IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:"

Transcripción

1 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y los rmos rlivos ( puno) ) L grái d ( punos) ) R Dom ( ) R Punos d or Con OX Con OY y ( ) ( ) 9 9 (,9) ( ) (,) No hy sínos vrils sínos horizonls ( ) ( ) y lim Uilizndo L' Hopil lim síno horizonl y undo Uilizndo L' Hopil lim y lim lim Uilizndo L' Hopil lim lim lim lim No is síno horizonl undo Uilizndo L' Hopil sínos olius ( ) ( ) ( ) m lim lim lim Uilizndo L' Hopil lim Uilizndo L' Hopil lim lim No is síno oliu undo

2 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni Coninuión dl Prolm E d l Opión )Coninuión sínos olius m lim lim ( Coninuión) ( ) lim 6 lim ( ) ( ) ( 6) lim No is síno oliu undo lim lim 6 6 ( 6) lim lim Uilizndo L' Hopil Uilizndo L' Hopil ) ' Crin ( ) ( ) ( ) [ ( ) ] ( )( ) ( )( ) ' < R ( )( ) > > R / > > > > > R / > > R < ( - ) ( - ) ( - ) < - ( - ) ( ) ( ) < - ( - ) ( - ) ( ) > ( ) ( ) ( ) Soluión ( - ) ()< ( ) ()> ( - ) ()< Crimino R / < < Drimino R / ( < ) ( > ) Mínimo rlivo n - ( ) rimino Máimo rlivo n - ( ) drimino ( ) D drimino ps D rimino ps

3 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni Coninuión dl Prolm E d l Opión 6 X Y ln ( ) ( ln ) E.- Clulr ( ln ) ( punos) ln ln ( ) ( ln ) ( ln ) ( ) ( ln ) ( ln ) d ln d ln ( ln ) ( ln ) d d ( ) ( ) ln ( ) ln ( ) d d ln d ln [ ] ( ) d [ ] [ ] ln ( ) ( ) [ ] ln ln ln d d

4 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni E.- Hllr l uión gnrl dl plno qu ps por l puno (,, - ), s prpndiulr z y l plno π y z y s prllo l r r ( punos) Los vors dirors d l r r, dl plno π y l ormdo por l puno y l puno gnério G, son oplnrios y por lo no l drminn d l mriz qu ormn los rs s d vlor nulo. λ z r y r y λ y z G vr (,, ) vπ (,, ) (, y, z) (,, ) (, y, z ) π ( ) ( z ) ( z ) y ( ) y ( z ) π y z y z E.- ) S un mriz udrd l qu - I (ndo I l mriz idnidd). Pror qu dmi invrs y uilizr l iguldd dd pr prsr - n unión d ( punos) B m m ) S l mriz d oiins d un sm linl. Hllr rzondmn los vlors d m pr los qu l sm s ompil drmindo ( puno) ) ( ) I ( ) I I ( ) ( I ) Eis y y s h luldo l vlor n I unión d ) Pr sr l Sism Compil Dr min do m m 9 m m 8 m 9 Si m 9 m 9 Pr odo m R Sism Compil Dr min do

5 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN B E.-D R R : s s qu () 7 7 C C C d ' K K ' K d ' y qu su grái in ngn horizonl n l puno P(, ). Hllr l prón d ( punos) E.- ) Sn > g y, hllr g[()] ( puno) ) Clulr d ( punos) [ ] d d d d v dv d du d u K d d ) g ) >

6 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni E.- ) Drminr ls oordnds dl puno mério d (-,, 6) rspo d l r r y z ( punos) ) Hllr l disni d r. ( punos) Hllmos un plno π qu onng l puno y qu s prpndiulr l r r. El puno Q d inrón dl plno on l r r s l puno mdio nr y su puno mério L uión dl plno π s l produo slr dl vor diror d l r qu s prpndiulr l vor ormdo por y l puno gnrdor G dl plno ndo diho produo nulo λ r y λ z λ vr (,, ) G (, y, z) (,, 6) (, y, z 6) (,, ) (, y, z 6) y v G v G z π y z Puno d or d l r r on l plno π λ ( λ) ( λ) 9λ 9 λ Q y z ' ' y ' y ' 9 ' (, 9, ) 6 y ' y ' 6 r r 6

7 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni 7 E.- Sn ls mris B y. ) Clulr - X 6 X B I X B I IX B I X B I X B B X ) dj dj Eis ) ( puno) ) Rsolvr l uión X B B ( punos)

8 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni 8 E.-) Si s s qu l drminn vl, lulr rzondmn y ( punos) ) Si s un mriz udrd d mño pr l ul s umpl qu - ( igul sr pud no d r min n d El I ) 6 6 qu Sindo ) ± rs- pus d l mriz ), pud sr l drminn d igul? ( puno)

9 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni 9

10 IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + )

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + ) I.E.S. Mdirráno d Málg Julio Jun Crlos lonso Ginoni OPCIÓN.- S l unción ) Clculr pr qu () ng un rmo n l puno (, ). (, punos) ) Clculr los rmos d l unción () cundo. ( puno) R R Crcin ) ln ln ln ) ( ) (

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Medieáneo de Málg Soluión Junio Jun Clos lonso Ginoni OPCIÓN..- Clul l se l lu del iángulo isóseles de peímeo áe máim h Máimo. d d u u h u Si d d.h h IES Medieáneo de Málg Soluión Junio Jun Clos lonso

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2011 Juan Carlos Alonso Gianonatti

I.E.S. Mediterráneo de Málaga Julio 2011 Juan Carlos Alonso Gianonatti I.E.S. Mdirráno d Málaga Julio Juan Carlos lonso Gianonai POPUEST.- ( punos) Encunra un cor prpndicular al plano d cuacions paraméricas El cor dircor dl plano π s prpndicular a él por lo ano hallarmos

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4 IES Mditáno d Málg Solución Sptim 7 Jun Clo lono Ginontti Opción..- S qu l gáic d l unción () c l qu pc n l diujo - - - - - - - - ) Dtmin l unción [ punto] ) Clcul l á d l unción omd [ punto] [ ] [ ] [

Más detalles

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX IES Medierráneo de Málg Solución Seiembre Jun Crlos lonso Ginoni OPCIÓN..- Dds ls mrices: Deerminr l mri invers de b Deerminr un mri X l que X X X X X dj dj IES Medierráneo de Málg Solución Seiembre Jun

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades:

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades: ES STER BDJOZ Emn Junio d (Gnrl) nonio Mngino orcho UNVERSDD DE MUR MTEMÁTS MTEMÁTS Timpo máimo: hor minuos nsruccions: El lumno lgirá un d ls dos opcions propuss d un d ls curo cusions d l opción lgid

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

Solucionario a las pruebas de acceso a la universidad 2013 Facultad de Ciencias Sociales de Melilla

Solucionario a las pruebas de acceso a la universidad 2013 Facultad de Ciencias Sociales de Melilla Soluionrio ls prues de eso l universidd Fuld de Cienis Soiles de Melill M TEM Á TIC S II Págin Soluionrio ls prues de eso l universidd Fuld de Cienis Soiles de Melill UNIVERSIDDES DE NDLUCÍ PRUE DE CCESO

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas Colo L Conpón EJERCICIOS REPASO PARA SEPTIEMBRE º BACHILLERATO-B 00-0 NOMBRE:.- Rsolvr utlzno l métoo Guss l unt stm. z z z 8.- Rsulv os ls unts uons 7.- Rsulv trs ls unts uons ponnls lortms lo lo 7 8

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

Tema 8 Integral definida

Tema 8 Integral definida Tem 8 Integrl definid ) Integrl definid Se y = f() un función ositiv y continu en el intervlo (, ). Consideremos el trecio mitilíneo, S, determindo or f(), f(), f() y el eje OX y dividmos el intervlo (,

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

TEMA 2. Determinantes Problemas Resueltos

TEMA 2. Determinantes Problemas Resueltos Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti IES Mediterráeo de Málg Juio Ju Crlos loso Giotti UNIVERSIDD DEL PIS VSCO PRUES DE CCESO L UNIVERSIDD CONVOCTORI DE JUNIO Este Eme tiee dos opcioes. Dees de cotestr u de ells No olvides icluir el código

Más detalles

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1)

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1) º BACHILLERATO. Resuelve los siguientes ites: Opión A ) L= os sen (Indeterminión) g Pr resolver est indeterminión se pli l órmul: Por tnto, L os sen os sen e e Se resuelve el siguiente ite: os sen (Indeterminión)

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: info@drioestudio.es www.drioestudio.es. Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles..

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Lím. = Lím. 1 e. x 1. x 0

Lím. = Lím. 1 e. x 1. x 0 UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO MODELO Cuso / MTERI: MTEMTICS II El lumno consá los cuo jcicios d un d ls dos opcions ( o ) qu s l ofcn.

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e.

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e. Hll l función F() l qu F ( ) y s primiiv d l función f ( ) + S r d nconrr l ingrl I d, qu si nos dmos cun d qu ( + ), s + inmdi: F( ) d ln( + ) + C +, si no nos dmos cun d so, l cmbio l convir n un rcionl

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

IES Mediterráneo de Málaga Solución Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A IES Medieáneo de Málg Soluión Junio Jun Clo lono Ginoni OPCIÓN Ejeiio. [ puno] L hipoenu de un iángulo eángulo ide. Si e he gi lededo de uno de u eo el iángulo engend un ono. Qué edid hn de ene lo eo del

Más detalles

Determinantes y matrices

Determinantes y matrices Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los djunos de. El deerminne de vle L mriz de

Más detalles

INTEGRALES LECCIÓN 13

INTEGRALES LECCIÓN 13 INTEGRALES LECCIÓN 13 Índie: Cálulo de áres. Ejemplos. Prolems. 1.- Cálulo de áres Si y son dos uniones ontinus en el intervlo [,] tles que, entones el áre de l reión del plno limitd por sus ráis y ls

Más detalles

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a. 5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos) Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt

Más detalles

a b c =(b a)(c a) (c b)

a b c =(b a)(c a) (c b) E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

TEMA 8: DETERMINANTES

TEMA 8: DETERMINANTES DETERMINNTES MTEMÁTICS II TEM : DETERMINNTES Dtrnnts orn os trs S non trnnt l tr ur orn os t l nº rl rsultnt t Ejplos: s rprsnt S non trnnt l tr ur orn l nº rl rsultnt : t Est prsón s ono oo rl Srrus Ejros:

Más detalles

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1. Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8

Más detalles

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1 II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 6 FUNCIONES LOGARÍTMICAS Un función ponncil d s tin l form f ( pr tod R > 0 y. Si l s s s llm ponncil nturl tin l form dond f (. L.- Con l informción qu cunt

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c}

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c} Funiones El onepto de Funión es un de ls ides undmentles en l Mtemáti. Csi ulquier estudio que se reier l pliión de l Mtemáti prolems prátios o que requier el nálisis de dtos, emple este onepto mtemátio.

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

CÁLCULO DE ÁREAS DE RECINTOS PLANOS

CÁLCULO DE ÁREAS DE RECINTOS PLANOS CÁLCULO DE ÁREAS DE RECINTOS PLANOS Ejercicio Hllr el áre del recinto limitdo por l gráfic de = sen el eje OX entre 0 π Ejercicio Clculr el áre del recinto limitdo por ls curvs =, = 0 8 = + 8, =, ls verticles

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio:

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio: CÓNICS - - Indiiones Llmndo l mriz soid un óni en un deermindo sisem de refereni l mriz de su form udrái, iers funiones de DERIVE permien lulr lgunos invrines epresiones soidos l euión de dih óni neesrios

Más detalles

Tema 4 Funciones(IV). Aplicaciones de la Derivada.

Tema 4 Funciones(IV). Aplicaciones de la Derivada. Tema 4 Funciones(IV). Aplicaciones de la Derivada. 1. Monotonía. Crecimiento y decrecimiento de una función. Etremos relativos 3. Optimización 4. Curvatura 5. Punto de Infleión 6. Propiedades funciones

Más detalles

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{}

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{} Vmos lulr ls siguientes integrles de tryetori ) Se α(t) = (os(t), sin(t)) on t [, π ] y f(x, y) = x + y Sol. Tenemos que f(α(t)) = os(t) + sin(t) por otro ldo α (t) = ( sin(t), os(t) α (t) = ( os(t)) +

Más detalles

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE. .3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

SOLUCIONES DE LIMITES

SOLUCIONES DE LIMITES SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto) San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR.... OBJETIOS....2 MODELIZACIÓN....3 IDENTIFICACIÓN... 2.4

Más detalles

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11. L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg

Más detalles

Tema 6: Matrices m n

Tema 6: Matrices m n www.seleividd-grd.om Tem : Mries.. Mries. Defiiió primeros ejemplos Se llm mriz rel de dimesió mx l ojuo de m úmeros reles ordedos e m fils (horizoles) olums (veriles). L form más geerl de represer u mriz

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles