MATRICES Y DETERMINANTES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATRICES Y DETERMINANTES"

Transcripción

1 Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles.. Clulr X - X I si X. Se l triz M. Clulr M.. Clulr los deterinntes de ls siguientes tries: ) A ) B. Clulr l triz invers de l triz. Hllr l triz invers de l triz A 8. Siendo que d g e h f i, lulr g d h e i f 9. Sin desrrollr oprue que:. Drio Estudio C/ Grn Ví, 8 Mdrid / T: 9 98 / Págin de

2 Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: Drio Estudio C/ Grn Ví, 8 Mdrid / T: 9 98 / Págin de. Clulr l triz djunt de: A 9 8. Clulr l triz invers de: A por Guss y por djuntos.. Clulr l triz invers de: A. Si i h g f e d, lulr e d f h g i. Clulr inverss de: A y B. Dd l triz A : ) Clulr los vlores de pr los que existe l triz invers de A. ) Si, lulr A -.. Clulr el rngo de l triz: A. Clulr el rngo de l triz: B

3 Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: Drio Estudio C/ Grn Ví, 8 Mdrid / T: 9 98 / Págin de 8. Clulr el rngo de l triz: A 9. Estudir el rngo de l triz A λ λ λ pr los distintos vlores del práetro.. Estudir el rngo de l triz B. Clulr el rngo de l triz A. Estudir el rngo de l triz A pr los distintos vlores del práetro.. Hll el rngo de l triz A según los vlores del práetro.. Resolver ls siguientes euiones triiles: ) A X B C ) A X B C ) (A B) X C D d) A X B X C e) A X B X. Dds ls tries A - - y B, resolver l siguiente euión triil: A X B

4 Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: Drio Estudio C/ Grn Ví, 8 Mdrid / T: 9 98 / Págin de. Dds ls tries A, B y C, resolver l euión triil: AX B C. Resolver el siguiente siste de euiones triiles: Y X Y X 8. Resolver: B A B A 9. Resolver l siguiente euión triil: XB A C, siendo que: A - -, B - y C Dds ls tries A y B : ) Clulr los vlores de, y pr que se upl ABBA. ) Si, hllr B.. Estudir el rngo de l triz M - ( -) - según los vlores del práetro.. Resolver l euión triil: X A X - B, siendo A - y B

5 Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: Dds ls tries A, I ) Copror que A A y que A I A I. ) Se M un triz udrd de orden. Se puede segurr que se uple que M M? Rzonr l respuest. ) Enontrr tods ls tries udrds M, de orden, tles que: M I M I. ) Hllr tods ls tries A distints de l triz tles que A A. ) Pr un ulquier de ls tries A otenids en el prtdo ) lulr: M A A A.. Dds ls tries A, B - ) Deterinr l triz invers de B. ) Deterinr un triz X tl que A B X.. ) Si A es un triz tl que A, uál es el vlor del deterinnte de A? ) Clulr un núero k tl que: k Drio Estudio C/ Grn Ví, 8 Mdrid / T: 9 98 / Págin de

6 Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: ) Sen A y B dos tries invertiles que verifin l identidd. A B AB. Copror que entones se tiene l fórul: ( I B) B A (donde I denot l triz identidd). - ) Dd l triz A, hllr l triz B pr l ul se - verifi A B AB. 8. Se A un triz rel udrd de orden n que verifi l iguldd A I, siendo I l triz identidd de orden n. Se pide: ) Expresr - A en térinos de A. n ) Expresr A en térinos de A e I, pr ulquier núero nturl n. ) Clulr pr que A I, siendo l triz A. Drio Estudio C/ Grn Ví, 8 Mdrid / T: 9 98 / Págin de

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

MATEMÁTICAS II SISTEMAS DE ECUACIONES

MATEMÁTICAS II SISTEMAS DE ECUACIONES Mite Gonále Jurrero Proles PU. Sistes de euiones. SISTEMS DE ECUCIONES. Considérese el siguiente siste de euiones lineles (en él,, son dtos; ls inógnits son,, Si, son no nulos, el siste tiene soluión úni.

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución:

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución: STUDIO D SISTS. Discute según los vlores de, el siste. Resuélvelo cundo. l siste se define edinte ls trices: tri de coeficientes tri plid l estudio de sistes se puede hcer de dos fors diferentes: - por

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 ÁLGR (Seleividd ) José Mrí Mríne Medino LGUNOS PROLMS D SLCTVDD PROPUSTOS N Mries deerinnes rgón, junio Deerin el rngo de l ri, que ree oninuión, según los vlores de : ) Deerin, si eise, un ri,, que verifique

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

determinante haciendo todos los productos, Tema 8. Determinantes.

determinante haciendo todos los productos, Tema 8. Determinantes. Tem. Determinntes.. Definiión de determinntes.. Propieddes de los determinntes.. Cálulo de determinntes de orden myor que (No entr en seletividd).. Rngo de un mtriz.. Mtriz invers... Definiión del determinnte

Más detalles

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal.

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal. Te 3 Sistes de ecuciones lineles. 3. Sistes lineles notciones triciles y vectoriles. 3. Teore de Rouché-Froenius. Sistes lineles hoogéneos. 3.3 Resolución de sistes de ecuciones. 3.4 Discusión de sistes

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9 Te Sistes de Ecuciones.- Introducción..- Sistes de Ecuciones Lineles..- Método de Guss..- Discusión de Sistes Lineles..- Regl de Crer..- Mtri Invers..- Ecuciones Mtriciles..- Rngo de un Mtri..- Ejercicios

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES. MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij

Más detalles

TEMA 2. Determinantes Problemas Resueltos

TEMA 2. Determinantes Problemas Resueltos Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

Algebra de Logaritmos. 2do. Medio. (f) log 27 ( 1 81 ) (g) log a. (i) log (j) log 9. (i) (j) log x. (k) log 4 x = 1, 5.

Algebra de Logaritmos. 2do. Medio. (f) log 27 ( 1 81 ) (g) log a. (i) log (j) log 9. (i) (j) log x. (k) log 4 x = 1, 5. do. Medio. 0. 0. 0. Expresr en form rítmic : = 0, 9, = 7 Expresr en form exponencil : 64 = 6 = 9 Clculr los siguientes ritmos : 6 7 ( 8 ) 8 = 4 = 4 8 9 0, (h) 4 0 04. 0. 8 0, 06 7 4 Determinr el vlor de

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado

Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Unidd.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl de determinntes. Determinnte de mtries de orden y orden... Determinnte mtries udrds de orden.. Determinnte mtries

Más detalles

Resumen de Álgebra. Matemáticas II. ÁLGEBRA

Resumen de Álgebra. Matemáticas II. ÁLGEBRA Resumen de Álger. Mtemátics II. ÁLGEBRA.- RESOLUCIÓN DE SISTEMAS. MÉTODO DE GAUSS El método Guss consiste en convertir l mtriz socid un sistem de ecuciones en otr mtriz equivlente tringulr superior, hciendo

Más detalles

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina MTRICES Mtries de números reles. Ddos dos suonjuntos = {,,,...i...n} = {,,,...j...m} perteneientes l onjunto de los números nturles, llmremos mtri de dimensión nm tod pliión X ---------> R / (i,j) --->

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...

Más detalles

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando º DE HLLERTO MTRES Y DETERMNNTES Soluones -- DETERMNNTES MTRZ NVERS. lulr el vlor del determnnte. Hllr, en funón de, el vlor del determnnte: en Sndo on votndo nulmos en Sndo ( ( en Sndo ( ( (. Enontrr

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

1.-Algunas desigualdades básicas.

1.-Algunas desigualdades básicas. Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Matrices. números reales. Los jardines cifrados. Carlo Frabetti

Matrices. números reales. Los jardines cifrados. Carlo Frabetti Solucionrio Mtrices números reles LITERATURA Y MATEMÁTICAS Los jrdines cifrdos De l pred del fondo prtí un lrgo psillo débilmente ilumindo; lo recorrí y, l finl, me encontré nte un puert con pertur de

Más detalles

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad?

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad? 3 3.5. Identiddes notles Un identidd es un iguldd lgeric que es ciert pr vlores culesquier de ls letrs que intervienen. 37. Es l iguldd 3x 7x x 9x un identidd? 40. Determin si lgun de ls siguientes igulddes

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3 . DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic

Más detalles

ÁLGEBRA. e I es la matriz unidad 2 2, conmutan con la A, es decir A B = B A

ÁLGEBRA. e I es la matriz unidad 2 2, conmutan con la A, es decir A B = B A Mtemátics II Pruebs de Acceso l Universidd ÁLGEBRA Junio 94. Comprueb que el determinnte es nulo sin desrrollrlo. Explic el proceso que sigues. [,5 puntos] Junio 94.. Considerr l mtriz A. Probr que ls

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Determinntes ACTIVIDADES INICIALES I. Enumer ls inversiones que precen en ls siguientes permutciones y clcul su pridd, comprándols con l permutción principl 34. ) 34 b) 34 c) 43 d) 34 e)43 f) 34 ) 3,4,

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A Memáis II Deerminnes PVJ7 Se l mriz 9 8 7 Se l mriz que resul l relizr en ls siguienes rnsformiones: primero se mulipli por sí mism, espués se min e lugr l fil segun l erer finlmene se muliplin oos los

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

TEMA 7: DETERMINANTES

TEMA 7: DETERMINANTES lonso Fernández Glián TEM : DETERMINNTES El determinnte de un mtriz udrd es ierto número que se lul prtir de ell y que ontiene informión signifitiv sore l mtriz.. DETERMINNTES DE ORDEN Y El álulo de determinntes

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

Universidad de Antioquia

Universidad de Antioquia Fcultd de Ciencis Ects Nturles Instituto de Mtemátics Grupo de Semilleros de Mtemátics (Semátic) Funciones inverss gráfics Mtemátics Opertivs Tller 7 0 El concepto mtemático de función epres l ide intuitiv

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO.

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. TEMA 9 Integrl Definid. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. y = f() Un trpeio urvilíneo (o mitilíneo) T es un figur pln omo l que pree en l figur: T O Está limitd por:

Más detalles

D E T E R M I N A N T E S M A T R I Z I N V E R S A

D E T E R M I N A N T E S M A T R I Z I N V E R S A º DE BACHILLERATO DETERMINANTES D E T E R M I N A N T E S ----------- M A T R I Z I N V E R S A DETERMINANTES I. Determites. II. Primers pliioes de los determites. I. Determites.. Defiió álulo de u determite.

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía Mtrices Deterinntes PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Slvo el priero, estos proles provienen de ls prues de Selectividd de Andlucí ) Clculr el siguiente deterinnte: Un deterinnte de orden

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES

Universidad Pontificia Bolivariana Ciencia Básica Taller Álgebra Lineal CAPITULO I: MATRICES Uiversidd Poifii Bolivri Ciei Bási Tller Álger Liel CPITULO I: MTRICES. Dds ls mries:, B C Efeur ls siguiees operioes, si es posile. E so e o ser posile, eplique por qué. -B T -B T B T d T C e B - f C

Más detalles

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR.

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR. Sergio Ynsen Núñez. Se A 8 3 3 Muestre que A es digonlizle sore IR. Soluión: 8 3 3 6 5 3 Los vlores propios de A sony3 A es de y tiene dos vlores propios distintos, por lo tnto es digonlizle sore IR. Otr

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles