EJERCICIOS RESUELTOS
|
|
|
- Blanca Bustamante Nieto
- hace 9 años
- Vistas:
Transcripción
1 FUNAMENTOS MATEMÁTICOS E LA INGENIEÍA Ingerierí Técnic Industril. Esecilidd en Mecánic. Boletin 7. Integrción Múltile EJECICIOS ESUELTOS Curso -. Clculr ls siguientes integrles iterds: Z Z Z y ( + y)dyd. ddy. y Z ( + y)dy q ( ) + Z Z y µ y ddy Z y + y ". # y y dy µ + Z y y dy Z dy.. ibujlregión cuy áre reresent l integrl iterd. Clculr dich áre, cmbindo revimente el orden de integrción. Z y ddy. y Z y Z Z y ddy dyd + Z Z Z Z Z dyd + dy dy Z Z Z Z y [y] y dyd. ddy Z [] y y dy Z. ( y) dy y y.. Usr un integrl iterd r clculr el áre de l región cotd or ls gráfics de y,+y 5, y. Z Z 5 y Z Z µ A ddy [] 5 y y dy 5 y y dy 5y 5y 5. y Tmbién uede hcerse integrndo rimero resecto de y y desués resecto de. En este cso hy que hcer dos integrles. A Z Z dyd + Z 5 Z 5 dy5.. Pr clculr ls siguientes integrles iterds es necesrio cmbir revimente el orden de integrción: Z Z Z Z Z +y dyd +y dy y +y dy Z Z y y q( + y 9 ) sen ddy. +y ddy 6 9. Z +y y dy
2 Boletín 7. Ejercicios esueltos. Fundmentos Mtemáticos de l Ingenierí Mecánic. Curso - Z sen ddy sen dy y sen sen cos y ( cos ). 5. elizr un esbozo de l región y clculr l integrl doble : da y : es el sector circulr en el rimer cudrnte cotdo or y 5, y, y. ( + y )da y : es el semicírculo cotdo or y,y. Z Z 5 y da ddy Z 5 y dy Z µ5 y 69 y y y dy 5 Z µ 9 y dy 5 µ y 7 y 5. Z Z Z ( + y )da ( + y )dy µ y + y d Z Ã! Z Ã! +... Por este cmino slen integrles comlicds. Ahor hbrí que hcer el cmbio sent. Es consejble hcerlo en coordends olres. Z Z h i ( + y )da r rdrdθ r r drdθ dθ dθ π. 6. Clculr el volumen del sólido cotdo or ls gráfics de ls ecuciones: z y, z,y,, rimer octnte. + z, y + z, rimer octnte. V V Z Z y ydy o dyz 8 8 y 7. Clculr ls siguientes integrles dobles, sndo revimente coordends olres. Z Z Z Z ydyd + y dyd + Z Z 8 + y dyd. q( ). Z Z ydy cos 5 θ sen θdθ Z cosθ cos6 θ r cos θ sen θdθ π µ. cos θ sen θ cosθ r dθ
3 Boletín 7. Ejercicios esueltos. Fundmentos Mtemáticos de l Ingenierí Mecánic. Curso - Z Z + y dyd + Z Z 8 + y dy Z π. 8. Clculr el volumen del sólido cotdo or ls gráfics de ls ecuciones r drdθ r dθ z + y,z, + y 5. z ln( + y ),z, + y, + y. Z 5 Z 5 V zda + y dyd. En crtesins es muy difícil. Lo clculmos utilizndo coordends olres. V zda + y dy rrdrdθ Z 5 Z 5 Z 5 5 r dθ 5 dθ 5π. Z Z V zda ln( + y )dyd. En crtesins es muy difícil. Lo clculmos utilizndo coordends olres. V zda Z Z Z π Z ln( +y )dy ln(r )rdrdθ Z ln(r)rdrdθ r µ r ln r dθ ln µ dθ π ln. 9. Clculr el volumen del sólido que es interior l hemisferio z 6 y y l cilíndro +y y. Puede hcerse utilizndo integrles dobles o triles. El resultdo será el mismo. Utilizndo integrles dobles. Z Z y y V zda 6 y ddy. Es comlicdo hcerlo en coordends crtesins. Psmos coordends olres. Z Z y y Z V zda 6 y senθ ddy r 6 r drdθ 6 r senθ dθ h 6 6 sen θ i 6 dθ cos θ dθ 8 π sen θ sen θ 8 π 6 (π ) 6 9 Utilizndo integrles triles. Z Z Z y y Z 6 y V dv dzddy. Es comlicdo en crtesins. Cmbindo coordends cilindrics tenemos: Z Z senθ Z 6 r V dv rdzdrdθ slen ls misms cuents que ntes. Z senθ r 6 r drdθ. rtir de quí
4 Boletín 7. Ejercicios esueltos. Fundmentos Mtemáticos de l Ingenierí Mecánic. Curso -. eterminr, de modo que el volumen interior l hemisferio z 6 y y eterior l cilindro + y se l mitd del volumen de hemisferio. Llmmos V H l volumen del hemisferio y Vel volumen eterior. V H π 8π (Puede clculrse con integrles ero no es necesrio) Z Ve dv Z Z 6 r Como Ve V H, obtenemos que h 6 i π 8π 6 6 () 6 q 6 8() 6 8().. Clculr ls siguientes integrles triles: Z rdzdrdθ r 6 r drdθ h 6 i π. Z Z y dzdyd Z 9 Z y/ Z y 9 zdzddy. Z Z y Z 9 Z y/ Z 9 dzdyd y Z y 9 Z zdzddy y y/ dy Z 9 [z] y dy 5. Z 9 Z y/ Z z y 9 ydyd ddy y y dy y Z 9 Z y/ y 9 ddy. Esbozr l región sólid cuyo volumen reresent l integrl trile reescribirl en el orden que se indic dz d dy. Z Z 6 Z y Z Z 6 y Z y dz dy dz d dy. Clculr el volumen del sólido cotdo or ls gráfics de ls ecuciones: z 9 y,z z,y, rimer octnte. Z V Z Z 6 Z y dz dy d y Z Z 9 Z 9 y dv dzdyd. L integrl en coordends crtesins es difícil. 9 Z Z 9 r Z 9r L hcemos en coordends cilíndrics. Z V dv rdzdrdθ 8 dθ 8π. Z V dv Z Z Z Z [y] Z dzdy Z Z 9r r drdθ [z] dy Z Z Z r dyd dθ 56 5.
5 Boletín 7. Ejercicios esueltos. Fundmentos Mtemáticos de l Ingenierí Mecánic. Curso - 5. Psr l integrl coordends cilíndrics y coordends esférics. Evlur l que resulte más sencill: Z Z 6 Z 6 y + y dz dy d Z Z Z + y dzdyd...) Coordends cilíndrics Z Z 6 Z 6 y + y dz dy..) Coordends esférics Z Z 6 Z 6 y + y dz dy Z 6 ρ sen φdρdφdθ φ sen φ π dθ 6π dθ 8π b..) Coordends cilíndrics Z Z Z + y dzdyd Z Z r r cos θdzdrdθ b..) Coordends esférics Z Z Z + y dzdyd k Z cos φ cos φ Z cos φ cos φ ρ sen φ cos θdρdφdθ Z Z 6 r Z sen φ ρ dφdθ 6 Z Z r ρ sen φdρdφ, que no deende de θ. Z cos φ cos φ rrdzdrdθ ρ sen φρ sen φdρdφdθ r cos θrdzdrdθ Z Z 6 r sen φdφdθ ρ sen φ cos θρ sen φdρdφdθ r dzdrdθ. k cos θdθ k [ sen θ] π. onde hemos uesto 5. Hllr el volumen del sólido interior l esfer + y + z y or encim del cono + y z. Z Coordends cilíndrics V Z Z r Z Z Z y dv +y dzdy Z rdzdrdθ r r r drdθ r q( r à r ) dθ 8! Z à π dθ 6π! Z Z Coordends esférics V dv ρ sen φdρdφdθ 8 Z à 8 π [ cos φ] π dθ 6π!. sen φdφdθ 6. Clculr el volumen del sólido comrendido entre ls esfers + y + z y + y + z 9einterior l cono + y z. Z V dv Z ρ sen φdρdφdθ 8 sen φdφdθ
6 Boletín 7. Ejercicios esueltos. Fundmentos Mtemáticos de l Ingenierí Mecánic. Curso [ cos φ] π dθ 76π Ã!. 7. Clculr el volumen del sólido comrendido entre ls gráfics de z + y, z,y, y. Z Z Z Z +y Z Z Z V dv dzdy ( + y) dy y + y Z Clculr el volumen del sólido cotdo or l gráfics z y z, eterior l cilindro + y e interior l hierboloide + y z. Z Z Z Z V dv rdzdrdθ r r r drdθ r q r + (r ) dθ 5. dθ 5π.
CAPÍTULO 7 CÁLCULO INTEGRAL EN VARIAS VARIABLES
CAPÍTULO 7 CÁLCULO INTEGAL EN VAIA VAIABLE 1. INTEOGANTE CENTALE EL CAPÍTULO Clculr integrles dobles en coordends crtesins y polres, sobre dominios sencillos. Usr l integrl doble pr el cálculo de áres.
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)
7. Cambio de variables en integrales triples.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. Lección. Integrales múltiples. 7. Cambio de variables en integrales triples. El teorema del cambio de variables para integrales triples es análogo al de integrales
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
3. Cambio de variables en integrales dobles.
GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental
Contenido 1. Integrales Dobles 2. Integrales Triples
Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
Sistemas de coordenadas
Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte
CÁLCULO INTEGRAL EN VARIAS VARIABLES
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO INTEGRAL EN VARIAS VARIABLES Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Julio 25 Rmón
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo [email protected]. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES
Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según
5. Integral y Aplicaciones
Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
Integración Numérica. Las reglas de Simpson.
Integrción Numéric. Ls regls de Simpson. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com Universidd: ITESM
( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1
Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE.
CAMBIO E VAIABLES EN LA INEGAL OBLE. 7. Se = [, ] [, ] se define : como (, ) = ( +, ). Encontrr = ( ). Es inecti? Cd n de ls componentes = +, =, es fnción de n sol rible. Pr er qe es inecti, bst comprobr
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
1 Funciones de Varias Variables
EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,
CÁLCULO VECTORIAL (0254)
Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico epartamento de Matemática Aplicada CÁLCULO VECTORIAL (054) emestre -0 Enero 0 Cálculo Vectorial (054) emestre -0 TEMA INTEGRALE E UPERFICIE
Métodos de Integración I n d i c e
Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con
Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A
Cálculo II Volúmenes de Sólidos M. en C. Ricrdo Romero Deprtmento de Ciencis Básics, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Progrm 1 Cálculo de volúmenes prtir de secciones trnsversles
Geometría de masas: Cálculos del tensor de Inercia
Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
Problemas resueltos y propuestos de cálculo en varias variables. Integrales múltiples
Problems resueltos y propuestos de cálculo en vris vribles. Integrles múltiples e x dx π Primer Edición 11 de Myo de 11 Frncisco Felipe Vilches Medin [email protected] Prefcio L presente colección
Curvas en el espacio.
Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.
Integrales Múltiples.
CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable
Lección 3. Cálculo vectorial. 4. Integrales de superficie.
GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,
Matemática DETERMINANTES. Introducción:
Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.
Aplicaciones físicas
Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:
Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción
CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada
Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.
Cambio de variables IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Introducción 1 2. Cambio de variables 1 2.1. El teorema del cambio de variables
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
Universidad Técnica Federico Santamaría
Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante
Teorema de la Función Inversa
Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones
TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL
TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde
Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies.
Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies. La intersección de dos superficies da lugar a una línea.
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.
ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x
Funciones hiperbólicas
Cpítulo 1 Funciones hiperbólics 1.1. Funciones hiperbólics directs e inverss A cus de l semejnz que eiste entre l circunferenci y l hipérbol, se plnte l cuestión de si hbrá un conjunto de mgnitudes o funciones
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
UNIDAD DIDÁCTICA 4: LOGARITMOS
Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES
INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS
INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES
1. Introducción: longitud de una curva
1. Introducción: longitud de un curv Integrles de L ide pr clculr l longitud de un curv contenid en el plno o en el espcio consiste en dividirl en segmentos pequeños, escogiendo un fmili finit de puntos
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico, con semieje horizontal a,
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
Integrales dobles y triples
Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones
APÉNDICE : COORDENADAS CURVILÍNEAS
PÉNDICE : COORDENDS CURVILÍNES Cantal Fee Roca 008 Las coodenadas esféicas se tiliaban en el siglo IV-III a.c., tanto paa la deteminación de posiciones estelaes (po ejemplo, catalogación estela de Hipaco)
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
TEMA V: POLINOMIOS ORTOGONALES
TEMA V: POLINOMIOS ORTOGONALES 1. Introducción Un sistem de funciones reles f n (x) (n =, 1,, 3,...) se dice ortogonl respecto l función peso ρ(x) en el intervlo, b] si f m (x)f n (x)ρ(x)dx = pr todo m
Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.
Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:
Integración Numérica. 18 Regla del Trapecio
Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método
Integración sobre superficies
Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna [email protected] Índice 1. Parametrizaciones 1 2. Área de una superficie
APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.
Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción
Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.
Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
Segundo Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode2010. Primera Parte.
Segundo Eamen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode00. Primera Parte. El eamen consta de 4 ejercicios (E, E, E3 E4) un problema (P) que se puntuarán cada uno de ellos
2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual
MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]
Integrales dobles y triples
Tema Integrales dobles y triples Hasta ahora se han calculado el área de figuras geométricas planas elementales: el rectángulo, el círculo, el trapecio, etc. Pero, cómo calcular el área de figuras no regulares?
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
INTEGRALES CURVILÍNEAS
(Apuntes sin revisión para orientar el aprendizaje) INTEGRALES URVILÍNEAS (Material de apoyo y orientación para preparar el tema) Las integrales curvilíneas constituyen el estudio de funciones sobre curvas.
open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co
Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos
Cálculo Integral. Métodos de integración
Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.
Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
Aplicaciones. y D f.x/ a Figura A
APÍTULO Alicciones. Áre de un región ln L integrl definid de un función f./ continu en un intervlo Œ; mide el áre jo l gráfic de f./, sore el eje entre ls rects verticles en. f./ Figur A Se elic continución
PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS
POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
