26 EJERCICIOS de LOGARITMOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "26 EJERCICIOS de LOGARITMOS"

Transcripción

1 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto. v) Dominio y rcorrido. vi) Asíntots. vii) lim f() y lim f() - ) f() = 0 y f() = b) f() 0, = y f() = 0, c) f() = y f() = d) f() = y f() = Dfinición d ritmo: N = = N (dond >0, ) Sistms d ritmos más utilizdos: NOMBRE BASE NOTACIÓN DEFINICIÓN N = 0 = N Logritmo dciml =0 N = = N Logritmo nprino = Ln, dond,759 s llm ct. d Eulr; s un númro irrcionl. Dfinición d ritmo:. Utilizndo l dfinición, hllr los siguints ritmos: ) 9 b) c) /9 d) (-9) ) f) g) h) i) 6 j) 0 0,0 k) /6 l) 5 0, m) 56 n) /6 o) 0,5 p) q) 0 r) /6 s) 7 t) (Soluc: ) ; b) ; c) -; d) ; ) /; f) /; g) ; h) /; i) ; j) -; k) -; l) -; m) ; n) -; o) -; p) 0; q) 0; r) -6; s) /; t) ) S rcomind vr tmbién los jrcicios rsultos pág. 5 y 0 pág., y rlizr los jrcicios 9 y 50 d l pág. dl libro.. Clculr los ritmos dcimls d los siguints númros (sin clculdor) y comprobr l rsultdo: ) b) c) 0,00 d) / ) 0 f) 0-7 g) 0 h) (Soluc: ) ; b) 6; c) -; d) -6; ) ; f) -7; g) ; h) 0) S rcomind rlizr tmbién l jrcicio 56 d l pág. dl libro. En honor John Npir (Npr, n ltín), mtmático inglés (550-67) invntor d los ritmos.

2 . Utilizndo l dfinición d ritmo, hllr l vlor d n cd un d ls iguldds siguints: ) = ) = i) = m) 0.0= q) 0.5 = b) /= f) =- j) 6= n) =-/ r) (-6)= c) 00= g) 9= k) 5=- o) /6 = s) 5=- d) = h) = l) /00 00= p) =0 t) )= (Soluc: ) ; b) -; c) ; d) 7; ) ; f) /9; g) 7; h) ; i) ; j) 6; k) /5; l) -; m) 0,; n) /; o) /96; p) ; q) 0,065; r) ; s) /5; t) 0) S rcomind vr tmbién l jrcicio rsulto pág. y rlizr los jrcicios 5 y 5 pág. ( n l bs) Cálculo rítmico: Fórmuls dl cálculo rítmico: p q = p + q p = p - q q n p = n p n p = p n (tods son válids n culquir bs) Csos prticulrs: = = = = = = 0 = = 0 5. Aplicndo ls fórmuls ntriors, clculr: ) 6 6 h) p) 9 w) γ) b) 7 c) d) ) f) 5 6 g) 9 i) j) k) l) m) 6 n) 6 o) 5 q) r) ( ) s) t) 7 u) v) 5 6 ) y) z) α) β) , δ) 7 ε) /5 5 (Soluc: ) -; b) /; c) /; d) -/; ) ; f) -/5; g) /; h) -; i) /; j) /; k) 5/6; l) /; m) 6; n) -; o) /5; p) -/; q) -/; r) ; s) 5/; t) /; u) -9/5; v) -/; w) -5/; ) ; y) -/; z) -/; α) /; β) /; γ) /; δ) -7/; ε) -) S rcomind rlizr tmbién l jrcicio pág. 6 dl libro.

3 6. Eprsr n función d los ritmos dcimls d los siguints númros, y comprobr con l clculdor: ) 6 b) 5 c) /5 d) 0,5 ) 0,65 f) 50 g) /0 6 h) i) 6/5 j) 0, k) 0,0 5 0 l) m) 0,0 (Soluc: ) ; b) - ; c) -+6 ; d) - ; ) - ; f) - ; g) -- ; h) + + j) -+5 ; k) -+ ; l) 5 ; m) ) ; i) -+5 ; 7. Eprsr n función d : ) b) c) d) ) (Soluc: ) ; b) - ; c) - ; d) + ; ) + ). Eprsr n función d y los ritmos siguints, y comprobr con l clculdor: ) 5 b) c) / d) 9/ ) 6 f) 0 g) 6 h),6 i), (Sol: ) - ; b) + ; c) - ; d) - ; ) j) 90 k) 0,7 l) 0,7 m),6 + ; f) + ; g) + ; h) -+ + ; i) -+ + ; j) + ; k) -+ ; l) -+ + ; m) -/+ + ) 9. Eprsr n función d, y 7 los ritmos siguints: ) b) 0, c) 0,5 d), ) 0. Justificr ls siguints iguldds: ) 6 + = b) 5=(- ) c) = 9 ) + = 5 + d) 0 = S rcomind rlizr tmbién l jrcicio 6 pág. dl libro.. Sbindo qu 7,5=0,665..., hllr (sin clculdor): ) 75, b) 0,0075 c) 75. Utilizndo ls fórmuls dl cálculo rítmico, dsrrollr l máimo ls prsions siguints: mnp ) () d) ( ) mn r g) qr i) b) ( ) ) () p c / c) f) h) j) y mn k)

4 l) m) ( -y ) mn n) pq r m n o) m p) m + q) ( 0 ) r) b c5 mp s) ( n y m ) m n t) pq u) c (Sol: ) + ; b) + ; c) + - y; d) + ; ) + ; f) ; m + n g) m+ n+ p- q- r; h) ; i) r m+r n-r p; j) -- ; k) ; l) ; n m - p -r q m + n m n m) (+y)+(-y); n) ; o) ; p) + + b + 5 c m p q) ; r) ; s) n +m y; t) + m+ n- p- q u) ) + m+ + S rcomind vr tmbién l jrcicio rsulto pág. 6 y rlizr l jrcicio 60 pág. dl libro. m m +. Obtnr n ls siguints prsions: = + ) = + b b) + b = b c) Soluc : = 0 ( ) b 6 c + d Soluc : = ( c d ) S rcomind vr tmbién l jrcicio rsulto pág. dl libro, y rlizr l jrcicio 55 pág. dl libro... Sbindo qu =7 y=, utilizr l clculdor pr hllr: ) b) () c) d) (+y) ) + y f) + y g) + y lo g + lo g b = ) Hllr sbindo qu b (Soluc: =9) N b) Si N=, cuánto vl N? Cuánto vl N? (Soluc: -; N=6) S rcomind vr tmbién los jrcicios rsultos y pág. 6, y rlizr los jrcicios y 5 pág. 6, y 57 y 5 pág. dl libro. 6. En qué bs s cumpl qu + =? (Soluc: =6) S rcomind rlizr l jrcicio 6 pág. 9 dl libro. 7. V o F? Rzon l rspust: ) (A+B)= A + B b) (A +B )= A+ B = c) ) = d) AB = C C AB

5 f) El ritmo d un númro simpr d como rsultdo un númro irrcionl. g) Los ritmos dcimls d númros < son ngtivos; n cso contrrio, son positivos. S rcomind rlizr tmbién l jrcicio 6 pág. 9 dl libro.. CURIOSIDAD MATEMÁTICA: Comprobr l vrcidd d l siguint fórmul, dbid l físico británico Pul Dirc (90-9), qu prmit scribir culquir númro N mpdo solmnt trs doss: N= (N rícs) 9. Cuáls son los númros cuyos ritmos dcimls stán comprndidos ntr 0 y? Y ntr 0 y -? (Soluc: y 00; 0,0 y ) Ecucions ponncils: 0. Rsolvr ls siguints cucions ponncils por l método más propido, y comprobr l rsultdo n cd cso: = = 6+ ) (Soluc:,57) w) (Soluc: = =) b) 7 (Soluc: -,759) - = ) (Sol: =, =) + + = 0 = + c) (Soluc: 5,79) y) (Soluc: -7,0) + = = 0 d) (Soluc: =) z) (Soluc: =, =) + + = 6 = 79 ) (Soluc: =) α) (Soluc: =5) = + f) (Soluc: =-6) β) 9 = 7 (Soluc:,5) = 0 +9 = g) (Soluc: =) γ) (Soluc: 5,) = h) (Soluc: soluc.) = δ) (Soluc: =±) 5 = + i) 5 (Soluc: =) 0 = ε) (Soluc: =) = + = j) (Soluc:,055) ζ) (Soluc: =0, =) 00 0 = = k) (Soluc: =) η) + (Soluc: =-, =) / = 76 / = 76 l) (Soluc:,099) θ) + = m) (Soluc: soluc.) = ι) (Soluc: =) +5 = 7 + = 0 n) (Soluc: =) κ) (Soluc: o) = 7 soluc.) + = 0 (Soluc: -,95) λ) (Soluc: =, = / ) = = µ) (Soluc: =) p) (Soluc: =, =) q) ( ) = 9 ν) = (Soluc: =0, =) (Soluc: =) + = ξ) (Soluc: =) + + = 0 r) (Soluc: =) + = = 0 ο) (Soluc: =) s) (Soluc: 0,) = 7 π) (Soluc: =) t) = (Soluc: =-) = 0 u) (Sol: =, =; =) = + v) (Soluc: =) ρ) = 6 σ) 9 = (Soluc:,550) (Soluc: =, = / )

6 τ) = (Soluc: =-) υ) 6 = + (Soluc: =) S rcomind vr tmbién los jrcicios rsultos pág. 7 y 5 pág. 9, y rlizr los siguints jrcicios dl libro: 5c,d y 59,c pág. ; 7 y,b pág. 79; 5, 6 y 7 págs. 9 y 9. Considérs l siguint fórmul: U = P( ρ + V) /D ρ V P D U D Dspjr ρ (Ayud: no s ncsrio utilizr ritmos) (Soluc: = + ). Sin ncsidd d oprr, rzonr qu cucions dl tipo: + = = = 0, tc. no pudn tnr solución. Ecucions rítmics:. Rsolvr ls siguints cucions rítmics, comprobndo l vlidz d ls solucions obtnids: ) - (+6)= (Soluc: =) b) ( +)= 65 (Soluc: =±) c) (Soluc: =±5) + = d) (-)+ (+)= + (-) (Soluc: =5) Soluc : = 0; = 5 0 /0 ) +7-9=0 ( ) f) (-)= - (Soluc: =) g) (+)- (-6)= (Soluc: =7) h) (+9)=+ (Soluc: =/) i) (+)+ (-)=/00 (Soluc: soluc.) = j) (Soluc: =5) k) ( -7+0)= (Soluc: =; =5) l) + (+)= (Soluc: =) m) ( ++6)=+ (+) (Soluc: =; =6) n) + + = (Soluc: =/) o) - (-)= (Soluc: =) p) (-)+ (+6)= (+) (Soluc: =) q) + (-)= (Soluc: =5) r) (+9)- = (Soluc:,) s) (+6)-= (-) (Soluc: =; =/5) t) (+)- = (Soluc: =/0)

7 u) (6-)- (+)= (Soluc: =) v) + =5 (Soluc: =0) S rcomind vr tmbién los jrcicios rsultos pág. 79 y pág. 9 Sistms d cucions ponncils y/o rítmics: S rcomind vr los jmplos b pág. 0 y pág., y rlizr los jrcicios b, c pág. y pág. 9 dl libro. Cmbio d bs: = b b (fórmul dl cmbio d bs). Utilizndo l fórmul dl cmbio d bs s pid: ) Dmostrr qu b b = b) Hllr l rlción ntr l ritmo nprino y l ritmo dciml. c) Eprsr n función d (Soluc: =,9) 5. ) Nustr clculdor sólo dispon d ritmos dcimls. Usndo l fórmul dl cmbio d bs, hllr 5 b) Rzonr qu 5 s irrcionl. 6. Volvr hcr l jrcicio, pro utilizndo st vz l clculdor y l fórmul dl cmbio d bs. S rcomind dmás vr los jrcicios rsultos 5 pág. 6 y 9 pág., y rlizr l jrcicio pág. 6 dl libro.

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

31 EJERCICIOS de LOGARITMOS

31 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto.

LOGARITMOS. John Neper ( ) Henry Briggs ( ) MATEMÁTICAS I 1º Bachillerato Alfonso González IES Fernando de Mena Dpto. LOGARITMOS John Neper (550-67) Henry Briggs (56-60) MATEMÁTICAS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que l vrible

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

XIV.- ALIMENTACIÓN AL RODETE CÁMARA ESPIRAL

XIV.- ALIMENTACIÓN AL RODETE CÁMARA ESPIRAL XIV.- ALIMENTACIÓN AL OETE CÁMAA ESPIAL XIV..- IMENSIONAMIENTO PAA TUBINAS FANCIS (ELECTOCONSULT) c [m/s] 0,44 5,4 nq Figura 4.. Vlocia ntraa n la spiral n función la vlocia spcífica n s. Figura 4.. Esquma

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

85 EJERCICIOS de ECUACIONES y SISTEMAS de 1 er y 2 o GRADO

85 EJERCICIOS de ECUACIONES y SISTEMAS de 1 er y 2 o GRADO 85 EJERCICIOS de ECUACIONES y SISTEMAS de er y o GRADO. Resolver las siguientes ecuaciones de er grado y comprobar la solución: a) 5[-(+)] -0+0 (Soluc: -) b) -[-(-)] (Soluc: 9) c) [6-5(-)]5-(-5) (Soluc:

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

EJERCICIOS DE INECUACIONES

EJERCICIOS DE INECUACIONES EJERCICIOS DE INECUACIONES REPASO DE DESIGUALDADES: 1. Dadas las siguientes desigualdades, indicar si son V o F utilizando la recta real. Caso de ser inecuaciones, indicar además la solución mediante la

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

LOGARITMOS. John Neper ( ) Henry Briggs ( )

LOGARITMOS. John Neper ( ) Henry Briggs ( ) LOGARITMOS John Neper (550-67) Henry Briggs (56-630) MATEMÁTICAS CCSS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que

Más detalles

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES

CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES CAPÍTULO 1. PROPAGACIÓN DE LAS ONDAS PLANAS UNIFORMES 1.1 Ecuación de onda. Las ecuaciones de Maxwell se publicaron en 1864, su principal función es predecir la propagación de la energía en formas de Onda.

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Qué son los rangos de usuarios?

Qué son los rangos de usuarios? Rangos de usuarios [Rangos de usuarios] Qué son los rangos de usuarios? Los rangos de usuarios son imágenes que aparecen debajo del nombre de los usuarios. Estos rangos se encuentran divididos en tres

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

Determinización: Construcción de Safra

Determinización: Construcción de Safra Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

GRIEGO BÍBLICO. Josías Grauman

GRIEGO BÍBLICO. Josías Grauman GRIEGO BÍBLICO Josías Grauman CONTENIDO INTRODUCCIÓN:... 3 CAPÍTULO 1: EL ALFABETO... 7 CAPÍTULO 2: EL VERBO - PRESENTE INDICATIVO ACTIVO...11 CAPÍTULO 3: EL SUSTANTIVO - LOS CASOS...17 CAPÍTULO 4: LA

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Es una función exponencial con base 2. Veamos con la rapidez que crece:

Es una función exponencial con base 2. Veamos con la rapidez que crece: Funciones eponenciles y ritmics Doc. Luis Hernndo Crmon R Funciones Eponenciles Ejemplos: f ( ) Es un función eponencil con bse. Vemos con l rpidez que crece: f () 8 f (0) 0 04 f (0) 0,07,74,84 Funciones

Más detalles

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS I UNIDAD 8 LÍMITES DE FUNCIONES CONTINUIDAD CONCEPTOS PREVIOS: Dcimos qu: y s l tind, si tom vlors cd vz más próimos Ejmplo: L scunci d númros ; ; ; 9; 8; ;

Más detalles

Formulario de integrales

Formulario de integrales Formulrio de integrles c -5 Slvdor Blsco Llopis Este formulrio puede ser copido y distribuido libremente bjo l licenci Cretive Commons Atribución. Espñ. Séptim revisión: Febrero 5 Set revisión: Julio 3

Más detalles

Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones.

Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones. Preliminares: conjuntos, operaciones con conjuntos, aplicaciones, relaciones. En este tema expondremos nociones y notaciones fundamentales que se emplearán cotidianamente en cualquier desarrollo matemático.

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

TÉCNICAS DE INTEGRACIÓN

TÉCNICAS DE INTEGRACIÓN C TÉCNICAS DE INTEGRACIÓN C. CONCEPTOS PRELIMINARES C.. Función primitiva Sea f : I R, donde I es un intervalo real. Diremos que la función F : I R es una función primitiva de la función f en I si se cumple

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

Las anteriores fórmulas suelen expresarse matricialmente como

Las anteriores fórmulas suelen expresarse matricialmente como Capítulo III Teoría de las curvas 1. Clasificación de curvas en R 3 En esta sección veremos que, esencialmente, la curvatura y la torsión determinan las curvas de R 3. Para ello necesitaremos las conocidas

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: EJERCICIOS de POTENCIAS º ESO FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) (

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10 Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...

Más detalles

Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Área de Matemática I N G R E S O 2 0 1 0. Matemática

Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Área de Matemática I N G R E S O 2 0 1 0. Matemática Universidad Nacional de Río Cuarto Facultad de Ingeniería Área de Matemática I N G R E S O 0 0 Matemática Docentes ejecutores: Jorge Agustín Adaro: Adrián Barone: Alejandra Méndez: Jorge Morsetto: Gabriel

Más detalles

Modelos Estadísticos de los Factores de Riesgo: Series de Tiempo

Modelos Estadísticos de los Factores de Riesgo: Series de Tiempo Contenido Estructura básica análisis de riesgo Ejemplos Distribuciones codicionales y no condicionales Hacia donde vamos?: medidas de riesgo Métodos para deducir la distribución del proceso de pérdidas

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

43 EJERCICIOS de POLINOMIOS

43 EJERCICIOS de POLINOMIOS EJERCICIOS de POLINOMIOS 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 (Soluc: a) ; b) 0; c) 8; d) -) Ejercicios libro: pág. 1:

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

4 PROPIEDADES MECÁNICAS DE LOS LIMOS. ENSAYOS EDOMÉTRICOS Y DE RESISTENCIA AL CORTE. COLAPSABILIDAD. PROBLEMÁTICA DE LOS LIMOS.

4 PROPIEDADES MECÁNICAS DE LOS LIMOS. ENSAYOS EDOMÉTRICOS Y DE RESISTENCIA AL CORTE. COLAPSABILIDAD. PROBLEMÁTICA DE LOS LIMOS. 4 PROPIEDADES MECÁNICAS DE LOS LIMOS. ENSAYOS EDOMÉTRICOS Y DE RESISTENCIA AL CORTE. COLAPSABILIDAD. PROBLEMÁTICA DE LOS LIMOS. 4.1. Ensayos edométricos. Colapsabilidad, compresibilidad y consolidación

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

(Soluc: a) 1/x b) x 6 /36 c)

(Soluc: a) 1/x b) x 6 /36 c) . Calcular las siguints intgrals potncials (s rcominda hacr la comprobación: a d b d c d d d t t dt f d g t dt h d i d j d t m d n d o d p + d ( t dt l d (Soluc: a / b / c j d t / l m t / f 8 8 n o g t

Más detalles

NOMENCLATURA, NOTACIÓN Y SIMBOLOGÍA MATEMÁTICA

NOMENCLATURA, NOTACIÓN Y SIMBOLOGÍA MATEMÁTICA NOMENCLATURA, NOTACIÓN Y SIMBOLOGÍA MATEMÁTICA. Nomenclatura Es la terminología que utiliza símbolos y nombres para designar elementos y conceptos en las ciencias y en las humanidades. El lenguaje simbólico

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

A modo de Presentación

A modo de Presentación Ecuaciones Diferenciales de Orden Superior Primera Parte Funciones Eulerianas Ing. Ramón Abascal Prof esor Titular de Análisi s de Señales y Sist emas y Teoría de los Circuit os I I en la UTN, Facultad

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

Manual de teoría: Trigonometría Matemática Bachillerato

Manual de teoría: Trigonometría Matemática Bachillerato Manual de teoría: Trigonometría Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Trigonometría: José Pablo Flores Zúñiga Página Contenido: 4) Trigonometría 4. Trigonometría Básica 4. Funciones

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

es divergente. es divergente.

es divergente. es divergente. .- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

Aptitud Matemática ( ) ( ) EDADES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. 3x x = 75 3x 5x = 75 x = 15 3(x) = 45. 1 + 2α = 9 + α RPTA.: B RPTA.

Aptitud Matemática ( ) ( ) EDADES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. 3x x = 75 3x 5x = 75 x = 15 3(x) = 45. 1 + 2α = 9 + α RPTA.: B RPTA. EDADES 1 Teófilo tiene el triple de la edad de Pedro Cuando Pedro tenga la edad de Teófilo, este tendrá 75 años Cuál es la edad de Teófilo? A) 30 B) 35 C) 40 D) 45 E) 50 3 Las edades de tres amigos son

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles