Introducción a las Subastas de Múltiples Objetos
|
|
|
- Xavier Quintero Suárez
- hace 9 años
- Vistas:
Transcripción
1 Introduccón a las Subastas de Múltples Objetos Alvaro J. Rascos Vllegas Unversdad de los Andes Abrl de 2010 lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
2 Consderamos subastas smultáneas de múltples objetos del msmo ben. Suponemos que no hay complementardades entre los objetos: La valoracón margnal de ganar un segundo objeto es menor que la del prmer objeto. Vamos a consderar los tres formatos más mportantes para subastar K objetos déntcos: dscrmnatora, Vckrey y unforme. Cada jugador debe mandar K ofertas bk que satsfacen b1 b 2... b K. b j es la dsponbldad de a pagar por la j ésma undad. Sea B el conjunto de todas las ofertas váldas de. B R K +. Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
3 Sea c : R KI +! R KI + el vector ordenado (de mayor a menor) de las I K ofertas. K (I 1) Sea c : R KI +! R+ el vector de K (I 1) de ofertas ordenado (de mayor a menor) que enfrenta. ck es la k-ésma oferta más alta que enfrenta. Regla de asgnacón: S tene exactamente k K de la K ofertas más altas (entonces se le asgan k objetos), es decr s bk > c K k+1 and bk+1 < c K k, y de nmos: q (b) = q b1,..., q bk,...q bk donde q = 1 8j k de lo contraro q bj = 0 b j En caso de empate por una undad, se asgna con la msma probabldad a los agentes que empatan. Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
4 Esta estrutura es común a los tres tpos de subastas que vamos a consderar. La dferenca entre ellas se debe a la regla de asgnacón (en partcular, la componente que determna el pago esperado de cada agente). En la subasta dscrmnatora s el agente gana exactamente k k undades entonces paga, bk. k=1 Obsérvese que cuando K = 1 es la subasta al prmer preco. Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
5 En la subasta unforme todas las undades son venddas al preco que agota la oferta y la demanda (preco de equlbro). Suponemos que este preco es el más alto perdedor Puesto que gana exactamente k > 0 undades s y sólo s: b k > c K k +1 y b k +1 < c K Entonces la oferta más alta perdedora es: n o p(b) = max b k +1, b K k +1 Luego cada agente paga por cada undad ganada p(b)k. Obsérvese que cuando K = 1 ésta se reduce al a subasta al segundo preco. Sn embargo NO es una generalzacón apropada a múltples undades. k Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
6 En la subasta de Vckrey gana exactamente k > 0 undades s y sólo s: b k > c K k +1 y b k +1 < c K k y paga por la k ésma undad c K k +k. Luego su pago total es: k k=1 c K k +k La subasta de Vckrey es la generalzacón apropada de la subasta al segundo preco. Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
7 Example Supongamos que K = 6 y tenemos 3 agentes partcpando. Supongamos que las ofertas son: b 1 = (50, 47, 40, 32, 15, 5) b 2 = (42, 28, 20, 12, 7, 3) b 3 = (45, 35, 24, 14, 9, 6) Denotamos por c el vector ordenado de mayor a menor de todas las ofertas: c = (50 1, 47 1, 45 3, 42 2, 40 1, 35 3, 32,...) lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
8 Example Ofertas y ordenamento: b 1 = (50, 47, 40, 32, 15, 5) b 2 = (42, 28, 20, 12, 7, 3) b 3 = (45, 35, 24, 14, 9, 6) c = (50 1, 47 1, 45 3, 42 2, 40 1, 35 3, 32,...) Las ses más altas son las ganadoras. Por lo tanto el agente 1 gana 3 undades, el agente 2 gana 1 undad y el agente 3 gana 2 undades. El preco de cerre es 32 (el más alto perdedor). lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
9 Otra forma de determnar el preco de cerre es utlzando la oferta resdual que enfrenta el agente, ( ) s (p) = max K d (p), 0 j6= El preco de cerre (el más alto perdedor) se puede de nr como el más alto tal que: s (p) < d (p) Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
10 Grá camente: p. Oferta resdual Precos de cerre. Más alto perdedor K Demanda de undades lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
11 El agente gana exactamente k undades cuando: Cuando b k > c K k +1 b k +1 < c K k b k = c K k +1 hay empate entre dos agentes por las últmas undades. El preco de corte se puede escrbr como: n o p = max b k +1, c = max K k +1 b k +1 Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
12 Example En el ejemplo anteror: c 1 3 = 35, c 1 4 = 28 y el agente 1 gana exactamente 3 undades porque: y el preco de cerre es: b3 1 = 40 > c4 1 = 28 b4 1 = 32 < c3 1 = 35 p = max b 1 4, c 1 4 = max f32, 28g = 32 lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
13 Example El pago en la subasta de Vckrey para el agente es: c 6 + c 5 + c 4 = b b b 2 2 lvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
14 En la subasta de Vckrey es un equlbro en estrategas domnantes (débl) revelar la verdadera valoracón, b V (x) = x. En partcular, la subasta de Vckrey asgna de forma e cente. Sn embargo, puede resultar en asgnacones "njustas". Supongamos que K = 2, x 1 = (10, 6), x 2 = (9, 2). En este caso, cada agente se lleva una undad. Alvaro J. Rascos Vllegas (Unversdad de losintroduccón Andes) a las Subastas de Múltples Objetos Abrl de / 14
Introducción a las Subastas de Múltiples Unidades
Introducción Introducción a las Subastas de Múltiples Unidades Alvaro J. Riascos Villegas Abril 16 de 2013 Contenido Introducción 1 Introducción 2 3 4 5 6 7 Introducción Introducción Los principales formatos
Introducción a las Subastas de Múltiples Unidades
Introducción Modelo Ejemplos Equilibrio: Subasta de Vickrey Subasta de Ausubel Introducción a las Subastas de Múltiples Unidades Alvaro J. Riascos Villegas Marzo de 2017 Universidad de los Andes y Quantil
Clase Auxiliar #1: Teoría de Juegos
UNIVERSIDAD DE CHILE FAC DE CIENCIAS FÍSICAS Y MATEMÁTICAS Departamento de Ingenería Industral Curso: IN5A Economía Industral Semestre: Prmavera 7 Profesor: Ronald Fscher Auxlares: Klaus Kaempfe Sofía
Enrique Kawamura Microeconomía I para economistas. FCE-UBA. Noviembre 2011
Análss de equlbro general en economías cerradas con produccón. Preferencas Cobb-Douglas Tecnologías Cobb-Douglas con rendmentos constantes a escala. Enrque awamura Mcroeconomía I para economstas. FCE-UBA.
Introducción a la Teoría de Subastas
Introducción a la Teoría de Subastas Correval - Sesión 2 Alvaro J. Riascos Villegas Universidad de los Andes y Quantil Enero 25 de 2012 Alvaro J. Riascos Villegas (Universidad de los Andes Introducción
El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones.
UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CAMPUS VILLA NUEVA CURSO MATEMATICA FINANCIERA Lc. Manuel de Jesús Campos Boc
3.1. Características del comportamiento estratégico Características del comportamiento estratégico
3.1. Característcas del Matlde Machado 1 3.1. Característcas del El análss formal de una stuacón de empeza por la formulacón de un juego. Componentes de un juego: Jugadores Estratégas posbles para cada
Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:
VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes
3.4. Competencia en precios con restricciones de capacidad - Solución de Edgeworth
- Solucón de Edgeworth Matlde Machado 3.4. Competenca en precos con Benes homogéneos demanda a la Bertrand Tenen el msmo coste margnal c y nngún coste fjo Cada empresa tene capacdad k D(c) Las empresas
Juegos Bayesianos. Tema 1: Tipos, Creencias y Equilibrio Bayesiano. Universidad Carlos III de Madrid
Juegos Bayesanos Tema 1: Tpos, Creencas y Equlbro Bayesano Unversdad Carlos III de Madrd Repaso: Juego estátco con Informacón completa Jugadores Estrategas (accones) Pagos para cada combnacón de estrategas
2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.
. EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas
Colección de problemas de. Poder de Mercado y Estrategia
Coleccón de problemas de Poder de Mercado y Estratega Curso 3º - ECO- 016-017 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Poder de Mercado
Unidad 6-. Números complejos 1
Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por
Oligopolio. Un mercado oligopólico se define como una estructura de mercado en donde
Olgopolo Defncón y característcas Un mercado olgopólco se defne como una estructura de mercado en donde exste un número reducdo de frmas y que se caracterza por una sgnfcatva nterdependenca entre las frmas
Introducción a la Física. Medidas y Errores
Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren
Práctica 3. Media, mediana y moda.
Práctca 3. Meda, ana y moda. La presente práctca, te permtrá estudar las das de tendenca central menconadas, a partr de los sguentes datos que corresponden a la estatura de estudantes, ncaremos la práctca.
Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística
Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar
Sistemas Lineales de Masas-Resortes 2D
Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte
Análisis de Resultados con Errores
Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten
1. Lección 7 - Rentas - Valoración (Continuación)
Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento
Taller práctico sobre Valoración de empresas. Ignacio Vélez Pareja Consultor Cartagena, Colombia. Material del Taller
Taller práctco sobre aloracón de empresas Ignaco élez Pareja Consultor [email protected] Cartagena, Colomba Materal del Taller Ejemplo paso a paso se puede bajar desde http://cashflow88.com/decsones/ejemplo_paso_a_paso.xlsx
4.4. La ciudad circular El Modelo de Salop
Matlde Machado para bajar las transparencas: http://www.eco.uc3m.es/~mmachado/ Economía Industral - Matlde Machado La Cudad Crcular El modelo de Salop 1 En el modelo de Hotellng habíamos supuesto que solo
DISTRIBUCIONES BIDIMENSIONALES
Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón
Juegos en Forma Estratégica de Información Incompleta
Juegos en Forma Estratégica de Información Incompleta Alvaro J. Riascos Villegas Universidad de los Andes Abril 6 de 2010 Alvaro J. Riascos Villegas (Universidad de losjuegos Andes) en Forma Estratégica
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal
Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B
315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE
Variables Aleatorias
Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.
Guía de Equilibrio General. Ejercicio extraído de Mas-Colell, Whinston y Green, con algunas modificaciones
Guía de Equlbro General Ejercco extraído de Mas-Colell, Whnston y Green, con algunas odfcacones - Consdere una econoía caja de Edgeworth en que dos consudores tenen referencas con no sacedad local. Sea
CESMA BUSINESS SCHOOL
CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta
1.- Una empresa se plantea una inversión cuyas características financieras son:
ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas
Tallerine: Energías Renovables. Fundamento teórico
Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................
CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1
CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.
Guía para la autoevaluación del del capítulo 6
Capítulo 6: EL BANCO CENTRAL Y LA POLÍTICA MONETARIA Guía para la autoevaluacón del del capítulo 6 1) Ante una recuperacón económca, cuál es el cambo que se produce en los valores de equlbro del mercado
3 - VARIABLES ALEATORIAS
arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr
Principio del palomar
Prncpo del palomar Juana Contreras S. Claudo del Pno O. Insttuto de Matemátca y Físca Unversdad de Talca Introduccón Cuando se reúnen 367 personas, es seguro que debe haber al menos dos personas que cumplen
NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.
Pág. NOTA: En todos los ejerccos se deberá justfcar la respuesta explcando el procedmento segudo en la resolucón del ejercco. CURSO 0 - CONTROL OCTUBRE 00 A contnuacón se presentan 5 preguntas con respuestas
TRABAJO Nº 5 PSU MATEMÁTICA 2017 NÚMEROS COMPLEJOS Nombre:. Fecha:..
GUÍA DE TRABAJO Nº 5 PSU MATEMÁTICA 07 NÚMEROS COMPLEJOS Nombre:. Fecha:.. CONTENIDOS Números complejos, problemas que permten resolver. Undad magnara. Operatora con números complejos. Propedades de los
Tema 1.3_A La media y la desviación estándar
Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.
Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?
Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,
Matemáticas Discretas
Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda [email protected] http://ccc.naoep.mx/~vllasen Algo de nformacón
Colección de problemas de. Poder de Mercado y Estrategia
de Poder de Mercado y Estratega Curso 3º - ECO- 013-014 Iñak Agurre Jaromr Kovark Javer Arn Peo Zuazo Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema 3. Monopolo 1. Los costes de
60 EJERCICIOS de NÚMEROS COMPLEJOS
60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,
Clase 25. Macroeconomía, Sexta Parte
Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos
CAPÍTULO III ACCIONES. Artículo 9º Clasificación de las acciones. Artículo 10º Valores característicos de las acciones. 10.
CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural serán las establecdas por la reglamentacón específca vgente o
5ª Parte: Estadística y Probabilidad
ª Parte: Estadístca y Probabldad. Las notas de los alumnos de una clase son:,,,, 6, 7,,,,,,,, 7,,,, 6,, Haz una tabla de frecuencas. Solucón Varable Frecuencas absolutas Frecuencas relatvas estadístca
ANEXO A: Método de Interpolación de Cokriging Colocado
ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL
INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes
TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.
TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo
2 Dos tipos de parámetros estadísticos
Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,
NOTA METODOLÓGICA 1. CÁLCULO DEL IDH. METODOLOGÍA ONU
Desarrollo humano en España: 1980-2011 44 NOTA METODOLÓGICA 1. CÁLCULO DEL IDH. METODOLOGÍA ONU El IDH defndo por las Nacones Undas desde 2010 en sus nformes anuales mde los adelantos medos de un país
Capítulo V. Teoremas de Fermat, Euler y Wilson
Capítulo V Teoremas de Fermat, Euler y Wlson En este capítulo utlzamos los conceptos desarrollados en dvsbldad y conteo para deducr tres teoremas báscos de la teoría de números. En el próxmo capítulo,
Efectos fijos o aleatorios: test de especificación
Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto
3. VARIABLES ALEATORIAS.
3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
UNIVERSIDAD TECNOLOGICA NACIONAL - FACULTAD REGIONAL ROSARIO Departamento de Ingeniería Química. Cátedra: Integración IV
UNIVERSIDAD TECNOOGICA NACIONA - ACUTAD REGIONA ROSARIO Departamento de Ingenería Químca Cátedra: Integracón IV Tema: Smulacón de Evaporadores lash Alumnos: Damán Match, Marcos Boss y Juan M. Pgnan Profesores:
NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1
NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular
Estadistica No Parametrica
Estadstca No Parametrca CLASE 3 Pruebas Basadas en la Dstrbucon Bnomal JAIME MOSQUERA RESTREPO Bnomal Test La prueba bnomal es quzás la prueba mas antgua encontrada en al lteratura. Se encuentra asocada
6 Minimización del riesgo empírico
6 Mnmzacón del resgo empírco Los algortmos de vectores soporte consttuyen una de las nnovacones crucales en la nvestgacón sobre Aprendzaje Computaconal en la década de los 990. Consttuyen la crstalzacón
( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )
MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror
2ª Colección Tema 2 La oferta, la demanda y el mercado
Cuestones y problemas de Introduccón a la Teoría Económca Carmen olores Álvarez Albelo Mguel Becerra omínguez Rosa María Cáceres Alvarado María del Plar Osorno del Rosal Olga María Rodríguez Rodríguez
