Proposición Si F es una primitiva de f en I, entonces todas las primitivas de f en I son de la forma F (x) + C con C R

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Proposición Si F es una primitiva de f en I, entonces todas las primitivas de f en I son de la forma F (x) + C con C R"

Transcripción

1 Tema 8 Cálculo de Primitivas. 8.. Definición y propiedades Definición 8... Sea f : I R R. Una primitiva de f en I es una función F : I R R derivable en I y tal que F (x) = f(x) para todo x I. Proposición 8... Si F es una primitiva de f en I, entonces todas las primitivas de f en I son de la forma F (x) + C con C R Definición Se llama integral indefinida de f al conjunto de todas sus primitivas y se denotará por f(x)dx. Así, si F (x) es una primitiva de f(x) en I, se cumple que o equivalentemente, f(x)dx = df (x). f(x)dx = F (x) + C, Propiedades (Propiedades de la integral indefinida) ( (a) f(x)dx) = f(x). (b) (c) (d) F (x)dx = F (x) + C. αf(x)dx = α (f(x) ± g(x)) dx = f(x)dx con α R. f(x)dx ± g(x)dx. Las propiedades (c) y (d) aseguran que la integral indefinida es una operación lineal.

2 Curso 05/06 Cálculo Infinitesimal 8.. Integrales Inmediatas Las siguientes integrales se obtienen directamente a través de las derivadas de las funciones elementales y de la regla de la cadena. kdx = kx + c, k R x k dx = xk+ k + + c, k f(x) k f (x)dx = f(x)k+ k + + c, k dx = ln x + c x f (x) dx = ln f(x) + c f(x) e x dx = e x + c e f(x) f (x) = e f(x) + c a x dx = ax ln a + c, a > 0 a f(x) f (x)dx = af(x) ln a + c, a > 0 sen(x)dx = cos(x) + c sen(f(x))f (x)dx = cos(f(x)) + c cos(x)dx = sen(x) + c cos(f(x))f (x)dx = sen(f(x)) + c ( + tan (x) ) dx = tan(x) + c ( + tan (f(x)) ) f (x)dx = tan(f(x)) + c ( + cot (x) ) dx = cot(x) + c ( + cot (f(x)) ) f (x)dx = cot(f(x)) + c

3 Grupo B Curso 05/06 dx = arc sen(x) + c x f (x) dx = arc sen(f(x)) + c f(x) dx = arg senh(x) + c + x f (x) dx = arg senh(f(x)) + c + f(x) dx = arctan(x) + c + x f (x) dx = arctan(f(x)) + c + f(x) 8.3. Métodos generales de integración Método de descomposición Este método se basa en la linealidad de la integral. Si f(x) se puede escribir como una n combinación lineal de funciones, es decir, f(x) = α i f i (x), entonces i= ( ) n n f(x)dx = α i f i (x) dx = α i f i (x) dx, i= i= donde las integrales de las funciones f i (x) son, a priori, más sencillas que la original Método de sustitución Este método se basa en la regla de la cadena. Supongamos que tenemos una integral indefinida f(x)dx y que queremos realizar un cambio de variables x = φ(t) (o equivalentemente, t = φ (x)). Entonces f(x)dx = f (φ(t)) φ (t)dt. En efecto, si F (x) es una primitiva de f(x), es claro que F (x) = f(x) y por tanto f (φ(t)) φ (t) = F (φ(t))φ (t) = [F (φ(t))] = F (x) = f(x). 3

4 Curso 05/06 Cálculo Infinitesimal Método de integración por partes Este método se basa en la regla de la derivación del producto. Sean u(x) y v(x) dos funciones derivables, Entonces (u(x)v(x)) = u (x)v(x) + u(x)v (x), y por lo tanto u(x)v(x) = (u(x)v(x)) dx = u (x)v(x) dx + u(x)v (x) dx, por lo que u(x)v (x) dx = u(x)v(x) v(x)u (x) dx, o escrito en forma de diferencial, u(x)dv(x) = u(x)v(x) v(x)du(x) Integración de funciones racionales Sea p(x) q(x) una función racional tal que el grado del polinomio p(x) es menor que el grado de q(x). Si fuese gr(p) gr(q), dividiendo obtendríamos: p(x) q(x) grado del resto es menor que el del divisor. Descomponiendo q(x) en factores, puede ocurrir: = c(x) + r(x) q(x) y el (a) q(x) sólo tiene raíces reales simples α, α,..., α n, entonces existen A, A,... A N R tales que p(x) q(x) = A + A + + A n, luego x α x α x α n p(x) q(x) dx = n i= A i x α i dx, que son integrales inmediatas. (b) q(x) tiene raíces reales múltiples, por ejemplo, raíz β con multiplicidad n N. En este caso se procede a la descomposición de p(x) en fracciones simples en la misma forma q(x) que en el caso (a), pero con la particularidad que al factor (x β) n le corresponderían los sumandos B x β + B (x β) + + B n (x β) n. La única novedad con respecto al caso anterior son integrales de la forma (i =,, n), que son inmediatas también. B i (x β) i dx 4

5 Grupo B Curso 05/06 (c) q(x) tiene raíces complejas (conjugadas) simples. Supongamos que q(x) tiene la raíz compleja z = α + βi, por consiguiente, tendrá también la raíz conjugada z = α βi. Como [x (α + βi)][x (α βi)] = (x α) + β, en la descomposición en fracciones al par de raíces complejas le corresponderá la fracción Mx + N (x α) + β, cuya integral se reduce a dos inmediatas (un logaritmo y un arcotangente), sin más que tener en cuenta que Mx + N (x α) + β = M x α (x α) + β + (Mα + N) (x α) + β. (d) q(x) tiene raíces complejas múltiples. En esta situación hay dos opciones: (i) Actuar como en el caso de raíces reales múltiples. Si las raíces complejas (como las del apartado (c)) tienen multiplicidad n N, se añaden a la descomposición las siguientes fracciones: M x + N (x α) + β + M x + N ((x α) + β ) + + M n x + N n ((x α) + β ) n. Las nuevas fracciones se integran por partes (reduciendo en cada paso un grado en el denominador), o bien mediante el cambio x = α + β tan t. (ii) Utilizar el Método de Hermite. Este método consiste en descomponer la función racional de la forma ( ) p(x) A(x) q(x) = + C(x), B(x) donde B(x) es un polinomio con las mismas raíces que q(x) pero con una multiplicidad menos cada una. A(x) es un polinomio de coeficientes indeterminados, cuyo grado es una unidad menos que B(x). C(x) es la descomposición en fracciones simples correspondientes a las raíces de q(x) consideradas todas como simples Integrales reducibles a racionales En esta sección trataremos de integrales de funciones irracionales (es decir, que no son racionales) pero que mediante un cambio de variables adecuado, la transformamos en una integral de tipo racional. 5

6 Curso 05/06 Cálculo Infinitesimal Integrales trigonométricas Sea R(sen x, cos x) una función racional en de senos y cosenos. Podemos reducir su integral a una racional mediante el cambio de variables t = tan(x/): ( t = tan(x/) dx = R(sen x, cos x)dx = +t dt t = R sen x = t +t cos x = t + t, ) t + t + t dt. +t Existen casos particulares en que la integral trigonométrica re puede racionalizar mediante casos más sencillos. (a) Si R es impar en seno, es decir, R( sen x, cos x) = R(sen x, cos x), hacemos el cambio cos x = t. (b) Si R es impar en coseno, es decir, R( sen x, cos x) = R(sen x, cos x), hacemos el cambio sen x = t. (c) Si R es par en seno y coseno (a la vez), es decir, R( sen x, cos x) = R(sen x, cos x), hacemos el cambio tan x = t Integrales con radicales de polinomios de grado Son integrales del tipo ( R x, ( ) m/n ax + b, ( ) p/q ax + b,..., ( ) ) r/s ax + b dx donde R es una función racional en cada una de sus variables, a, b, c, d R tales que (c, d) (0, 0) y m, n, p, q,..., r, s Z \ {0}. En esta situación, si llamamos N = m.c.m.(n, q,..., s), es decir, el mínimo común múltiplo de los índices de las raíces implicadas, basta efectuar el cambio: ax + b = tn para transformar la integral en una del tipo racional. En efecto, basta tener en cuenta que el cambio implica que x = dtn b =: f(t), es decir, una función racional en t, por lo que a ctn ( ( ) m/n ( ) p/q ( ) ) r/s ax + b ax + b ax + b R x,,,..., dx = ( = R f(t), t Np/q, t Nr/s,..., t Nr/s) f (t)dt. 6

7 Grupo B Curso 05/ Integrales con radicales de polinomios cuadráticos Se trata de integrales del tipo ( R x, ) ax + bx + c dx. Estas integrales las podemos integrar de dos formas diferentes. Integrales Abelianas Se trata de realizar un cambio de variables que la transforme en una integral de tipo racional. (i) Si a > 0, se hace el cambio ax + bx + c = ax + t. (ii) Si c > 0, se hace el cambio ax + bx + c = c + tx. (iii) Si a < 0 y c 0, se hace el cambio ax + bx + c = t(x α), donde α es una raíz real de ax + bx + c Completando cuadrados En este caso, vamos a realizar un cambio de variables trigonométrico que nos reduzca a una integral racional trigonométrica (que se resolverá mediante otro cambio de variables adecuado). En primer lugar, veamos los siguientes casos particulares: (i) R (x, ) a b x dx. Realizamos el cambio bx = a sen t (o bx = a cos t). (ii) (iii) R (x, ) b x a dx. Realizamos el cambio bx = a sec t. R (x, ) a + b x dx. Realizamos el cambio bx = a tan t. En el caso general, tenemos que completar cuadrados, es decir, escribir la función cuadrática de la forma ax + bx + c = a(x A) + B y en función de los signos de a y B, realizar el cambio trigonométrico adecuado. 7

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas ir Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura ir ir Índice. Definiciones y propiedades Método de por

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS CÁLCULO DE PRIMITIVAS David Ariza-Ruiz Departamento de Análisis Matemático Seminario I 7 de noviembre de 202 (Universidad de Sevilla) David Ariza Ruiz 7 de noviembre de 202 / 42 Definición y propiedades

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS 1 1. CÁLCULO DE PRIMITIVAS Definición 1.1. Primitiva. Una función F (x) es primitiva de f(x) si F (x) = f(x) para todo x del dominio de f. Obsérvese que si F (x) es primitiva de f(x), entonces F (x) +

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Funciones de Una Variable Real II: Cálculo de Primitivas

Funciones de Una Variable Real II: Cálculo de Primitivas Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia http://webs.um.es/beca Grado en Matemáticas

Más detalles

5.1 Primitiva de una función. Reglas básicas

5.1 Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1 Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

TeleAcademia. Tu Academia Online. Tabla Resumen de Integrales. Nivel: Bachillerato y Universidad Versión: 0.1

TeleAcademia. Tu Academia Online.   Tabla Resumen de Integrales. Nivel: Bachillerato y Universidad Versión: 0.1 TeleAcademia Tu Academia Online www.teleacademia.es Tabla Resumen de Integrales Nivel: Bachillerato y Universidad Versión: 0.1 Todos los derechos reservados c 015 TeleAcademia Tu Academia Online. http://www.teleacademia.es

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

5. INTEGRACIÓN. Tema 5. Integración. Curso 2017/ Cálculo de primitivas.

5. INTEGRACIÓN. Tema 5. Integración. Curso 2017/ Cálculo de primitivas. Tem 5. Integrción. Curso 207/8 5. INTEGRACIÓN. En est tem estudiremos los concepto de primitiv e integrl indenid, junto con lgunos métodos generles de integrción. Tmién introduciremos el concepto de Integrl

Más detalles

Unidad Temática Cálculo de primitivas

Unidad Temática Cálculo de primitivas Unidad Temática 5 5.1 Análisis Matemático (Ingeniería Informática) Departamento de Matemática Aplicada Facultad de Informática Universidad Politécnica de Valencia Contenidos 1 Integración Primitiva Integración

Más detalles

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM Integrales indefinidas. Teoremas º Bachillerato Editorial SM Esquema Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo

Más detalles

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2 RESUMEN DE INTEGRALES Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: F(x) es una función primitiva de f(x) F (x)=f(x) Ejemplo: f(x)=x 2 F(x)=

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

Capítulo 3: Cálculo integral

Capítulo 3: Cálculo integral (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos La integral indefinida Propiedades básicas de la integral indefinida Métodos de integración: por

Más detalles

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir,

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir, INTRO. MÉTODOS DE INTEGR. ( II ) En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Apéndice 9: Cálculo de primitivas

Apéndice 9: Cálculo de primitivas Apéndice 9: Cálculo de primitivas Ajuste de cuadrados La expresión cuadrática del tipo ax + bx + c (es decir un polinomio de grado dos, a 6 0) se puede ponercomosumaodiferenciadecuadradosdelaforma ax +

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

INTEGRACIÓN INDEFINIDA

INTEGRACIÓN INDEFINIDA 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x).

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Tema 5 Integración 5.1 Integral Indefinida Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Ejemplos: La

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO UNIVERSIDD DE SEVILL DEPRTMENTO DE ECONOMÍ PLICD I CLCULO DE PRIMITIVS. PRIMER CURSO CLCULO DE PRIMITIVS Conceptos generales. Definición. Dada f : D IR IR decimos que F : D IR IR es una primitiva de f

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Cálculo de primitivas.

Cálculo de primitivas. Cálculo de primitivas. Isabel María Elena Fernández y Celia Rodríguez Alfama * 8 de septiembre de 005 Resumen Vamos a intentar mostrar una introducción al cálculo integral, que es el tema que nos ha quedado

Más detalles

Método de integración por fracciones parciales

Método de integración por fracciones parciales Método de integración por fracciones parciales Temas Fracciones parciales. Método de integración por fracciones parciales. Capacidades Descomponer una fracción en suma de fracciones parciales. Conocer

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): 1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 0 03 07 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x) = f (x). Para una clase amplia de funciones ya se ha

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 04 03 06 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x = f (x. Para una clase amplia de funciones ya se ha

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Tema 9: Cálculo integral

Tema 9: Cálculo integral Tema 9: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017 ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS . CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

x C 1 x 2 a 2 d x = 2a x a 1 ] x + a + C 1 a x + C sen kx sh kx k k cos kx ch kx k

x C 1 x 2 a 2 d x = 2a x a 1 ] x + a + C 1 a x + C sen kx sh kx k k cos kx ch kx k Primitivas elementales () x n d x = x n+ + C, n ; x d x = d x = log x + C n + x a x d x = ax log a + C, a = e e x d x = e x + C [ x d x = x ] d x = x + log x x + + C [ x a d x = a x a ] d x = x + a a log

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos:

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos: INTEGRACIÓN DE RACIONALES Nos hallamos ante una racional cuando estamos atacando un problema y nos encontramos con un cociente de polinomios que tenemos que integrar. Hemos de resolver: f(x) = p(x) q(x)

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------

Más detalles

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x.

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. El número x =,... es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x. Si x =, x =, x 3 =, x 4 =,... entonces cada x n es racional y (x x n ) n tiende a cero, es decir, lim

Más detalles

Tema 9: Cálculo de primitivas

Tema 9: Cálculo de primitivas Tema 9: Cálculo de primitivas. Primeras definiciones y propiedades Sea unintervalodelarectarealysean : dos funciones, con derivable. Se dice que es una primitiva de en cuando 0 () =() Al conjunto de todas

Más detalles

Curso 0: Matemáticas Año académico

Curso 0: Matemáticas Año académico Curso 0: Matemáticas Año académico 2014-2015 Ana García González Miguel Martínez Panero Luis Carlos Meneses Poncio Teresa Peña García UniversidaddeValladolid Departamento de Economía Aplicada 1. Aritmética

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Métodos de integración

Métodos de integración Teóricas de Análisis Matemático (8) - Práctica 9 - Métodos de integración Práctica 9 - Parte Métodos de integración Esta parte de la materia está dedicada a estudiar distintos métodos que nos resultarán

Más detalles

TEMA 5: INTEGRAL INDEFINIDA.

TEMA 5: INTEGRAL INDEFINIDA. TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador

Más detalles

Cálculo de primitivas

Cálculo de primitivas 73 Fundamentos de Matemáticas : Cálculo integral en R 4. Primitiva de una función Capítulo 4 Cálculo de primitivas Definición 6.- Diremos ue la función F continua en [a, b], es una primitiva de la función

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

Tema 10: Integral indenida

Tema 10: Integral indenida Tema 0: Integral indenida May 9, 07 Primitiva de una función Como hemos estudiado, la derivación nos permite encontrar la derivada de una función dada. Por ejemplo, si tenemos la función F () =, su derivada

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS 5. INTEGRALES DE FUNCIONES 5. 1 Definición de integral definida

Más detalles

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho

Más detalles

Tema 3. Calculo de primitivas (2ª parte)

Tema 3. Calculo de primitivas (2ª parte) Tema 3. Calculo de primitivas (2ª parte) Este tema es una continuación del anterior y está dedicado al estudio de los métodos de integración adecuados a la resolución de dos tipos de integrales concretas:

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

1.1. Primitivas inmediatas

1.1. Primitivas inmediatas 1.1. Primitivas inmediatas Sólo sabiendo derivar podemos conocer la primitiva de una amplia variedad de funciones, el conocimiento de dichas primitivas (elementales) junto con algunas técnicas serán suficientes

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN Función primitiva: Una función F(x) se dice que es primitiva de otra función f(x) cuando F'(x) = f(x), (si la derivada de F es ƒ). Por ejemplo F(x) = x es

Más detalles

UNIDAD II. Academia de Ciencias Básicas

UNIDAD II. Academia de Ciencias Básicas UNIDD II cademia de iencias ásicas INTEGRLES INDEFINIDS Y METODOS DE INTEGRION INTRODUIÓN En este capitulo trataremos el problema inverso de hallar la derivada de una función: esto es, calcular la primitiva

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

INTEGRALES. EL PROBLEMA DEL ÁREA I

INTEGRALES. EL PROBLEMA DEL ÁREA I INTEGRALES. EL PROBLEMA DEL ÁREA I Ejercicio : En este ejercicio vamos a practicar el cálculo de la integral indefinida haciendo uso de la integral inmediata: (f(x)) n f (x)dx n = (f(x))n+ + K (K constante)

Más detalles

Cálculo integral de funciones de una variable: integral indefinida

Cálculo integral de funciones de una variable: integral indefinida Cálculo integral de funciones de una variable: integral indefinida BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición de primitiva Primitivas Integral

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Universidad Autónoma de Querétaro

Universidad Autónoma de Querétaro TAREA 1 Alumnos Fecha Calificación INSTRUCCIONES GENERALES. Emplea el siguiente formato para la entrega de la siguiente actividad, se ordenado, emplea notación matemática adecuada y señala tus resultados.

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

La integral indefinida

La integral indefinida Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto

Más detalles

MATEMÁTICAS 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS

MATEMÁTICAS 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS ESQUEMAS TEÓRICOS I.E.S. ALBERT EINSTEIN DEPARTAMENTO DE MATEMÁTICAS NÚMEROS REALES RELACIÓN DE ORDEN

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

( ) " f $ ( x) integramos a ambos

( )  f $ ( x) integramos a ambos Guia No Calculo Integral Grupo UNAD Escuela de Ciencias Básicas Tecnologías e Ingeniería Métodos de Integración Integración por partes Funciones trigonometricas Sustitución trigonometricas Fracciones parciales

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

integración de funciones racionales

integración de funciones racionales VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I(1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Ecuaciones Diferenciales Matemáticas

Más detalles