Unidad Temática Cálculo de primitivas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad Temática Cálculo de primitivas"

Transcripción

1 Unidad Temática Análisis Matemático (Ingeniería Informática) Departamento de Matemática Aplicada Facultad de Informática Universidad Politécnica de Valencia

2 Contenidos 1 Integración

3 Primitiva Integración Definición (primitiva) Sea f : [a,b] R una función continua en [a,b]. Diremos que la funciónn F es una primitiva de f si F (x) = f (x), para todo x [a,b]. Definición (integral indefinida) Al conjunto de todas las primitivas de F se le llama integral indefinida de f y se representa como f (x)dx = F (x) + C. Teorema (fundamental del cálculo integral) Si F y G son dos primitivas de f, entonces se verifica que F (x) G(x) = C, donde C es una constante arbitraria.

4 Propiedades de las primitvas Integración Dadas las funciones f,g y α,β R, el cálculo de primitivas 1 es la operación inversa de la derivación: ( ) f (x)dx = f (x), es lineal: (αf (x) + βg(x))dx = α f (x)dx + β g(x)dx.

5 inmediata Integración dx = x + C f (x) n f (x)dx = f (x)n+1 n+1 + C si n 1. f (x) dx = log( f (x) ) + C f (x) e f (x) f (x)dx = e f (x) + C a f (x) f (x) af (x)dx = + C siendo a R+ log(a) cos(f (x))f (x)dx = sin(f (x)) + C sin(f (x))f (x)dx = cos(f (x)) + C f (x) cos f (x) dx = (1 + tan f (x))f (x)dx = tan(f (x)) + C f (x) dx = arcsin(f (x)) + C = arccos(f (x)) + C) 1 f (x) f (x) 1+f (x) dx = arctan(f (x)) + C

6 Integración por cambio de variable Dada la integral f (x)dx, consideremos una función x = u(t) que admita una función inversa t = u 1 (x), cuya derivada sea continua y no nula (para que sea inyectiva). Entonces, podemos calcular la integral respecto de la variable de esta nueva función como sigue: f (x)dx = f (u(t))u (t)dt, ya que dx = u (t)dt. Por tanto si f (u(t))u (t)dt = F (t) + C, deshaciendo el cambio de variable tenemos f (x)dx = F (u 1 (x)) + C.

7 Integración Dadas dos funciones u(x) y v(x), recordemos la derivada del producto (u(x)v(x)) dx = u (x)v(x)dx + u(x)v (x)dx. Integrando en ambos lados de la igualdad obtenemos: uv = vdu + udv, donde du = u (x)dx y dv = v (x)dx. Por tanto: udv = uv vdu. que es la regla de integración por partes.

8 Dados los polinomios P(x) y Q(x), para resolver la integral distinguiremos dos casos: 1 Grado P(x) Grado Q(x), entonces P(x) Q(x) dx = C(x) + R(x) Q(x) dx, P(x) Q(x) dx donde C(x) es el cociente resultante de hacer la división de polinomios P(x) Q(x) y R(x) es el resto de esa división, de manera que R(x) dx es una Q(x) integral del siguiente caso. Grado P(x) < Grado Q(x). Se descompone como P(x) en una suma de Q(x) fracciones simples, según el tipo de raícesces del polinomio Q(x).

9 donde P(x) Q(x) = A x x 1 A n +... x x n + B 1, B 1,k x y 1 (x y 1 ) k B m, x y m + M 1x + N 1 a 1 x M px + N p + b 1 x + c 1 a p x + b p x + c p 1 A i,b i,j,m i,n i son constantes, x i son las raíces reales simples de Q(x), 3 y i son las raíces múltiples con multiplicidad k i, y B m,k (x y m ) k +... m 4 a i x + b i x + c i representan las parejas de raíces complejas conjugadas y simples de Q(x).

10 Integración de algunas funciones irracionales Algunas integrales donde aparece raíces cuadradas, podemos resolverlas mediante los siguientes cambios de variable. Si a,b R + 1 Si aparece el factor a bx haremos el cambio bx = asin (t). En el caso de tener el factor ax + b utilizaremos el cambio ax = b tan (t). 3 Por último, si aparece el factor ax b utilitzaremos el cambio ax = b sec (t). Si tenemos que integrar una función de la forma: ( ) ax + b ax + b F x, n cx + d,..., m, cx + d podemos transformarla en una función racional mediante el cambio t M = ax+b cx+d donde M = m.c.m.(n,...,m).

11 1. Si tenemos que integrar funciones de la forma sin n (x)cos m (x)dx, donde m y n son naturales, distinguiremos varios casos: 1.1. Si m y n son pares, utilizamos las fórmulas sin(x) = sin(x)cos(x) cos(x) = cos (x) sin (x) para obtener: 1.. En otro caso sin (x) = 1 cos(x), cos (x) = 1 + cos(x) 1 Si m es impar hacemos el cambio t = sin(x) Si n es impar hacemos el cambio t = cos(x) 3 Si ambos son impares, cualquiera de estos cambios sirve.

12 . Para integrar funciones de la forma sin(ax) cos(bx)dx, sin(ax) sin(bx)dx, cos(ax) cos(bx)dx, donde a y b son reales, utilizamos las fórmulas: sin(ax)cos(bx) = 1 (sin(a b)x + sin(a + b)x) sin(ax)sin(bx) = 1 (cos(a b)x cos(a + b)x) cos(ax)cos(bx) = 1 (cos(a b)x + cos(a + b)x)

13 3. Para integrar funciones racionales de funciones trigonométricas, es decir: hacemos el cambio de variable t = tan P(sin(x),cos(x)) Q(sin(x),cos(x)) dx, ( x ), donde: sin(x) = t t + 1, 1 t dt cos(x) = t, dx = t.

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS CÁLCULO DE PRIMITIVAS David Ariza-Ruiz Departamento de Análisis Matemático Seminario I 7 de noviembre de 202 (Universidad de Sevilla) David Ariza Ruiz 7 de noviembre de 202 / 42 Definición y propiedades

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

5.1 Primitiva de una función. Reglas básicas

5.1 Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1 Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas ir Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura ir ir Índice. Definiciones y propiedades Método de por

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

Proposición Si F es una primitiva de f en I, entonces todas las primitivas de f en I son de la forma F (x) + C con C R

Proposición Si F es una primitiva de f en I, entonces todas las primitivas de f en I son de la forma F (x) + C con C R Tema 8 Cálculo de Primitivas. 8.. Definición y propiedades Definición 8... Sea f : I R R. Una primitiva de f en I es una función F : I R R derivable en I y tal que F (x) = f(x) para todo x I. Proposición

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

Funciones de Una Variable Real II: Cálculo de Primitivas

Funciones de Una Variable Real II: Cálculo de Primitivas Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia http://webs.um.es/beca Grado en Matemáticas

Más detalles

Tema 9: Cálculo integral

Tema 9: Cálculo integral Tema 9: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Apéndice 9: Cálculo de primitivas

Apéndice 9: Cálculo de primitivas Apéndice 9: Cálculo de primitivas Ajuste de cuadrados La expresión cuadrática del tipo ax + bx + c (es decir un polinomio de grado dos, a 6 0) se puede ponercomosumaodiferenciadecuadradosdelaforma ax +

Más detalles

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2 RESUMEN DE INTEGRALES Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: F(x) es una función primitiva de f(x) F (x)=f(x) Ejemplo: f(x)=x 2 F(x)=

Más detalles

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM Integrales indefinidas. Teoremas º Bachillerato Editorial SM Esquema Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS 1 1. CÁLCULO DE PRIMITIVAS Definición 1.1. Primitiva. Una función F (x) es primitiva de f(x) si F (x) = f(x) para todo x del dominio de f. Obsérvese que si F (x) es primitiva de f(x), entonces F (x) +

Más detalles

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO UNIVERSIDD DE SEVILL DEPRTMENTO DE ECONOMÍ PLICD I CLCULO DE PRIMITIVS. PRIMER CURSO CLCULO DE PRIMITIVS Conceptos generales. Definición. Dada f : D IR IR decimos que F : D IR IR es una primitiva de f

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir,

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir, INTRO. MÉTODOS DE INTEGR. ( II ) En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

Linealidad. f, para toda función f ytodoescalarα. Primitivas de tipo inmediato. n+1 [f(x)] n f 0 (x)dx = [f(x)]n+1 + K dx =log x + K.

Linealidad. f, para toda función f ytodoescalarα. Primitivas de tipo inmediato. n+1 [f(x)] n f 0 (x)dx = [f(x)]n+1 + K dx =log x + K. Tabla de primitivas Linealidad (f + g) = f + g αf = α f, para toda función f todoescalarα Primitivas de tipo inmediato Potencia Logaritmo Eponencial Trigonométricas n d = n+ n+ [f()] n f ()d = [f()]n+

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición de primitiva Primitivas Integral

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x.

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. El número x =,... es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. Si x =, x =, x 3 =, x 4 =,... entonces cada x n es racional y (x x n ) n tiende a cero, es decir, lim

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 04 03 06 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x = f (x. Para una clase amplia de funciones ya se ha

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f

Más detalles

1. Nociones básicas. Febrero, 2009

1. Nociones básicas. Febrero, 2009 Cálculo 1. Nociones básicas Febrero, 2009 Nociones básicas Números complejos Funciones reales de variable real Valor absoluto Funciones polinómicas y racionales Función exponencial y logarítmica Funciones

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 0: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Tema 10: Cálculo Integral

Tema 10: Cálculo Integral . Introducción Tema 0: Cálculo Integral El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS . CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =

Más detalles

Repaso de integración

Repaso de integración TABLA DE INTEGRALES INMEDIATAS Repaso de integración. Tabla de integrales inmediatas n d = n+ + C, si n n + f() n f () d = f()n+ n + + C, si n d = ln + C f() f () d = ln f() + C e d = e + C e f() f ()

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Grado en Ingeniería Mecánica

Grado en Ingeniería Mecánica Tema O Grado en Ingeniería Mecánica INTEGRAL INDEFINIDA DEFINICIONES Primitiva Definición (Función primitiva). Se dice que F ( ) es una función primitiva de otra función f () si y sólo si se verifica F

Más detalles

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales

5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 0 03 07 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x) = f (x). Para una clase amplia de funciones ya se ha

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x).

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Tema 5 Integración 5.1 Integral Indefinida Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Ejemplos: La

Más detalles

INTEGRALES INMEDIATAS

INTEGRALES INMEDIATAS INTEGRALES INMEDIATAS Hay casos en los que la integral indeinida se calcula de orma inmediata, ya que la unción integrando es la derivada de una unción conocida. Se llaman integrales inmediatas a aquellas

Más detalles

integración de funciones racionales

integración de funciones racionales VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 10: Cálculo integral 1. Introducción El matemático inglés Isaac Barrow (1630-1677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I(1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Ecuaciones Diferenciales Matemáticas

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA CÁLCULO INTEGRAL INTEGRAL INDEFINIDA Función primitiva : Una función F( se dice que es primitiva de otra función f( cuando F'( f( Por ejemplo F( es primitiva de f( Otra primitiva de f( podría ser F( +

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Sistemas Numéricos, Polinomios

Sistemas Numéricos, Polinomios Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 04 Prof. K. Chang. Sistemas Numéricos,

Más detalles

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad. Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

1.1. Primitivas inmediatas

1.1. Primitivas inmediatas 1.1. Primitivas inmediatas Sólo sabiendo derivar podemos conocer la primitiva de una amplia variedad de funciones, el conocimiento de dichas primitivas (elementales) junto con algunas técnicas serán suficientes

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-107-1-V-1-00-2018 CURSO: CÓDIGO DEL CURSO: 107 SEMESTRE: Primer Semestre JORNADA: Vespertina TIPO DE EXAMEN:

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por.

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por. Pauta Prueba Solemne 1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta. a) (0.5pt) Suponga que las funciones u(x) = x y v(x) = x son soluciones de una ecuación

Más detalles

Tema 3. Calculo de primitivas (2ª parte)

Tema 3. Calculo de primitivas (2ª parte) Tema 3. Calculo de primitivas (2ª parte) Este tema es una continuación del anterior y está dedicado al estudio de los métodos de integración adecuados a la resolución de dos tipos de integrales concretas:

Más detalles

Universidad Autónoma de Querétaro

Universidad Autónoma de Querétaro TAREA 1 Alumnos Fecha Calificación INSTRUCCIONES GENERALES. Emplea el siguiente formato para la entrega de la siguiente actividad, se ordenado, emplea notación matemática adecuada y señala tus resultados.

Más detalles

INTEGRAL INDEFINIDA. CÁLCULO DE PRIMITIVAS

INTEGRAL INDEFINIDA. CÁLCULO DE PRIMITIVAS urso 07-08 TEMA 0 INTEGRAL INDEFINIDA. ÁLULO DE PRIMITIVAS ÍNDIE I. INTRODUIÓN II. PRIMITIVA DE UNA FUNIÓN. INTEGRAL INDEFINIDA III. INTEGRALES INMEDIATAS IV. MÉTODOS DE INTEGRAIÓN A. MÉTODO DE SUSTITUIÓN.

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

Cálculo de primitivas

Cálculo de primitivas 73 Fundamentos de Matemáticas : Cálculo integral en R 4. Primitiva de una función Capítulo 4 Cálculo de primitivas Definición 6.- Diremos ue la función F continua en [a, b], es una primitiva de la función

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema 3 Contenidos de los preliminares Algunas primitivas Una primitiva por cambio de variable Igualdades notables Ecuaciones bicuadradas Construcción de un polinomio de segundo grado a

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017 ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Unidad 1 Integrales Indefinidas 1.1 Diferenciales Aproximaciones Anti derivada

Unidad 1 Integrales Indefinidas 1.1 Diferenciales Aproximaciones Anti derivada Unidad 1 Integrales Indefinidas 1.1 Diferenciales 1.1.1 Aproximaciones 1.1. Anti derivada 1. Integración 1..1 Formulas 1.. Integrales Inmediatas 1..3 Cambio de variable 1.3 Métodos de integración 1.3.1

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: TÉCNICAS DE INTEGRACIÓN TÉCNICAS DE INTEGRACIÓN En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES INTEGRACIÓN POR PARTES Propósitos Reconocer que el método de integración por partes amplía las posibilidades de integrar productos de funciones y saber que se desprende de la derivada de un producto. Utilizar

Más detalles

1. Nociones básicas. Oct, 2007

1. Nociones básicas. Oct, 2007 Cálculo 1. Nociones básicas Oct, 2007 Nociones básicas Números complejos Funciones reales de variable real Valor absoluto Funciones polinómicas y racionales Función exponencial y logarítmica Funciones

Más detalles

Tema 7: Funciones de una variable. Límites y continuidad.

Tema 7: Funciones de una variable. Límites y continuidad. Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

Integrales racionales

Integrales racionales hapter Integrales racionales Son del tipo dx donde P(x) y Q(x) son dos polinomios en x Q(x) asos: ) Si grado Q(x). Efectuamos la división entre ambos polinomios y: Q(x) dx = (x)dx + R(x) Q(x) dx siendo

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno:

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno: Unidad 6 Raíces de polinomios Objetivos Al finalizar la unidad, el alumno: Comprenderá el Teorema Fundamental del Álgebra. Aplicará los teoremas del residuo y del factor en la obtención de las raíces de

Más detalles

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN Función primitiva: Una función F(x) se dice que es primitiva de otra función f(x) cuando F'(x) = f(x), (si la derivada de F es ƒ). Por ejemplo F(x) = x es

Más detalles

2 x

2 x FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Importante: Visita regularmente ttp://www.dim.ucile.cl/~calculo. Aí encontrarás las guías de ejercicios

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles