Por lo tanto, son linealmente independientes y la dimensión de E 1 es 3. Veamos el otro subespacio:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Por lo tanto, son linealmente independientes y la dimensión de E 1 es 3. Veamos el otro subespacio:"

Transcripción

1 Problema. (6 puntos) La empresa Pantone Inc. ideó el sistema de representación de colores conocido como Hexachrome (también llamado CMYKOG) que permitía imprimir las imágenes con una reproducción de los colores muy buena, especialmente en los tonos pastel y los tonos de la piel. En este sistema, cada color se representa como un vector de 6 componentes (c,m,y,k,o,g) donde cada nombre representa la cantidad de cada una de las tintas básicas: Cyan, Magenta, Yellow, Key (Black), Orange y Green. Supongamos que este sistema Hexachrome tiene estructura de espacio vectorial, es decir, podemos generar colores mediante sumas y restas de otros colores o multiplicando colores por constantes. (Nota: este punto no es cierto en la realidad). Ahora supongamos que tenemos tres colores: c=(,,,,,), c2=(,,,,,) y c3=(,,,,,), que generan el subespacio vectorial de colores E. Supongamos también que los colores: v=(5,,6,,5,7), v2=(,3,,,,4) y v3=(,,2,,,2) generan el subespacio vectorial de colores E2. Tenemos también el color w=(2,2,3,,2,5). i. Cuáles son las dimensiones de los subespacios E y E2? Podemos generar el color w con los colores c, c2 y c3? Si es que sí, con que cantidad de cada uno? Pertenece w a E2? Si es que sí, cuáles son las coordenadas en la base {v, v2, v3}? ii. iii. Son E y E2 el mismo subespacio vectorial de colores? Encuentra la matriz de cambio de base de {v, v2, v3} a {c, c2, c3}. Comprueba la coherencia con las coordenadas de w. i.- Bien, lo primero es comprobar las dimensiones de los dos subespacios vectoriales. Lo que hacemos es ponernos los vectores como matriz y mirar si son L.I.. Por ejemplo, haciendo la transformación F 3 = F3 F: Por lo tanto, son linealmente independientes y la dimensión de E es 3. Veamos el otro subespacio:

2 Donde primero he intercambiado la primera y la tercera, y luego he hecho los cambios F 2=F2- F y F 3=F3-5 F para acabar con F 3=3 F 3-F 2. Vemos que también son linealmente independientes, por lo que la dimensión de E 2 también es 3. Ahora vamos a expresar w en función de los c s Que me genera el siguiente sistema de ecuaciones: 2 = α + γ 2 = β 3 = α = 2 = α + γ 5 = α + β La cuarta no aporta nada y la quinta está repetida. Además, la segunda y la tercera ya nos dan los valores de alfa y beta, por lo tanto nos quedan dos ecuaciones para despejar gamma y usaremos la otra para comprobar. De la primera sacamos que: Y sustituyendo en la última vemos que: 2 = 3 + γ γ = 5 = Por lo tanto, no hemos llegado a ninguna incongruencia y podemos decir que las cantidades de cada color son: 3 de c, 2 de c y de c Aunque cabe preguntarse si tiene sentido añadir - cantidades de determinado color.. Así que podemos decir que las coordenadas de w en la base de los c s son: (3, 2, ) Para saber si w pertenece a E 2, vamos a ver si somos capaces de expresarlo como combinación lineal de los v s. Hacemos lo mismo:

3 Que nos genera el siguiente sistema de ecuaciones: 2 = 5α + β + γ 2 = α + 3β 3 = 6α + β + 2γ = 2 = 5α + β + γ 5 = 7α + 4β + 2γ Como nos pasaba antes, la cuarta no aporta nada y la quinta está repetida, por lo que nos quedan cuatro ecuaciones: 2 = 5α + β + γ 2 = α + 3β 3 = 6α + β + 2γ 5 = 7α + 4β + 2γ De la segunda sacamos que α = 2 3β, y al sustituir en las otras tenemos que: 2 = 5 (2 3β) + β + γ 8 = 4β γ 3 = 6 (2 3β) + β + 2γ 9 = 7β 2γ 5 = 7 (2 3β) + 4β + 2γ 9 = 7β 2γ La segunda y la tercera son iguales, por lo que sólo nos quedan dos ecuaciones. De la primera despejamos y tenemos que: γ = 4β 8, y al sustituir en la segunda tenemos que: 9 = 7β 2 (4β 8) = β + 6 β = 7 = 7 Ahora voy sustituyendo en el resto: Y por último: γ = = = α = = = Por lo tanto, sí que se puede expresar como combinación lineal y sí que w pertenece a E 2 y las coordenadas de w en la base {v, v2, v3} serían:, 7,

4 ii.- Para saber si son el mismo subespacio lo podemos hacer de varias maneras. Una sería utilizar la Wiris y poner una matriz con los seis vectores y calcular su rango. Si sale 3, resulta que los vectores de E 2 no añaden nada a los vectores de E y podríamos concluir que son el mismo subespacio. Otra forma de hacerlo, sería expresar los tres vectores de E 2 como combinación lineal de los vectores de E. Es más largo, pero en el examen no tendréis la Wiris.Vamos a por ello. Empezamos con v : Que nos genera el sistema: = α + γ = β 6 = α = 5 = α + γ 7 = α + β Como la segunda y la tercera me dan α y β, despejo γ en la primera y tengo: 5 = 6 + γ γ = Y ya tengo los tres coeficientes. Por lo tanto, v se puede expresar como combinación lineal de los c s. Vamos a por v 2 : Que nos genera: 3 4 = α + γ 3 = β = α = = α + γ 4 = α + β Como la segunda y la tercera me dan α y β, despejo γ en la primera y tengo: = + γ γ =

5 Y ya tengo los tres coeficientes. Por lo tanto, v 2 se puede expresar como combinación lineal de los c s. Vamos a por v 3 : Que nos genera: 2 2 = α + γ = β 2 = α = = α + γ 2 = α + β Como la segunda y la tercera me dan α y β, despejo γ en la primera y tengo: = 2 + γ γ = Y ya tengo los tres coeficientes. Por lo tanto, v 3 se puede expresar como combinación lineal de los c s. Por lo tanto, E y E 2 son el mismo subespacio. iii.- Si colocamos en columnas los tres grupos de coeficientes que hemos encontrado, habremos encontrado la matriz de cambio de base de E 2 a E. Por lo tanto, lo que nos piden es, precisamente: 6 2 M = 3 Para comprobarlo, tomamos las coordenadas de w en la base E 2 (que eran, al multiplicarlo por M hemos de obtener las coordenadas de w en la base E (que eran (3, 2, - )). Veámoslo: = , + 3 7, = , Por lo tanto, ya lo hemos comprobado., ) y, + 2, = 33, 22, = (3, 2, )

6 Problema 2. (4 puntos) Sea E = {(x, y, z, t) x+y=z, x-y=t} un subespacio vectorial de dimensión 2 a R4 y sea el vector v = (,, 2, ). a) Comprobad que A={ (,,, ), (,,, -)} es una base de E. Pertenece v a E? En caso afirmativo calculad las coordenadas en la base A. b) Encuentra otra base de E que contenga el vector v. c) Calcula la matriz de cambio de base de la base que has encontrado en el apartado b) a A. a) Para comprobar si A es una base de E, lo que hacemos es escribir un vector genérico de E como combinación lineal de los vectores de A. El vector genérico de E será de la forma: (x y x + y x y) Y lo que hacemos es expresarlo como combinación lineal de los vectores de A: x y x + y x y Quiero hacer notar que, en esta ecuación x e y son números genéricos y lo que hemos de hacer es expresar α y β en función de x e y. El sistema que se nos genera es: Que tiene por solución: x = α y = β x + y = α + β x y = α β α = x β = y Por lo tanto, A es una base de E. Bueno, de hecho, lo que hemos hecho es demostrar que los vectores de A son generadores de E. Para que sean base, además han de ser L.I., pero eso es trivial, ya que ambos vectores NO son proporcionales. Para saber si v pertenece a E podemos hacerlo de dos formas, viendo si v cumple las condiciones de E o viendo si se puede poner como combinación lineal de los vectores de A (que ya sabemos que son base de E). La primera forma sería hacer: v = ( 2 ) Cumple que z= x+y? Pues sí, es evidente porque 2 = +. Cumple que t = x-y? Pues sí, es evidente porque =. Por lo tanto, v pertenece a E.

7 La segunda manera sería haciendo: Que nos genera el siguiente sistema: 2 = α = β 2 = α + β = α β Las dos primeras ecuaciones nos dan los valores de α y β, y las otras dos nos sirven para comprobar que no hay ninguna incongruencia, por lo tanto, v pertenece a E. Por lo tanto, las coordenadas de v en la base A son (, ). b) Para encontrar la otra base que nos piden, como que ya sabemos que el primer vector de la base ha de ser v, hemos de buscar otro vector que pertenezca a E y que sea linealmente independiente con v. Lo más fácil es buscar un vector cuya primera coordenada sea (así, seguro que es L.I. con v), y ya puestos a buscar uno fácil, decido que la segunda coordenada sea. Ahora sólo me falta imponer que cumpla las condiciones de E, por lo que la tercera coordenada será: Y la cuarta coordenada será: z = + = t = = Por lo tanto el vector w=(,,, -) será de E y será linealmente independiente de v, por lo que ambos vectores v y w serán una base de E. Para encontrar la matriz de cambio de base he de expresar los vectores de mi base como combinación lineal de los vectores de A. El primer vector ya lo he hecho (obtenía los valores y ). Ahora voy a poner w como combinación lineal de los vectores de A: Que nos genera el siguiente sistema: = α = β = α + β = α β

8 Las dos primeras ecuaciones me dan los coeficientes y las dos últimas me sirven para comprobar que no hay incongruencias. Los valores son y. Por lo tanto, la matriz de cambio de base de la base formada por v y w a A es:

1.- Sean A i B dos matrices cuadradas invertibles. Es verdad que:

1.- Sean A i B dos matrices cuadradas invertibles. Es verdad que: 1.- Sean A i B dos matrices cuadradas invertibles. Es verdad que: (B -1 A -1 - (A B) -1 + A) B = A B? Justifica tu respuesta. De hecho el problema consiste en demostrar que: B A (A B) = Expresión que es

Más detalles

Para hacer el b, primero pasamos a binómica, luego a polar y, por fin, operamos. ( 1) = 32i

Para hacer el b, primero pasamos a binómica, luego a polar y, por fin, operamos. ( 1) = 32i 1.- a) Expresar en forma binómica el número: b) Calcular: z 1 i 3 ı w 3 i Para realizar el apartado a, lo primero que hay que hacer es escribir el conjugado del denominador y luego hacer la división (es

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

No hay que romperse los cuernos, hay una columna de ceros, por lo tanto.. NO tiene rango 3.

No hay que romperse los cuernos, hay una columna de ceros, por lo tanto.. NO tiene rango 3. Problema 1. (4 puntos) Sea f: R R la aplicación lineal de R en R definida por: f(1,1,0) = (,, 0) f(1,0,1) = ( 3,0, 3) f(,,1) = (0,0,0) a) Demostrar que (1,1,0), (1,0,1), (,,1) son una base de R. b) Calcular

Más detalles

Espacios vectoriales.

Espacios vectoriales. Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES Capítulo 1 CONCEPTOS TEÓRICOS ESPACIO VECTORIAL Un conjunto E = {a, b, c, } de elementos (llamados vectores) se dice que constituyen un espacio vectorial sobre un cuerpo conmutativo K (que generalmente

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ?

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ? Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 011/1 1) (1 punto) Dado el subespacio vectorial,,,,,,,,,,, a) Obtener la dimensión, unas ecuaciones implícitas, unas

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

2 + 5i. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar.

2 + 5i. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar. 1.- Números complejos: a) Realizad la operación: 3 + ı 2 + 5i Proporcionad el resultado en forma binómica. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar. a) Poner

Más detalles

CAPÍTULO 4 ESPACIOS VECTORIALES

CAPÍTULO 4 ESPACIOS VECTORIALES CAPÍTULO 4 ESPACIOS VECTORIALES 4.1.- Concepto y definición de espacio vectorial. 4.2.- Propiedades de los espacios vectoriales. 4.3.- Subespacios vectoriales. 4.4.- Combinación lineal de vectores. 4.5.-

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales: Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 2017Asturias: Red de 1 Universidades Virtuales Iberoamericanas Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por: a) Demostrar que (0,1,3),(1,0,-1) y (1,0,1) son una base de R³.

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por: a) Demostrar que (0,1,3),(1,0,-1) y (1,0,1) son una base de R³. Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por: f(0, 1, 3) = (0, 3, 9); f(1, 0, 1) = (2, 0, 2); f(1, 0, 1) = (2, 0, 2) a) Demostrar que (0,1,3),(1,0,-1) y (1,0,1) son una base

Más detalles

Soluciones Hoja Problemas Espacio Vectorial 05-06

Soluciones Hoja Problemas Espacio Vectorial 05-06 Soluciones Hoja Problemas Espacio Vectorial -6.- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,, ) es espacio

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados:

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados: 10 Departamento de Álgebra. Universidad de Sevilla Tema 3. Sección 1. Variedades lineales. Definición. Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios

Más detalles

Construcción de bases en la suma y la intersección de subespacios (ejemplo)

Construcción de bases en la suma y la intersección de subespacios (ejemplo) Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores

Más detalles

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13

ÍNDICE. Capítulo 1. ESPACIOS VECTORIALES Conceptos Teóricos Ejercicios y Problemas resueltos... 13 00_Principios 10/8/10 09:47 Página 7 ÍNDICE Prólogo... 9 Capítulo 1. ESPACIOS VECTORIALES... 11 Conceptos Teóricos... 11 Ejercicios y Problemas resueltos... 13 Capítulo 2. MATRICES Y DETERMINANTES... 21

Más detalles

Tema 7. El espacio vectorial R n Conceptos generales

Tema 7. El espacio vectorial R n Conceptos generales Tema 7 El espacio vectorial R n. 7.1. Conceptos generales Un vector es un segmento orientado que queda determinado por su longitud, dirección y sentido. Sin embargo, desde el punto de vista del Álgebra,

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

POSICIONES RELATIVAS

POSICIONES RELATIVAS POSICIONES RELATIVAS En muchos problemas de Álgebra se pide estudiar la posición relativa en el espacio de dos rectas, dos planos, una recta y un plano, etc y suelen generar no pocos quebraderos de cabeza,

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W.

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W. Unidad 4 Espacios vectoriales reales 4.1 Subespacios Si V es un espacio vectorial y W un subconjunto no vacío de V. Entonces W es un subespacio de V si se cumplen las siguientes condiciones Si u y v son

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales.

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. Sonia L. Rueda ETS Arquitectura. UPM Año 2016-2017. 1 GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. 1. Determinar si los siguientes conjuntos de vectores son subespacios vectoriales de R 4. A = {(x,

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT022) Guía de ejercicios N 6 parte Complementos Espacios Vectoriales En los ejercicios que siguen utilizamos la siguientes notaciones: R n [x es el espacio vectorial sobre

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Ejercicios y Problemas resueltos Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

Matemáticas Empresariales II. Sistemas de Ecuaciones lineales

Matemáticas Empresariales II. Sistemas de Ecuaciones lineales Matemáticas Empresariales II Lección 4 Sistemas de Ecuaciones lineales Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 34 Sistema de ecuaciones lineales

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS:

ESPACIOS VECTORIALES SUBESPACIOS: SUBESPACIOS: Continuación EJEMPLOS: S 2 = {(x 1, x 2 ) / x 2 =x 12 } R 2 es subespacio del espacio vectorial? Interpretación geométrica: Representa una parábola de eje focal el eje de ordenadas, vértice

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

EXAMEN JUNIO PP 1A SEMANA

EXAMEN JUNIO PP 1A SEMANA EXAMEN JUNIO PP A SEMANA XAVI AZNAR Ejercicio. Defina semejanza, razón de semejanza y movimento asociado a una semejanza. Ejercicio. En el espacio vectorial V 3 (R) sea q la forma cuadrática cuya expresión

Más detalles

EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A

EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A EJERCICIOS DE GEOMETRÍA ANALÍTICA 4º ESO A 1. Halla las ecuaciones de la recta r que pasa por los puntos A(1,4) y B(0,-1) en todas sus formas: vectorial, continua, punto-pendiente, explícita y general.

Más detalles

Independencia Lineal y Generación. (c) 2012 Leandro Marin

Independencia Lineal y Generación. (c) 2012 Leandro Marin 09.00 Independencia Lineal y Generación 3 48700 9000 (c) 0 Leandro Marin . Independencia Lineal Dada una familia de vectores v, v,, v k de un espacio vectorial V, llamaremos combinación lineal de estos

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Ejercicios y Problemas resueltos Tema 3: CÓDIGOS LINEALES Mayo de 2017 Ejercicios Resueltos:

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Álgebra Lineal y Geometría I. 1 o Matemáticas

Álgebra Lineal y Geometría I. 1 o Matemáticas Álgebra Lineal y Geometría I. o Matemáticas Grupo - ( de diciembre de 27) APELLIDOS NOMBRE Instrucciones. Durante la realización del examen se podrá utilizar exclusivamente material de escritura. Ningún

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =

Más detalles

C O L E C C I Ó N A P U N T E S U N I V E R S I T A R I O S MATEMÁTICAS I GRADO ECONOMÍA GRADO ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

C O L E C C I Ó N A P U N T E S U N I V E R S I T A R I O S MATEMÁTICAS I GRADO ECONOMÍA GRADO ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS C O L E C C I Ó N A P U N T E S U N I V E R S I T A R I O S MATEMÁTICAS I GRADO ECONOMÍA 6 Créditos GRADO ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS 6 Créditos GRADO FINANZAS Y CONTABILIDAD 6 Créditos DOBLE

Más detalles

1.- Definir: Vectores linealmente dependientes y Sistemas ligados.

1.- Definir: Vectores linealmente dependientes y Sistemas ligados. Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

F F / 3 0 A 1 =

F F / 3 0 A 1 = EXAMEN: ALGEBRA Y GEOMETRÍA (A) 8/05/0. De un paralelogramo ABCD se sabe que A = 3,4, B = 4,3, que las dos coordenadas del vértice C son positivas que la diagonal AC el lado BC miden ambos 5. Hallar las

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Tema 9: Vectores en el Espacio

Tema 9: Vectores en el Espacio 9..- Vectores Fijos: Un vector fijo del plano y su extremo en el punto B. Tema 9: Vectores en el Espacio AB es un segmento orientado que tiene su origen en punto A Un vector viene caracterizado por su

Más detalles

Matemática 2. Clase práctica de coordenadas y cambio de base

Matemática 2. Clase práctica de coordenadas y cambio de base atemática Clase práctica de coordenadas y cambio de base Nota iren este apunte por su cuenta y consulten las dudas que les surjan Ya pueden terminar la práctica Coordenadas en espacios vectoriales de dimensión

Más detalles

Segundo Parcial. Tipo A y B Miguel Guzman Matemática 3. Resolvemos el sistema de las dos ecuaciones y reducimos forma Gauss. y = 5 3z.

Segundo Parcial. Tipo A y B Miguel Guzman Matemática 3. Resolvemos el sistema de las dos ecuaciones y reducimos forma Gauss. y = 5 3z. Segundo Parcial. Tipo A y B Miguel Guzman Matemática Pregunta () a.- Tipo A π = x + z = π = y + z = Resolvemos el sistema de las dos ecuaciones y reducimos forma Gauss rref Nos piden la ecuacion simetrica

Más detalles

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

1. Vectores en R 3 : El rango y Gauss

1. Vectores en R 3 : El rango y Gauss Vectores en R 3 : El rango y Gauss c rafaselecciones 1. Vectores en R 3 : El rango y Gauss 1.1. Del plano al espacio El paso del plano al espacio conlleva cambios importantes en cuestiones de vectores,

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. CONCEPTOS GENERALES

1 SISTEMAS DE ECUACIONES LINEALES. CONCEPTOS GENERALES Sistemas de ecuaciones lineales MTEMÁTICS II 1 1 SISTEMS DE ECUCIONES LINELES. CONCEPTOS GENERLES Definición: Se llama ecuación lineal con n incógnitas x 1, x 2, x 3,., x n a toda ecuación que puede escribirse

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

GEOMETRÍA EN EL ESPACIO

GEOMETRÍA EN EL ESPACIO GEOMETRÍA EN EL ESPACIO 1. PUNTOS Y VECTORES OPERACIÓN TEORÍA Y FORMULACIÓN EJEMPLO Coordenadas de un punto Punto medio de un segmento Dividir un segmento en n partes iguales Coordenadas de un vector (

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

APLICACIONES LINEALES 3. CAMBIO DE BASE. 2.- Ejecutamos la aplicación lineal en coordenadas canónicas

APLICACIONES LINEALES 3. CAMBIO DE BASE. 2.- Ejecutamos la aplicación lineal en coordenadas canónicas APLICACIONES LINEALES 3. CAMBIO DE BASE Creo que todos tenemos clara la teoría de los cambios de base. Si tenemos una aplicación lineal y tenemos su matriz en una determinada base (por ejemplo la canónica)

Más detalles

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1

ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1 ETS Arquitectura. UPM Geometría afín y proyectiva. Hoja. Determinar si los siguientes conjuntos son subespacios vectoriales de R 4 A f(x; y; z; t)j 2x + z 0g; B f(x; y; z; t)jx + y 0; z t 0g; C f(x; y;

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo.

Resuelve. Unidad 4. Vectores en el espacio. BACHILLERATO Matemáticas II. Diagonal de un ortoedro y volumen de un paralelepípedo. Resuelve Página Diagonal de un ortoedro y volumen de un paralelepípedo. Expresa la diagonal de un ortoedro en función de sus dimensiones, a, b y c. c b a c c b b a Diagonal = a + b + c. Calcula el volumen

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 24 25 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA.1 Definición de Aplicación Lineal. FUNDAMENTOS MATEMÁTICOS 8. APLICACIONES LINEALES Sean

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (POSICIONES RELATIVAS)

GEOMETRÍA ANALÍTICA EN EL ESPACIO (POSICIONES RELATIVAS) GEOMETRÍA ANALÍTICA EN EL ESPACIO (POSICIONES RELATIVAS) POSICIONES RELATIVAS DE DOS RECTAS Dos rectas en el espacio: (r) { A (a 1, a 2, a ) v (v 1, v 1, v ) y (s) {B (b 1, b 2, b ) u (u 1, u 2, u ) cuatro

Más detalles

Ba s e, d i M e n s i ó n y Mat r i z

Ba s e, d i M e n s i ó n y Mat r i z Unidad 4 Ba s e, d i M e n s i ó n y Mat r i z de transición Objetivos: Al inalizar la unidad, el alumno: Conocerá la deinición de base de un espacio vectorial Identiicará bases canónicas para algunos

Más detalles

TEMA 4 ESPACIOS VECTORIALES

TEMA 4 ESPACIOS VECTORIALES TEMA 4 ESPACIOS VECTORIALES Índice 4.1. Definición y propiedades.................. 101 4.1.1. Dependencia e independencia lineal....... 103 4.2. Subespacios vectoriales................... 105 4.2.1. Ecuaciones

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICAS 7. ESPACIOS VECTORIALES 7.1 Estructura de Espacio Vectorial. Sea

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales 1. (a) Compruebe que el conjunto de matrices de orden p q a coeficientes reales R p q es un espacio vectorial real con

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Ejercicios Resueltos (Espacios Vectoriales) Mat156 2 do Semestre de 2012

Ejercicios Resueltos (Espacios Vectoriales) Mat156 2 do Semestre de 2012 Ejercicios Resueltos (Espacios Vectoriales) Mat156 do Semestre de 01 1. Determinar si los siguientes conjuntos son subespacios: a) {(0,y) : y R} de R. b) {(x,y,z) R 3 : x+y 3z = 0} de R 3. c) {p(x) R [x]

Más detalles

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica. Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como

Más detalles