Trabajo Práctico Nº 1 FUNCIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Trabajo Práctico Nº 1 FUNCIONES"

Transcripción

1 Trabajo Práctico Nº FUNCIONES. Determinar, cuando sea posible, el dominio más amplio (en el sentido de la inclusión) para que cada una de las siuientes correspondencias deina una unción: m : D R / m( x) x m z : D R / z( x) ± x z [ ) r : D ; / r( x) x + r t : Dt [ ; ) / t( x). + n : D ; + / n( x) x n [ ) w: Dw ( ; + ) / w( x) + x x + u : Du ( ; ] ( ; + ) / u( x) x x. Graicar las siuientes unciones, indicar ceros, conjunto de positividad, neatividad y conjunto imaen. r : / r( x) x + N R ( ] l :, R / l( x) x [ ) R p :, + / p( x) x 9 : R R / ( x) x ( ] :, / ( x) x R R j : [ ; + ) R / j( x) x + [ ) [ ) m :, + / m( x) x + R [ ) h : + R / h( x) x k :, + R / k( x) x + n :, + R / n( x) x + [ ) R s :, / s( x) x x + t : R R / t( x) x [ ) ( ] u : ; ; R / u( x) x x. Analizar la validez de las siuientes airmaciones:

2 a) Dos unciones son iuales si tienen el mismo conjunto dominio. b) Dos unciones son iuales si tienen el mismo dominio y la misma imaen. x x c) Las unciones : R { } R / ( x) y : R { } R / ( x) x son x iuales.. Determinar D, [ ) D y r :, + R / r( x) x +. D k, de manera tal que Im Im Imk Imr siendo D x x x : R / ( ) x + k : Dk R / k( x) x : D R / ( x) + x. Se deine h { } x : R R / h( x) + y se pide: x + a) Determinar el valor de a R, de modo tal que las unciones h y : R R / ( x) ax + tenan el mismo conjunto imaen. { } b) Hallar el conjunto imaen de la unción: A. C h : A R / ( x) x x, sabiendo que La órmula K( x) x + permite conocer la temperatura K en rados Kelvin, 9 9 conocida la misma x en rados Fahrenheit, el ráico, en cambio, muestra la relación entre la temperatura medida en rados Celsius y la misma medida en rados Fahrenheit.

3 Se pide: a) A cuántos rados Kelvin equivalen C? Y - C? b) A cuántos rados Kelvin equivalen C? c) Hallar una órmula que permita conocer la temperatura en rados Kelvin, conocida la misma en rados Celsius. 7. Se deinen : / ( x) ( x + ) ( x) R R y : R R / ( x) x + y se pide: a) Calcular ( ( ) ), ( ()) ( ) y ( ) b) Hallar el conjunto de ceros y los intervalos de positividad y neatividad de ( ( x )). 8. Con los siuientes datos: h : R R / h( x) ( x + ).( x) ( ), ( ) ( ), ( ), ( ) 6, ( ) 6, ( 6) y ( ) cuando sea posible: a) ( h )( ) b) ( )( ) c) ( )( ) d) ( )( ) e) ( )( ) ) ( )( ) ) aluna raíz de o. h) C. h,, calcular

4 9. Dadas : / ( x ) 6 ( x + ) R R y : R R / ( x ) x +, hallar los conjuntos de positividad y neatividad de. Representar ráicamente.. Sean : R R / ( x ) x x y : R R / ( x ) x, h( x) ( )( x). Deinir h y determinar el conjunto imaen e intervalos de crecimiento y de decrecimiento.. Dadas : R / ( x) R x + y : R R / ( x ) x +, escribir A x R /( ) x <. como intervalo o como unión de intervalos el conjunto { ( ) }. Se deinen las unciones: : R R / ( x) ax b y x : R { 6 } R / ( x) y se pide: x + 6 Hallar los valores a y b (reales) sabiendo que se cumple simultáneamente: La ecuación de la asíntota vertical de la unción es: x. C.. Es posible, dada la unción : R R / ( x) x, hallar otras dos unciones, h : R R, tales que: ( )( x) x + 6 y ( h )( x) x + 6? En caso airmativo explicitar dichas unciones.. Dada la unción : D R / ( x) x + y el ráico de la unción z, se pide: a) Graicar. b) Completar con <, > ó seún corresponda: ( z )()... ( z )()... ( z )(8)... c) Hallar el conjunto de positividad de la unción z.

5 + R + y se pide: d) Se deine :[ ; ) / ( x ) ( x ) Hallar C zo y C + zo.. A continuación se muestra el ráico de la unción { } : ; R R (x y x - son asíntotas verticales e y - es asíntota horizontal)

6 y se deine la unción { } i. Calcular ( )(, ). x : R ; R / ( x ). ii. Hallar x / ( )( x ) R. iii. Determinar el conjunto de positividad de la unción. 6. Si (x) x+k, estudiar los ráicos de (x) y ( ( x )). Explicar. 7. Si (x) x+k, estudiar los ráicos de (x) y ( ( x )). Explicar. 8. Dada : A B / ( x) x, determinar el mayor conjunto de A y de B, tal que: a) sea inyectiva y no sobreyectiva. b) sea sobreyectiva y no sea inyectiva. c) sea biyectiva. 9. Existe aluna relación entre las unciones estrictamente crecientes o decrecientes y las unciones inyectivas?. Justiicar la necesidad de que una unción sea inyectiva y sobreyectiva para que exista su inversa.. Clasiicar las siuientes unciones en (INYECTIVA, SOBREYECTIVA, BIYECTIVA) a) : R R / ( x ) x + 8 b) : R R / ( x ) x 6 : R 6; / ( x ) x 6 c) [ ) : ; ; / ( x ) x + d) [ ) ( ] e) : R R / ( x ) x : R / ( x ) ) R { } x x +. Determinar A, B R (máximos con respecto a la inclusión) de manera tal que las unciones sean biyectivas. Deinir cartesianos. y representar ambas unciones en un mismo sistema de ejes 6

7 a) : A B / ( x) x b) : A B / ( x) x c) [ ) B x ( x ) : ; + / ( ) + d) x : A B / ( x) x + :, B / ( x) x + x + e) ( ] ) x + : A B / ( x) + x ) : A B / ( x) x + h) : A B / ( x) x i) : A B / ( x) x + j) : A B / ( x) + x + :, B / ( x ) x k) [ 6] : A, / ( x ) x + l) [ ] :, B / ( x ) + x + m) ( ) :, + B / ( x ) + x + n) ( ) x + : A, + / ( x ) x o) ( ) :, B / ( x ) x + x p) [ ] ax + : R R a / ( x ). Calcular a R para que x valor de a hallado, deinir ( x ).. Sea { } { } (6). Con el 7

8 : R / ( x ) x ; : R R / ( x ) x ; x h x.. Sean R { } h ( x) ( )( ). Deinir ( ). A continuación se muestra el ráico de la unción : R { ;} R ( x y x - son asíntotas verticales e y - es asíntota horizontal ) a) Observando el ráico de, restrinir convenientemente el dominio o codominio (cuando sea posible), para que las unciones deinidas cumplan con las condiciones pedidas. Si no es posible, explicar por qué. sea inyectiva y no sobreyectiva :, ( ] sea sobreyectiva y no inyectiva [ ) :,+ sea biyectiva : (, ) sea biyectiva : sea inyectiva : (,] (, ) (, ] b) Se deine : [,) [,+ ) 6, se pide raicar en el mismo sistema de ejes coordenados, en orma aproximada, la unción inversa de 6 indicando dominio y codominio de c) Se deine ( + ) ( ) :,,. Calcular 7 7 ( ). 6. RESPUESTAS ) Dr ; D n ( ; ] [ ; + ) t [ ; ) w ) C Im r C + r N C r r N + Cl Cl ; Cl ; Iml ;8 + C C ; + C ; Im 9; + D + D ( ; + ) D [ ;) ( ; + ) [ ) { } ( ) [ ) [ ) { } + + R R Im R { } + ( ; ] R Im ( ;8] { } + R + { } Im R + p p p p C C C C C C C C C h h h h u 8

9 + + { } ( ; ) Im + { } [ ; ) Im [ ; ) + { } [ ; ) Im [ ; ) + { 6 } [ ;6 ) ( 6; ) Im ( ; ] + { } [ ; ) Im [ ;] { } + R { } { } Im R + + [ ;) ( ; ] Im [ ;) ( ; 7] C C + C R j j j j C C + C + k k k k C C + C + m m m m C C C + n n n n C C C s s s s C C C t t t t C C C u u u u u ) a) F b) F c) V ; ; ) D ( ] [ + ), [ ;) ) a) a b) Im ( ;) 6) a) 8 K b) ( K F )( x) x + 7 K 7) b) C ; D k, no es posible deinir D C + ; C ; ; + ( ) 8) a) ( h )( ) b) ( )( ) 6 c) ( )( ) - d) ( )( ) e) ( )( ) no es posible ) ( )( ) 6 ) - es una raíz de o. h) { ;6 } 9) C + ( ;) C ( ; ) ( ; + ) ) h : R R / h( x ) x x A ) a b ) ( x) x + + ) ; ( ; + ) h( x) x + 8 Im( h) ; C ) c) C + z ( ;) d) C zo { ;;6} C + zo (,) (,6) + ) i. - ii. x -6 o x 6 iii. C ( ; ) ( ; ) 8) A ; + B R o A ; B R a) [ ) ( ] b) A R B [ ; + ) c) A [ ; + ) B [ ; + ) o A ( ;] B [ ; + ) ( h) ; ր ց C ( h) ; + ) a) Biyectiva b) no inyectiva, no sobreyectiva c) sobreyectiva, no inyectiva d) biyectiva e) biyectiva ) inyectiva, no sobreyectiva ) a) A B R : R R / ( x) x + x b) A R { } B R { } : R { } R { } / ( x) x B ; + : ; + ; + / ( x) + x c) [ ) [ ) [ ) x A B : / ( x) x d) R { } R { } R { } R { } 9

10 e) [ ) [ ) ( ] ) B + + x x + ; : ; ; / ( ) A R B R : R R / ( x) x x ) [ ) [ ) A ; + B ; + :[ ; + ) [ ; + ) / ( x) + ( x ) h) A B R : R R / ( x) x i) A [ ; ) B ( ;] + :( ;] [ ; + ) / ( x) ( x) j) R { } R { } R { } R { } A B : / ( x) x B ; : ; ;6 / ( x) x + k) [ ] l) [ ] [ ] [ ] n) ( ) ( ) ( ) o) ( ) ( ) ( ) p) [ ] [ ] [ ] A ; : ; ; / ( x) x + x + m) B ( ; ) : ( ; ) ( ; ) / ( x) x B ; + x + : ; + ; + / ( x) x A ; + x + : ; + ; + / ( x) x B ; 9 + x : ; ; / ( x) + ) a ; x : R { } R + { } / ( x ) x ) { } { } h : R R / h ( x ) x ) a) Se puede considerar como codominio de cualquier conjunto que contena a[ ) Como dominio de se debe considerar el conjunto (-;). ; ;+. Se puede considerar como dominio de el conjunto ( ) o el conjunto ( ;+ ). El dominio de la unción - es: [ ;+ ). Por el modo en que está deinido el dominio de, no es posible completar la deinición para que la misma sea inyectiva. c)

Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA

Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA CUARTO AÑO - 015 QUINTO AÑO - 016 1) Hallar la órmula de unción cuadrática g, que cumple las dos condiciones simultáneamente:

Más detalles

1º ITIS Matemática discreta Relación 2 APLICACIONES

1º ITIS Matemática discreta Relación 2 APLICACIONES º ITIS Matemática discreta Relación 2 PLICCIONES. Estudiar en cuáles de los siguientes casos la correspondencia G deinida entre 2 2 los conjuntos y B mediante la relación ( x, y G x + y = es una aplicación:

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES Matemática I (BUC) - Cálculo I Práctica : FUNCIONES Matemática I (BUC) / Cálculo I - Funciones. Indique cuales de los siguientes dibujos podrían corresponder al gráfico de una función. Marque en el gráfico

Más detalles

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Se agradece el aporte de los proesores María Inés Sáinz y Daniel Dacunti TRABAJO PRÁCTICO

Más detalles

FUNCIONES PRÁCTICA N 2

FUNCIONES PRÁCTICA N 2 Capitulo II FUNCIONES PRÁCTICA N. En cada uno de los siguientes casos dar la ley de la función descripta: a) El área de un rectángulo es de 0 cm². Epresar el perímetro del mismo en función de la longitud

Más detalles

MATEMATICA CPU Práctica 7 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. = x = 2 1

MATEMATICA CPU Práctica 7 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. = x = 2 1 ET UNSAM Matemática PU MATEMATIA PU Práctica FUNIONES EXPONENIALES Y LOGARÍTMIAS A partir del gráico de ( ), dibujar aproimadamente las siguientes unciones encontrar dominio, imagen asíntota horizontal

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

INTRODUCCIÓN A LA MATEMÁTICA SUPERIOR OPERACIONES CON FUNCIONES. Suma, diferencia, producto y cociente de funciones

INTRODUCCIÓN A LA MATEMÁTICA SUPERIOR OPERACIONES CON FUNCIONES. Suma, diferencia, producto y cociente de funciones INTRODUCCIÓN A LA MATEMÁTICA SUPERIOR OPERACIONES CON FUNCIONES Suma, dierencia, producto y cociente de unciones Terminología Valor de la unción Dominio Suma g g + g D D + Dierencia g ( g) g Producto g

Más detalles

Fundación Uno. 1. Función valor absoluto (modular). Gráfica y propiedades.

Fundación Uno. 1. Función valor absoluto (modular). Gráfica y propiedades. ENCUENTRO # 30 TEMA: Funciones de variable real. CONTENIDOS: 1. Función valor absoluto (modular). Gráfica y propiedades. 2. Función cúbica. Gráfica y propiedades. 3. Función inversa. 4. Función raíz cuadrada.

Más detalles

Pontificia Universidad Católica del Perú Estudios Generales Ciencias. CÁLCULO 1 Práctica No. 1 Semestre académico

Pontificia Universidad Católica del Perú Estudios Generales Ciencias. CÁLCULO 1 Práctica No. 1 Semestre académico Pontiicia Univerdad Católica del Perú Estudios Generales Ciencias CÁLCULO Práctica No. Semestre académico INSTRUCCIONES La práctica es n libros, ni apuntes ni calculadoras. No se permite el uso de correctores

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto

Más detalles

FUNCIONES PRÁCTICA RESUELTA N 2

FUNCIONES PRÁCTICA RESUELTA N 2 FUNCIONES PRÁCTICA RESUELTA N. En cada uno de los siguientes casos dar la ley de la unción descripta: a) El área de un rectángulo es de 0 cm². Epresar el perímetro del mismo en unción de la longitud de

Más detalles

TEMA 10.- FUNCIONES ELEMENTALES

TEMA 10.- FUNCIONES ELEMENTALES º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos

Más detalles

TALLER. FUNCIONES Y SUS PROPIEDADES ( NIVEL INTERMEDIO Grados 7mo 9no )

TALLER. FUNCIONES Y SUS PROPIEDADES ( NIVEL INTERMEDIO Grados 7mo 9no ) TALLER FUNCIONES Y SUS PROPIEDADES ( NIVEL INTERMEDIO Grados 7mo 9no ) Universidad de Puerto Rico en Bayamón Departamento de Matemáticas Preparado por: Pro. Eileen Vázquez TABLA DE CONTENIDO PRE PRUEBA

Más detalles

Ejemplo: El rango (o imagen) de una función f, se designa por Rf o imf y se define como el conjunto siguiente: Df : x - 2 > 0 : x 2 Df = [2, >

Ejemplo: El rango (o imagen) de una función f, se designa por Rf o imf y se define como el conjunto siguiente: Df : x - 2 > 0 : x 2 Df = [2, > FUNCIONES REALES FUNCIONES Deinición: Sean A B dos conjuntos no vacíos (pudiendo ser A = B) llamaremos unción deinida en A los valores en B (unción de A en B) a toda relación: A B que tiene la propiedad:

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( )

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( ) Modelo. Problema B.- Caliicación máima: puntos) La igura representa la gráica de una unción : [ 6; 5] R. Contéstese razonadamente a las preguntas planteadas.? a) Para qué valores de es > b) En qué puntos

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y Tema Funciones eonenciales, loarítmicas Matemáticas CCSSI º Bachillerato TEMA FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y COMPOSICIÓN DE FUNCIONES EJERCICIO : : halla Dadas las siuientes unciones :, + EJERCICIO

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS I.E.S. Ramón Giraldo UNIDAD 5: FUNCIONES. CARACTERÍSTICAS. CONCEPTO DE FUNCIÓN Una unción real de variable real es una correspondencia de un conjunto D en el conjunto de los números reales, es decir, una

Más detalles

C.P.U. MATEMATICA (Tecnicaturas) Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.

C.P.U. MATEMATICA (Tecnicaturas) Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. UNSAM er cuatrimestre 00 I. FUNCIONES C.P.U. MATEMATICA (Tecnicaturas) Trabajo Práctico FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.. De acuerdo a la siguiente

Más detalles

FUNCIONES DERIVABLES. PROPIEDADES.

FUNCIONES DERIVABLES. PROPIEDADES. FUNCIONES DERIVABLES. PROPIEDADES. TASA DE VARIACION MEDIA. Dada una unción y se llama TASA DE VARIACIÓN o INCREMENTO de a la variación que eperimenta cuando la variable independiente pasa de "a" a "a

Más detalles

Cómo funcionan las funciones? Autoevaluación resuelta

Cómo funcionan las funciones? Autoevaluación resuelta Cómo funcionan las funciones? Autoevaluación resuelta 1.- Indicar la respuesta correcta a la siguiente pregunta: a) Porqué la ley de f(x) que sigue no corresponde a una función de reales en los reales?

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función f(x) = a sen(x + π). Hallar el valor de la constante a R sabiendo que f ( π ) = a + Se sabe que

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x

Más detalles

Escuela Nacional Adolfo Pérez Esquivel - U.N.C.P.B.A. 3º año. Trabajo Práctico Nº 1 Repaso de temas del año anterior

Escuela Nacional Adolfo Pérez Esquivel - U.N.C.P.B.A. 3º año. Trabajo Práctico Nº 1 Repaso de temas del año anterior Escuela Nacional Adolo Pérez Esquivel - U.N.C.P.B.A. º año Trabajo Práctico Nº Repaso de temas del año anterior Función eponencial ) Representar gráicamente la unción eponencial ( ) ( ) crecimiento decrecimiento,

Más detalles

MATEMÁTICAS APLICADAS A LAS CCSS I

MATEMÁTICAS APLICADAS A LAS CCSS I MATEMÁTICAS APLICADAS A LAS CCSS I Curso: 00-0 ACTIVIDADES PARA ALUMNOS DE º DE BACHILLERATO QUE TIENEN PENDIENTE MATEMÁTICAS APLICADAS A LAS CCSS I SEGUNDA PARTE Determine los dominios de las siuientes

Más detalles

1. Funciones y gráficas

1. Funciones y gráficas 1. Funciones y gráicas Uno de los conceptos más importantes en matemática es el de unción. Los orígenes de la noción de unción y de su inluencia signiicativa en la evolución de la ciencia datan del siglo

Más detalles

UNIVERSIDAD NACIONAL DE GENERAL SARMIENTO Matemática I Segundo Parcial (21/11/09) xe2x JUSTIFIQUE TODAS SUS RESPUESTAS

UNIVERSIDAD NACIONAL DE GENERAL SARMIENTO Matemática I Segundo Parcial (21/11/09) xe2x JUSTIFIQUE TODAS SUS RESPUESTAS Segundo Parcial (21/11/09) 1. Sea f(x) = 1 +2 xe2x a) Hallar dominio, intervalos de crecimiento y decrecimiento y extremos locales de f. b) Hallar (si las hay) las asíntotas horizontales y verticales de

Más detalles

f x e ; b) Teniendo en cuenta la gráfica anterior,

f x e ; b) Teniendo en cuenta la gráfica anterior, MATEMÁTICAS II. º BTO A Fecha: -- ANÁLISIS: C El eamen se realiará con tinta de un solo color: aul ó negro Se valorará positivamente: ortograía, redacción, márgenes, presentación clara ordenada Todas las

Más detalles

CÁLCULO I I FUNCIONES DE UNA VARIABLE, LÍMITES Y CONTINUIDAD

CÁLCULO I I FUNCIONES DE UNA VARIABLE, LÍMITES Y CONTINUIDAD CÁLCULO I I FUNCIONES DE UNA VARIABLE, LÍITES CONTINUIDAD Leer [S, ] y [S,] o bien [S3, 4] y [S3,4] F- Indicar la relación especiicada por las guientes gráicas es una unción: a) b) c) d) e) ) F- Indicar

Más detalles

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos página 1/ Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 21 - Todos resueltos Hoja 21. Problema 1 1. a) Demostrar que la función f ()= definida en el dominio [ 1, ) admite inversa.

Más detalles

2 EMT- ITS Conjuntos, Relaciones y Funciones

2 EMT- ITS Conjuntos, Relaciones y Funciones Conjuntos, Relaciones y Funciones 1 1. Sea f (3,0),(, ),(5, 1),(0,5), determine: i) D ( f ). ii) / f () =5 e y / f (3)=y. iii) Grafique f en ejes coordenados.. Sea (4,),(5,.5),(0,0),( 6, 3), 3, 1.5 g,

Más detalles

ISFD Y T N 42 Profesorado de Economía MATEMATICA I UNIDAD 2: FUNCIONES. FUNCION LINEAL

ISFD Y T N 42 Profesorado de Economía MATEMATICA I UNIDAD 2: FUNCIONES. FUNCION LINEAL ISFD Y T N 42 Profesorado de Economía MATEMATICA I UNIDAD 2: FUNCIONES. FUNCION LINEAL Contenidos: Concepto de función. Dominio. Imagen. Ordenada al origen. Raíces. Conjuntos de positividad y negatividad.

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

Completar con letra clara, mayúscula e imprenta

Completar con letra clara, mayúscula e imprenta ANÁLIS. MAT. ING. - EXACTAS C 7 R TEMA - 4--7 APELLIDO: NOMBRES: DNI/CI/LC/LE/PAS. Nº: E-MAIL: TELÉFONOS part: cel: Completar con letra clara, maúscula e imprenta SOBRE Nº: Duración del eamen: hs CALIFICACIÓN:

Más detalles

Que importancia tienen las funciones matemáticas?

Que importancia tienen las funciones matemáticas? Funciones Que importancia tienen las funciones matemáticas? Justificación Las funciones son de mucho valor y utilidad para resolver problemas de la vida diaria, problemas de finanzas, de economía, de estadística,

Más detalles

*( ) ( ) ( ) ( )+ *( ) ( )+ *( ) ( ) ( )+

*( ) ( ) ( ) ( )+ *( ) ( )+ *( ) ( ) ( )+ UNIDAD III MATEMÁTICA 3 A FUNCIONES CONCEPTO. ELEMENTOS DE ANÁLISIS SISTEMA DE EJES CARTESIANOS. REPRESENTACIÓN DE PUNTOS. Los ejes cartesianos son dos rectas perpendiculares que se intersecan en un punto

Más detalles

EXAMEN DE SELECTIVIDAD JUNIO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A. Problema 1. Resuelve las siguientes cuestiones:

EXAMEN DE SELECTIVIDAD JUNIO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A. Problema 1. Resuelve las siguientes cuestiones: EMEN DE SELECTIVIDD JUNIO. MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN Problema. Resuelve las siguientes cuestiones: a) Calcula las matrices e Y sabiendo que 7 5 y Y Y 5 Y 7 5 7 5 Y Y Y Solución 5 Y

Más detalles

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Ejercicio 1. (2,5 puntos) EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Dada la función f (x)= 3 x 2 +3 x a) (1,25 puntos) Indicar el dominio de definición de la función f y hallar

Más detalles

TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES

TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: a) f(x) = 2 b) g(x) = x + 3 c) h(x) = 1 x 6 a) f(x) =

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente

Más detalles

Serie 7 Funciones - Soluciones

Serie 7 Funciones - Soluciones Serie 7 Funciones - Soluciones. A continuación aparecen parcialmente representadas ráicas de ciertas unciones, la parte que no se muestra continúa la tendencia indicada. Escribe debajo de cada una de ellas

Más detalles

MATEMATICA CPU Práctica 6 MÓDULO ECUACIONES E INECUACIONES FUNCIÓN MÓUDLO COMPOSICIÓN DE FUNCIONES FUNCIÓN INVERSA

MATEMATICA CPU Práctica 6 MÓDULO ECUACIONES E INECUACIONES FUNCIÓN MÓUDLO COMPOSICIÓN DE FUNCIONES FUNCIÓN INVERSA ECT UNSAM MATEMATICA CPU Práctica MÓDULO ECUACIONES E INECUACIONES FUNCIÓN MÓUDLO COMPOSICIÓN DE FUNCIONES FUNCIÓN INVERSA I. Módulo. Ecuaciones e inecuaciones.. Calcular: a) 8 b) 8 8 c). Resolver las

Más detalles

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones.

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones. Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 9: Derivadas y Aplicaciones Representación de Funciones Ejercicio 1: (Continuación del Ejercicio 1 de la Hoja 8) + 1 a 1 e < 0 0 Para

Más detalles

Fundación Uno. xy = 7 xy 2 x 2 y y + x = 54

Fundación Uno. xy = 7 xy 2 x 2 y y + x = 54 ENCUENTRO # 29 TEMA: Funciones de variable real. CONTENIDOS: 1. Definición de funciones 2. Función lineal. Gráfica y propiedades. 3. Función cuadrática. Gráfica y propiedades. Ejercicio Reto 1. El valor

Más detalles

( ) ( ) 1. Determina los dominios de las siguientes funciones: 2. Representa la función. x x 6x. 7. Dadas las funciones. se pide: f ( x) j) ( )

( ) ( ) 1. Determina los dominios de las siguientes funciones: 2. Representa la función. x x 6x. 7. Dadas las funciones. se pide: f ( x) j) ( ) MATEMÁTICAS I Determina los dominios de las siuientes unciones: a) ( ) 4+ ( ) ln 4 5 + 6 h( ) Representa la unción 84 si + ( ) si < 7 si > Dadas las unciones + 7 ( ) ( ) 5 h se pide: a) h h e) Dom ( )

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno. . CONCEPTO DE FUNCIÓN UNIDAD 6: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan

Más detalles

(Quinta clase: Ejemplos de producto. Coproducto) Recordemos que se dijo que el diagrama

(Quinta clase: Ejemplos de producto. Coproducto) Recordemos que se dijo que el diagrama 22 (Quinta clase: Ejemplos de producto. Coproducto) Recordemos que se dijo que el diarama π 1 π 2 es un producto de los objetos y si para todo diarama de la orma existe una única lecha h tal que el diarama

Más detalles

FUNCIONES: GENERALIDADES

FUNCIONES: GENERALIDADES FUNCIONES: GENERALIDADES DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL.- Una unción,, es una correspondencia entre dos conjuntos numéricos A y B, que asigna a cada número, x, del primer conjunto A, un único

Más detalles

A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (

A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( ( A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes

Más detalles

UNIDAD DIDÁCTICA 7: Funciones I

UNIDAD DIDÁCTICA 7: Funciones I UNIDAD DIDÁCTICA 7: Funciones I 1. ÍNDICE 1. Introducción 2. Concepto de unción 3. Gráica de una unción 4. Operaciones con unciones 5. Propiedades de las unciones 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y

Más detalles

= x De este modo: Esto es un ejemplo de FUNCIÓN.

= x De este modo: Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 6 FUNCIONES REALES. PROPIEDADES GLOBALES.. CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal:

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS FUNDAMENTOS MATEMÁTICOS PARA ECONOMÍA Y NEGOCIOS TERCERA EVALUACIÓN 0/ABRIL/0 VERSION 0 ALUMNO:

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS FUNDAMENTOS MATEMÁTICOS PARA ECONOMÍA Y NEGOCIOS TERCERA EVALUACIÓN 0/ABRIL/0 VERSION ALUMNO:

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1 Funciones Límites y continuidad Curso 06/7 Ejercicio puntos 0 Dadas las unciones = e, g = y h ( ) log ( ) =, se pide: Encuentra el dominio de la unción ( g h) Encuentra la unción y esboza su gráica, apoyándote

Más detalles

a) Representa gráficamente la función b) Calcula asíntotas, dominio, corte con los ejes y monotonía

a) Representa gráficamente la función b) Calcula asíntotas, dominio, corte con los ejes y monotonía 1. Expresa las siguientes funciones mediante forma algebraica: a) Asignar a cada número real su mitad b) Asignar a cada número real su raíz cuadrada c) Asignar a cada número real la mitad de su cuadrado

Más detalles

FINAL 15/07/ Tema 2

FINAL 15/07/ Tema 2 FINAL 5/07/206 - Tema 2 Ejercicio Hallar la ecuación de la recta tangente a la curva 4x 2 f ( x) = en x ( x 2 0 = + ) Forma de resolución La ecuación de la recta tangente en (expresada en forma canónica)

Más detalles

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial

PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA

Más detalles

Actividades compensatorias 5ºA. = + d) = + h) = + l)

Actividades compensatorias 5ºA. = + d) = + h) = + l) Actividades compensatorias 5ºA ) A partir de los puntos característicos de la función cuadrática graficar las siguientes funciones: a) f() b) f() + + c)f() 9 + 9 d) f() 4 + 4 e) f() ( + ) f)f() ( ) g)

Más detalles

16 de Abril del 2010 Versión 0 NOMBRE:.

16 de Abril del 2010 Versión 0 NOMBRE:. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Instituto de Ciencias Matemáticas Facultad de Economía y Neocios Seunda Evaluación de Fundamentos Matemáticos para Economía y Neocios en las carreras Ineniería

Más detalles

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU Problema 1 (2 puntos) De una función derivable f (x) se conoce que pasa por el punto A(-1,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 6 de Junio de 04 Duración del Examen: horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo:

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 006 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Sea

Más detalles

f : R R y en cuanto a los elementos x f ( x)

f : R R y en cuanto a los elementos x f ( x) CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA CALCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : FUNCIONES REALES. CONCEPTO

Más detalles

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN 5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y

Más detalles

Funciones I. Clasificación de funciones. PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA Guía Teórico Práctica N 8.

Funciones I. Clasificación de funciones. PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA Guía Teórico Práctica N 8. Funciones I Una función es una regla que relaciona los elementos de dos conjuntos y, es decir a todos los elementos del conjunto, que llamaremos dominio se le asigna por medio de alguna regla, uno y sólo

Más detalles

Práctico Semana Conjuntos. Universidad de la República

Práctico Semana Conjuntos. Universidad de la República Universidad de la República Cálculo diferencial e integral en una variable Facultad de Ingeniería - IMERL Segundo semestre 2018 Práctico Semana 02 1. Conjuntos 1. Determinar cuantos subconjuntos de A =

Más detalles

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1) --e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular

Más detalles

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano

Matemática-ILSE. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA. Guía de verano Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Guía de verano 1 1) Con la información dada, hallar la fórmula en cada caso: a) El vértice de la parábola es V = ( ;1 ) y pasa

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Exercise 3 4 5 6 Total Points Departamento de Economía Matemáticas I Examen Final 0 enero 07 Duración: horas. APELLIDOS: NOMBRE: ID: GRADO: GRUPO: () Sea la unción (x)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

6º Economía Ficha 1 Matemática A

6º Economía Ficha 1 Matemática A Deinición: (Función) Una relación entre elementos de un conjunto A y elementos de un conjunto B (no vacíos) es una unción de A en B si y sólo si se cumplen las dos condiciones siuientes: 1) a A, B /( a,

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.

C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. UNSAM º cuatrimestre 008 I. FUNCIONES C.P.U. MATEMATICA Trabajo Práctico FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.. De acuerdo a la siguiente descripción:

Más detalles

a) x =7 b) -x =2 c) x-5 =8 d) 4+3x =6 e) 4/x =8 f) 7x+3 =x

a) x =7 b) -x =2 c) x-5 =8 d) 4+3x =6 e) 4/x =8 f) 7x+3 =x UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CÁTEDRA: Matemática I CURSO: 4 TRABAJO PRACTICO Nº TEMA: Funciones y Cónicas ) Resolver las siguientes inecuaciones, epresar

Más detalles

IES Mediterráneo de Málaga Septiembre 2010 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Septiembre 2010 Juan Carlos Alonso Gianonatti BLOQUE A IES Mediterráneo de Málaga Septiembre Juan Carlos lonso Gianonatti LOQUE CUESTIÓN..- Deinición de rango de una matri. Calcular el rango de la matri en unción del parámetro [.5 puntos] rang rang Para toda

Más detalles

BLOQUE 6: Iniciación al cálculo de derivadas Aplicaciones DERIVADAS . 125

BLOQUE 6: Iniciación al cálculo de derivadas Aplicaciones DERIVADAS . 125 BLOQUE 6: DERIVADAS Iniciación al cálculo de derivadas Aplicaciones. 5 6.INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 6. INTRODUCCIÓN En nuestro entorno ran parte de la inormación que recibimos viene

Más detalles

a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y =

a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = Y [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = a sea la siguiente: 2 +b+c 3 2-2 3 4 X 2 [ARAG] [20] [JUN-A] Sea la función f() = 2 +2 a) Calcular su dominio b) Obtener sus asíntotas c)

Más detalles

CLASIFICACIÓN DE FUNCIONES SEGÚN SU CODOMINIO

CLASIFICACIÓN DE FUNCIONES SEGÚN SU CODOMINIO CLSIFICCIÓN DE FUNCIONES SEGÚN SU CODOMINIO Ejemplos 1. De acuerdo con la gráfica adjunta correspondiente a la función f x determine cuán debe ser su codominio para que sea una función sobreyectiva. Solución

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8

Más detalles

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,

Más detalles

UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA

UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA UNIDAD 2: ANALICEMOS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA FUNCIÓN EXPONENCIAL. Se llama función exponencial a la función de la forma y = a x en donde a R +, a y x es una variable. Existen muchos fenómenos

Más detalles

No tiene. No tiene. No tiene. Crece en. Decrece en ( ) Mínimo relativo en. Cóncava en D. No tiene

No tiene. No tiene. No tiene. Crece en. Decrece en ( ) Mínimo relativo en. Cóncava en D. No tiene .- Sea la función e / x f (x) = x. Se pi completar el siguiente cuadro representar dicha función. Dominio R {0} Asíntotas verticales x=0 Asíntotas horizontales Asíntotas oblicuas Crecimiento Decrecimiento

Más detalles

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Septiembre 206) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dada la función f(x) = (6 x)e x/3, se pide: a) ( punto). Determinar su dominio, asíntotas y cortes

Más detalles