F L F L L p i [ ] L

11 ádr d Torí d ircio pn d Plo onormdo b Ejmplo N ˆ π/ω Figr N π π ω ω ^ ^ n ω n ω ^ ^ ω ω ω ω π ω Si plic : c Rp c R R Ejmplo N : Ond Rciicd c c Figr N 4 c R c R R - Figr N 5 c Figr N 6 S d llr c : Págin d 5 rión 4-5-7

12 ádr d Torí d ircio pn d Plo onormdo El plno n l cmpo rnormdo impl Sigindo l pno 8 mnciondo nriormn, in: omnrio: 8 nπ nπ nω n ω ω [ ] L n ω ω c R n R nπ ω ω ω nπ ω R c Figr N 7 Exprión diícil pr nirnormr dmá, i d l régimn prmnn, dbrá omr n n icinmn grnd En co prribl rolvr l problm n l cmpo mporl, y q l rp rá como mr l igin igr, y brá q plicr n cd príodo, como vlor inicil, l inl dl nrior c 4 Ejmplo N 4 Figr N 8 Rolvr l Ejmplo N dl pno por rnormd d Lplc Figr N 9 Págin d 5 rión 4-5-7

13 ádr d Torí d ircio pn d Plo onormdo Págin d 5 rión c y [ ] omo l nión q bc á nr y B: pro, por prpoición vr Figr N 9 dond R / R / R / nonc: R R pro: R R R lim B y R lim R B R R R R

14 ádr d Torí d ircio pn d Plo onormdo y, drrollndo con R: 4 Problm propo lclr con nl n l circio d l Figr N, dd l xcición mord n l Figr N : Figr N Figr N Págin 4 d 5 rión 4-5-7

15 ádr d Torí d ircio pn d Plo onormdo NTRODÓN DOMNO DEL TEMPO - TPOS DE FNONES PLSO TRNGLR ESLER 4 TREN DE MPLSOS 5 RBTRRS: EJEMPLO 6 FNÓN RMP NTR 7 DENTE DE SERR 8 FNÓN ESLÓN NGLR 9 EJEMPLO N 4 EJEMPLO N 5 EJEMPLO N 7 DOMNO DE LPLE - TPOS DE FNONES EJEMPLO N EJEMPLO N EJEMPLO N : OND RETFD 4 EJEMPLO N 4 4 PROBLEM PROPESTO4 Págin 5 d 5 rión 4-5-7

operacional de Laplace (F5.3)

operacional de Laplace (F5.3) 9.4.8 Már d Enyo n Vulo MÁSTER DE ENSAYOS EN VUELO Y CERTIFICACIÓN N DE AERONAVES Curo 8/9 El méodo m oprcionl d Lplc F5. Már d Enyo n Vulo L rnormd d Lplc 9.4.8 Y L y y d { } Már d Enyo n Vulo L rnormd

Más detalles

Tema 1. La Transformada de Laplace

Tema 1. La Transformada de Laplace Tm Trnformd d plc .. nrodcción Con lo q conocmo d Torí d Circio, poil ordr y rolvr lo igin prolm: Circio riivo: y d Kirchoff Sim d ccion linl Circio R,, C rp nrl rp l clón: Ec. Difrncil Cond. nicil Homogén

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

SOLUCIÓN DE LA ECUACIÓN LINEAL A COEFICIENTES CONSTANTES: CASO HOMOGÉNEO. De acuerdo a la naturaleza de las soluciones, se obtienen tres casos:

SOLUCIÓN DE LA ECUACIÓN LINEAL A COEFICIENTES CONSTANTES: CASO HOMOGÉNEO. De acuerdo a la naturaleza de las soluciones, se obtienen tres casos: Mri: Cálclo III Uidd III: Eccio dircil d gdo ord Nro. d pág.: Libro: Eccio dircil co pliccio Aor: Zill Di G.... SOLUCIÓN DE LA ECUACIÓN LINEAL A COEFICIENTES CONSTANTES: CASO HOMOGÉNEO L orm grl d cció

Más detalles

La transformada de Laplace

La transformada de Laplace rormd d plc Y y d { y } Pirr-Simo plc 79-87 "Podmo mirr l do pr dl uivro como l co dl pdo y l cu d u uuro. S podrí codr u ilco qu culquir momo ddo brí od l urz qu im l urlz y l poicio d lo r qu l compo,

Más detalles

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución MEMÁIC VNZ RBJO PRÁCICO N O Sima Linal - nálii d Sñal - Convolción ESCRIPCIÓN E SEÑLES: FUNCIONES RMP ESCLÓN Y EL E IRC Grafiq la igin fncion dl impo. a b r - c d P - r-r- Ecriba na rprnación mamáica para

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) Tema 3: La Transformada de Laplace. Contenidos programáticos UCV-INGENIERÍA ECUACIONES DIFERENCIALES (56) ECUACIONES DIFERENCIALES (56) Tma 3: La Tranformada d Laplac Connido programáico 3.- Dfinicion prliminar. Dfinición d Tranformada d Laplac. Condición uficin

Más detalles

FUNCIONES REALES DE VARIAS VARIABLES

FUNCIONES REALES DE VARIAS VARIABLES FUNCIONS RALS D VARIAS VARIABLS Pnado po: Lic SANDRA SALAZAR PALOMINO Lic WILBRT COLQU CANDIA APURÍMAC PRU 9 FUNCIONS RALS D VARIAS VARIABLS Dinición: Una nción al d n aiabl indpndin dnoado po : D R B

Más detalles

MATEMÁTICA D y D 1 Módulo II: Transformada de Laplace

MATEMÁTICA D y D 1 Módulo II: Transformada de Laplace Mmáic D y D MATEMÁTICA D y D : Trnformd d Lplc úåú Mg. Mrí Iné Brgi Trnformd d Lplc S f() un función d vribl rl dfinid pr

Más detalles

3.11 Trasformada de Laplace de una función periódica 246

3.11 Trasformada de Laplace de una función periódica 246 3. Trformd d plc d un función priódic 46 3. Trformd d plc d un función priódic Dfinición 3.. Un función f llmd priódic i y olo i, it un númro no nulo f tl qu impr y cundo té n l dominio d f, tmbién lo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

CAPITULO V FUNCIONES DE RED

CAPITULO V FUNCIONES DE RED UTOS EÉTOS g. Guvo A. Nv Buillo APTUO FUNONES DE ED 5. Frcuci col 5. Fució d dci y Adici 5. d rford 5.4 Fucio d rd 5.5 Polo y ro d fucio d rd 5.. FEUENA OMPEJA Much fucio ud dcriir l for grl f ( ) K dod

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

SEÑALES Y SISTEMAS I TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SEÑALES Y SISTEMAS I TABLAS. Dpto. Teoría de la Señal y Comunicaciones SEÑALES Y SISEMAS I ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s () ( s) ( s) Lilidd () + b ( ) ( s) b ( s) Dsplzmio l impo ( ) Dsplzmio

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto. ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n

Más detalles

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s

Más detalles

Análisis de Fourier para Señales y Sistemas de Tiempo Discreto

Análisis de Fourier para Señales y Sistemas de Tiempo Discreto Aálii d Fourir pr Sñl y Sitm d impo Dicrto Rput d u itm LI l pocil compl [] h[] y [ ] h [ ] [ ] h [ ] [ ] Si y h h H [ ] [ ] [ ] [ ] ( [ ] ( H Autofució d lo Sitm LI Autovlor ocido y Si r rformd Si rformd

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctrico y conuctors. El prolm l potncil Gril Cno Gómz, G 9/1 Dpto. Físic F Aplic III (U. Svill) Cmpos Elctromgnéticos ticos Ingniro Tlcomunicción III. Cmpo léctrico y conuctors Gril Cno G Gómz,

Más detalles

MATEMATICA SUPERIOR APLICADA

MATEMATICA SUPERIOR APLICADA Mmáic Suprior y Aplicd Wilo Crpio Cácr // TRANSFORMADAS DE APACE MATEMATICA SUPERIOR APICADA Wilo Crpio Cácr Mmáic Suprior y Aplicd Wilo Crpio Cácr // TRANSFORMADAS DE APACE A mi qurido hijo... Mmáic Suprior

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

es divergente. es divergente.

es divergente. es divergente. .- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim

Más detalles

T3. Elementos finitos en elasticidad 2D (I)

T3. Elementos finitos en elasticidad 2D (I) . Elmno no n lcdd D.. oí d lcdd dmnonl.. Fomlcón dl lmno ngl d ndo.. Dczcón dl cmo d domcon.. Eccon d lo d l dczcón.5. Fomlcón dl lmno cngl d co ndo.. Condcon cc d l olcón ond con l MEF.. Condcon l convgnc

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia]

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia] UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecucio Difrcil [Gui] E l hoj d orcio or l úmro d rgu, l drrollo qu juifiqu u ru, u ru co i crrd u rcágulo lugo u

Más detalles

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO

CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctrco y conuctors El prolm l potncl. Cpc léctrc Grl Cno Gómz, G 7/8 Dpto. Físc F Aplc III (U. Svll) Cmpos Elctromgnétcos tcos Ingnro Tlcomunccón Grl Cno G Gómz, 7/8 Plntmnto l prolm Dscrpcón

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

GEOMETRÍA 1º BACHILLERATO

GEOMETRÍA 1º BACHILLERATO GEOMETRÍA º AHILLERATO ) Dmin c co l coo pi ) A() A =() hll () - = = - = = ) () A =(--) hll A A() - =- = - =- = ( ) A( ) c) (-) A =() hll A A() - = = + = =- ) S lo co li ( ) ( ) w ( ) hz l pción gáfic

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE.

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE. PITUO 6.- TRSFORD DE PE. 6. Irocció. 6. rform plc. 6.3 rform plc ilrl. 6.4 Ivrió l rform plc. 6.5 Solció ccio ifrcil co coicio iicil. 6.6 rform plc ilrl. 6.7 álii im mi l rform plc. 6. Irocció. Grlizmo

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

Tema 5 - El Volumen de Control

Tema 5 - El Volumen de Control T 5 - El Volun d Conrol Tráno onrol vol. onrol S rrdo d onrol Coordnd lgrngn Sguno d un qu voluon n l po Bln d r: Bln d nrgí: Q-WE -E S bro volun d onrol Coordnd ulrn Eudo d un qupo por dond nr y l r Bln

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a Divd d ucio u vibl l 5 LA DERIVADA, DERIVADAS LATERALES Diició 5 S : lr lr u ució, Dom, dimo qu divbl d í it y iito lim D D y d Si divbl t tbjo umo l otcio, d d p dci l divd d Ejmplo: Sí lim lim 8 Obvció:

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad:

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad: Mmáics Pági dod s coró s iormció hp://www.losskkdos.com ANÁLISIS LINEAL SERIES DE FOURIER Ejrcicios Rsulos CONCEPOS BÁSICOS Ls sris d Fourir prmi rprsr ucios priódics mdi combicios d sos y cosos sri rigooméric

Más detalles

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

Análisis de sistemas discretos: Muestreo y Reconstrucción.

Análisis de sistemas discretos: Muestreo y Reconstrucción. CAPITULO Análii d itm dicrto: Mtro Rcontrcción Solo útil l conociminto no c mjor Sócrt Contnido: Tm : Introdcción Torm dl mtro Tm : Torm d l rcontrcción Tm 3: Trnformción d modlo d pcio d tdo: Timpo contino

Más detalles

Sociedades anónimas con acciones nominativas. Titulares personas físicas

Sociedades anónimas con acciones nominativas. Titulares personas físicas Sociedades anónimas con acciones nominativas Titulares personas físicas Caso 1. Cómo se comunica ante BCU a una entidad con acciones nominativas o escriturales que tiene dos accionistas personas físicas,

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue:

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue: . Un vrill uniforme de longitud l y ms m cuelg verticlmente y está sujet por un rticulción en su extremo superior. L vrill se golpe en su extremo inferior con un fuerz orizontl F que dur un tiempo muy

Más detalles

LAS FUNCIONES HIPERBÓLICAS

LAS FUNCIONES HIPERBÓLICAS LAS FUNCIONES HIPERBÓLICAS Por Juan Manul PÉREZ DELGADO Inrpraión goméria dl argumno d la funion hiprbólia La dfiniión d la funion hiprbólia 3 Fórmula d la uma difrnia d argumno Rlaion nr la funion hiprbólia

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. = 0

y = v x Funciones conjugadas u(x, y) y v(x, y) si cumplen Ec. Cauchy-Riemann. = 0 Formulrio EL-470 Señle y Sitem / EL-470 Modelo de Sitem Ecuel de Ingenierí Electrónic Intituto Tecnológico de Cot Ric Prof.: Dr. Pblo Alvrdo Moy M α n = αm+ α en(a ± B) = en(a) co(b) ± co(a) en(b) co (A)

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctico y conductos Método d ls imágns Gbil Cno Gómz, G 7/8 Dpto. Físic F Aplicd III (U. Svill) Cmpos Elctomgnéticos ticos Ingnio d Tlcomunicción Gbil Cno G Gómz, 7/8 Sistm cg puntul plno plno

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

APELLIDOS Y NOMBRES: C.I.: NOTA: ASIGNATURA: Matemática II -

APELLIDOS Y NOMBRES: C.I.: NOTA: ASIGNATURA: Matemática II - REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES 1. Lln todos los datos n ltra

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

GUÍA PARA EL EXAMEN A TÍTULO DE SUFICIENCIA DE ECUACIONES DIFERENCIALES MAYO 2010, ACADEMIA DE MATEMÁTICAS IE, ICA, ISISA

GUÍA PARA EL EXAMEN A TÍTULO DE SUFICIENCIA DE ECUACIONES DIFERENCIALES MAYO 2010, ACADEMIA DE MATEMÁTICAS IE, ICA, ISISA GUÍA PARA EL EXAMEN A TÍTULO DE SUFICIENCIA DE ECUACIONES DIFERENCIALES MAYO 00, ACADEMIA DE MATEMÁTICAS IE, ICA, ISISA I. ECUACIONES DIFERENCIALES DE PRIMER ORDEN VARIABLES SEPARABLES Para a ión proporiona

Más detalles

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria

Más detalles

Apellido 1 Apellido 2 Nombre DNI Calificación. 1. Considere la asociación de cuadripolos de la siguiente figura: R G a Cuadripolo A 1:1.

Apellido 1 Apellido 2 Nombre DNI Calificación. 1. Considere la asociación de cuadripolos de la siguiente figura: R G a Cuadripolo A 1:1. Apellido Apellido Nomre DNI Clificción. Considere l socición de cudripolos de l siguiente figur: R G Cudripolo A c v G (t) R [ Z ] = R L : Cudripolo B [ Z ] = d Se pide: ) Clculr l mtri de prámetros Z

Más detalles

1/4 6,35 1/2 12,7 3/4 19, ,4 1 1/2 38,1 2 50,8

1/4 6,35 1/2 12,7 3/4 19, ,4 1 1/2 38,1 2 50,8 Tubrí Crctrític d un tubrí: Diámtro intrior = d Diámtro xtrior = D L rugoidd bolut = ε Epor = D d Pulgd mm. 1/ 6,35 1/ 1,7 3/ 19,05 1 5, 1 1/ 38,1 50,8 Cudl volumétrico E l cntidd d volumn d fluido qu

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

Definición. a) La transformada de Laplace (TL) de una función causal se define por medio de:

Definición. a) La transformada de Laplace (TL) de una función causal se define por medio de: a Tranformada d aplac Dfinición a) a ranformada d aplac (T) d una función caual dfin por mdio d: f F f d En odo lo valor para lo cual la ingral impropia anrior convrja f F dirmo qu la ranformada invra

Más detalles

Control Discreto en Plantas Continuas

Control Discreto en Plantas Continuas UdC - DIE Conrol Dicro n Plana Coninua Prolma Prnar l conrolador dicro n un ima coninuo. Conrol Análogo ld + - k c v k a v a l moor l Conrolador Análogo PID i R C C R 4 R R 3 o El conrolador á implmnado

Más detalles

Tema 2.4: Conceptos básicos de control PID?

Tema 2.4: Conceptos básicos de control PID? ma 2.4: Concpo báico d conrol D? Índic ma 2.4: Concpo báico d conrol.. Accion báico d conrol.. Conrolador odo.nada. 2. Conrol proporcional. 3. Conrol proporcional-drivaivo D. 4. Conrol proporcional-ingral.

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León IES diáo d álg Jio J Clo loo Gioi P d cco l Uividd d Cill Ló TEÁTICS II To p lo lmo Nº pági INDICCIONES:.- OPTTIVIDD: El lmo dá cog d l do opcio pdido doll lo co jcicio l od q d..- CLCULDOR.- S pmiiá l

Más detalles

f (x esta por encima de la grafica de (x)

f (x esta por encima de la grafica de (x) 1 RE ENTRE DOS CURVS dos unciones continus en un intervlo b pr todo elemento, b Sen dominio, se est por encim de l ric de de, de su en todo el intervlo., es decir l ric El áre bjo l curv corresponde l

Más detalles

55 EJERCICIOS DE VECTORES

55 EJERCICIOS DE VECTORES 55 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) d = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coordends de los vectores fijos

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

La función exponencial (propiamente dicha) es una función matemática, que aparece además en muchas ecuaciones de la física.

La función exponencial (propiamente dicha) es una función matemática, que aparece además en muchas ecuaciones de la física. Univrsidad d Chil Facltad d Cincias Vtrinarias y Pcarias DU- Métodos d Cantificación 9, Smstr Otoño Aydant Ignacio Trjillo Silva Eponncials y logaritmos: La fnción ponncial (propiamnt dicha s na fnción

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

1 3 i + + A = 0, B = ½, C = 1, D = -½, dx dx de donde, :

1 3 i + + A = 0, B = ½, C = 1, D = -½, dx dx de donde, : Hoj de Prolem Aál IV /. d L ríce de l eccó o,,,, í qe el polomo e decompoe de l form: Decompoemo e frccoe mple: D B A defcdo coefcee, e oee lo vlore: A, B ½,, D -½, Por lo qe: d d d / lclemo por eprdo

Más detalles

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades:

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades: ES STER BDJOZ Emn Junio d (Gnrl) nonio Mngino orcho UNVERSDD DE MUR MTEMÁTS MTEMÁTS Timpo máimo: hor minuos nsruccions: El lumno lgirá un d ls dos opcions propuss d un d ls curo cusions d l opción lgid

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

Unidad 4 : DERIVADAS PARCIALES. dy dt. d dt. z x. = dt

Unidad 4 : DERIVADAS PARCIALES. dy dt. d dt. z x. = dt Unidad DEIVADAS PACIALES Tma. gla d la Cadna (Edia la Scción. n l Sa ª Edición Hac la Taa No. ) gla d la Cadna paa na nción d na aiabl q a dpnd d oa aiabl. d d d d Si g nonc d d d d d d Ejmplo d n co d

Más detalles

Universidad Nacional de Ingeniería Facultad de Ingeniería Mecánica P.A I Área de Ciencias Básicas y Humanidades

Universidad Nacional de Ingeniería Facultad de Ingeniería Mecánica P.A I Área de Ciencias Básicas y Humanidades Uverdd Ncol de Igeerí Fculd de Igeerí Mecác P.A. -I Áre de Cec Bác Humdde 5-7- Solucoro del Eme Suuoro de Cálculo Numérco MB55 Sólo e perme el uo de u ho de ormulro Pregu El de l 5 upregu: Dd l guee mrz:

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

CAPÍTULO VIII APLICACIONES DE LA INTEGRAL

CAPÍTULO VIII APLICACIONES DE LA INTEGRAL PÍTULO VIII PLIIONES DE L INTEGRL 8. VOLÚMENES DE SÓLIDOS DE REVOLUIÓN o reó pl es r lreeor e eje e revoló eer sólo e revoló. L prmer reó reslt e rr reó pról lreeor el eje, metrs qe e el seo so se h ro

Más detalles

1.6. Integral de línea de un Campo Vectorial Gradiente.

1.6. Integral de línea de un Campo Vectorial Gradiente. 1.6. Integrl de líne de un mpo Vectoril Grdiente. n Definición. Se l función esclr f definid por f : D R R, un función continumente diferencible, y se l curv, un curv prcilmente suve definid prmétricmente

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

, al conjunto de puntos P

, al conjunto de puntos P Fcltd d ontdrí y Administrción. UNAM Intgrl dinid indinid Ator: Dr. José Mnl Bcrr Espinos MATEMÁTIAS BÁSIAS INTEGRAL DEFINIDA E INDEFINIDA SUMA DE RIEMANN S n intrvlo crrdo [, ], l conjnto d pntos P n

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE TEMA TRANSFORMADA DE APACE MOTIVACIÓN En ma anrior aprndió cómo rolvr cuacion difrncial linal con coficin conan uja a condicion dada llamada d fronra o condicion inicial S rcordará qu l méodo coni n nconrar

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

Guía de Movimiento Rectilíneo Uniformemente Variado

Guía de Movimiento Rectilíneo Uniformemente Variado Experienci demori DEPARTAMENTO DE FÍSICA Guí de Moimieno Recilíneo Uniformemene Vrido 1) Ver lo ideo que e encuenrn en lo iguiene link pr poder reponder l pregun que e encuenrn coninución hp://www.youube.com/wch?=lmfbwzjyml0

Más detalles

HERE I AM, LORD (Aquí Estoy, Señor) C/G. sea snow wind cie llu vien. and and. sky, rain, flame, mar, sol, paz, de de. lo y via y to y.

HERE I AM, LORD (Aquí Estoy, Señor) C/G. sea snow wind cie llu vien. and and. sky, rain, flame, mar, sol, paz, de de. lo y via y to y. HERE M, LOR (quí Esy, ) Melody VERSES Mor mpo, with mjesty ( = c. 80) / / Keybord poor es y el l s nd do cry. p. lme. chr. lor,,, Text: Bd on h 6; glish, n Schut, b. 1947; Spnish tr., Jun J. Sos, Pbro,

Más detalles

EXAMEN PARCIAL SUBSISTEMAS DE RADIOFRECUENCIA Y ANTENAS DPTO. DE TEORÍA DE LA SEÑAL Y COMUNICACIONES

EXAMEN PARCIAL SUBSISTEMAS DE RADIOFRECUENCIA Y ANTENAS DPTO. DE TEORÍA DE LA SEÑAL Y COMUNICACIONES Alumno: EXAEN PARCIAL UBIEA DE RADIOFRECUENCIA Y ANENA DPO. DE EORÍA DE LA EÑAL Y COUNICACIONE 5 de noviembre de 0 Problem (hy que entregr l hoj de ete enuncido) PROBLEA de mpliicdore de microond y ocildore

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

Respuesta al escalón unitario

Respuesta al escalón unitario Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió A/D y D/A L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

â 68 d, ºt l d l, l br d n nz l pl nt l pl t x t h t h n l r d l r, t d d r t d, pl n t d j t d n n v. H n n rr d l j n d t br l r. l nd, D. D n l, d

â 68 d, ºt l d l, l br d n nz l pl nt l pl t x t h t h n l r d l r, t d d r t d, pl n t d j t d n n v. H n n rr d l j n d t br l r. l nd, D. D n l, d NF R d l n d p l p r l r n d n l d l. l r. F Pr d nt d l n p l d d Bn n r. N v br d 8. l nfr r pt n d p l nt p r l n d d n d l n p l d d d B n r, p r l pl n t n d n l p rr l rv d d l l tr, t l l b rt d

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió AD y DA L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

II. Electrostática tica en el vacío

II. Electrostática tica en el vacío II. Elcosáca ca n l vacío 5. Ecuacons d la Elcosáca ca Gabl Cano Gómz, G 29/ Dpo. Físca F Aplcada III (U. Svlla Campos Elcomagnécos cos Ingno d Tlcomuncacón II. Elcosáca ca n l vacío Gabl Cano G Gómz,

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

l ij l'; 1r" 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,?

l ij l'; 1r 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,? ,' ḻ.) r Ë'.' -f,.-.. =(-,, '; -'..f - ' -. -^ 0 '..'.., ḷ C. c).,' C., c. C!.c.' - ạ - C. ( rô -, '.r,.,. ',, - v ) - '.. ) r, -) '_ r Ë )'.., ^,' à ',, ' ',.' ( ) ' ',' r r ) - r c c,', ḷ,' s ) c, -

Más detalles

CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6

CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6 ID_PLAN PLAN CH1 Mi Plan 150 CH2 Mi Plan 250 CH3 Mi Plan 350 CH4 Mi Plan 500 CH6 Mi Plan 800 CH9 Mi Plan Plus 165 CI1 Mi Plan Plus 385 CI5 Mi Plan Plus 1100 CI6 Mi Plan Plus 1430 CI9 Pool Optimo 167 CJ0

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles