A.-) En los problemas del 1 al 9, determine en caso de existir, los valores de las incógnitas tal que f(x) sea continua en R.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A.-) En los problemas del 1 al 9, determine en caso de existir, los valores de las incógnitas tal que f(x) sea continua en R."

Transcripción

1 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH d Gí de Estdio: Límites Continidd Límites: Aplicción de Propieddes Herrmits Continidd: Límites Lterles Fnciones por Prtes (Gí Complemtri No. er Prcil (SOLUCIONARIO v. Comtrios Gerles Ést gí cmple únic eclvmte l nción de repso o complemto de los tems qe polemte serán evldos el primer em prcil, demás, se estlece qe ningún momto ést gí de estdio pretde reemplzr el liro de teto mcho mos, proporcionr n ormto de los ejercicios qe podrín ser evldos n em; se hce ést clrción pr evitr especlciones conjetrs errónes tre los estdintes de ést ls otrs secciones de Cálclo I Diercil, ddo qe ést herrmit h do elord tomndo como reerci diertes tetos de Cálclo gís de niverddes etrnjers, qe criterio del ctedrático, ger n vlor gregdo el conocimito de los tros proeonles de l ingierí. Se le recerd l importnci de trjr con disciplin, persevernci honestidd cd ejercicio, ddo qe Ud. es el único responsle de s éito o rcso, el ctedrático no es más qe n cilitdor del conocimito, por lo tnto, nte clqier inqietd no dde consltrlo. Instrcciones Especíics: Pr qe el trjo grpl se ceptdo revisdo por l totlidd del pntje, el docmto deerá cmplir ls gites condiciones: Desrrollo hojs lncs o rds (n espirl tmño crt tilizndo ms crs de l hoj. Formto de pretción conorme lo estipldo el lo de crso (portd todos los demás elemtos qe pliq según se el cso. c Los ejercicios deerán estr listdos el ord nmérico correltivo de l gí. d Tods ls págins qe conorm el trjo (ecepto l portd deerán estr etiqetds con s respectivo número de págin l esqin inerior derech de ls misms el ormto será: X de Y, donde: X = págin clqier; Y = número totl de págins qe ormn el trjo. e Ser tregdo l ech estipld el cldrio del l virtl. SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

2 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH A.- En los prolems del l, determine cso de eistir, los vlores de ls incógnits tl qe ( se contin R..- ( nális ( pede ser contin, sí ; por lo tn to nális ección No. ección No. se reselve el stem de ecciones gite : ( pede ser contin, sí ; por lo tn to SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

3 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH.- ( p nális. p. F.I.. pr qe se contin el pnto nlizdo p ; por lo tn to SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

4 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH.- ( nális nális. ( pede ser contin, sí ; por lo tn to ección No. ección No.. ( pede ser contin, sí ; por lo tn to se reselve el stem de ecciones gite : SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

5 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH.- ( nális. ( pede ser contin, sí ; por lo tn to nális ección No. ección No. se reselve el stem de ecciones gite :. ( pede ser contin, sí ; por lo tn to SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

6 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de.- 7 temos, ección l sstitdo 7 sstitdo & tn to lo por ; sí, contin ser pede (. F.I nális (

7 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin 7 de.- log log log vr ile de cmio n hcemos log log tnto lo por ; contin se qe pr. F.I.. log log. nális, rc ( ( tnto lo por ; contin se qe pr. F.I.. (. nális log log, R ( (

8 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH 7.- Se ( nális 8 ( pede ser contin, sí ( nális... pr qe ; por lo F.I. tn to se contin el pnto nlizdo ; por lo tn to SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin 8 de

9 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de.- c tonces contin, es. tn to lo por ; sí, contin ser pede (. c. nális tn to lo por ; sí, contin ser pede ( ( ( (.. nális c ( (

10 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de B.- En los prolems del l, nlice l continidd de ( el(los pnto(s qe Ud. condere propido de cerdo l comportmito de l mism..- vle eiste tn to lo por ; qe ddo.. nális (

11 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de.- vle eiste tn to lo por ; qe ddo 7. eiste no. nális 7 (

12 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH 7 ( nális.. ddo qe 7 ; por lo tn to no eiste. SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

13 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH C.- En los prolems del l ctre el límite indicdo o estlezc qe no eiste. (En el procedimito, necetrá plicr conceptos de lger /o trigonometrí..- F.I F.I. SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

14 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH.- F.I. * * * * SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

15 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de.- * * * * F.I

16 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH 7.- F.I. cmio se ; tonces sstitimos pr oter de vr ile trigonométrico * cmio de vr ile; se pr, e inr ls tonces sstitimos ríces F.I. elige el mor número pr oter divile tre SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

17 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin 7 de oter pr sstitimo s tonces ; se F.I.

18 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH.- tn tn F.I. tn tn tn F.I. tn tn tn tn tn tn F.I. * * * * 7 7 SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin 8 de

19 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de.- F.I oter pr sstitimos tonces ; se tre divile ep onte con polinómico vr ile de cmio F.I.

20 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH.- se F.I. ; sstitdo otemos & son cons tn tes tn tn F.I. tn F.I. SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

21 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de.- * * * * * * F.I.

22 Cálclo I Diercil c/geometrí Anlític (MAT, Secc. do Trimestre, er Semestre ; erprcil dgíestdio Elordo por: M.Sc. Ing. Jlio Césr López Zerón CICH Biliogrí Utilizd l Selección/Solción de los Ejercicios Propestos ést Gí de Estdio. Prcell, E. (. Cálclo, ª ed. Méico. Person Edcción.. López, I.; Wisniewski, P. (. Cálclo I Diercil de n Vrile, ª ed. Méico. Thomson Editores. Stewrt, J. (. Cálclo, Trscdtes Temprns, ª ed. Méico. Thomson Editores.. Zill, D. (. Cálclo con Geometrí Anlític, ª ed. Méico. Grpo Editoril Ieromericn.. Stewrt, J. (8. Cálclo de n Vrile, Trscdtes Temprns, ª ed. Méico. Cgge Lerning Editores.. Edwrds, H.; Pne, D. (8. Cálclo con Trscdtes Temprns, 7ª ed. Méico. Person Edcción. 7. Thoms, G. (. Cálclo Un Vrile, ª ed. Méico. Person Edcción. 8. Lrson, R. (. Cálclo de Un Vrile, ª ed. Méico. McGrw-Hill Edcción.. Zill, D. (. Cálclo de Un Vrile. Trscdtes Temprns, ª ed. Méico. McGrw-Hill Edcción.. Cálclo Diercil e Integrl. Ingierí Mtemátic; Fcltd de Cicis Fícs Mtemátics. Univerdd de Chile. Sntigo de Chile.. Gí Complemtri #; Límites Continidd. Deprtmto de Mtemátics. Univerdd Ncionl Atónom de Hondrs (UNAH. Tegciglp, Hondrs.. Cortes, I. (78. Cálclo Elemtl. Univerdd Ncionl Eperimtl de Táchir. Táchir, Repúlic Bolivrin de Vezel.. Rojs, D. Mtemátics II: Ingierí Mecánic Qímic. Institto Univertrio de Tecnologí José Antonio Anzoátegi. Repúlic Bolivrin de Vezel.. Cstillo, A. (. Gí Complemtri sore Límites, er Prcil. Tegciglp, Hondrs. UNITEC.. Rovelo, I. (. Gí Complemtri sore Límites, er Prcil. Tegciglp, Hondrs. UNITEC. JUCELO D.R. SOLUCIONARIO d Gí Estdio Resolción de Límites Continidd de Fnciones Págin de

REPASO DE CÁLCULO I INTEGRAL. Repaso General sobre Métodos de Integración Indefinida Guía Complementaria No.03

REPASO DE CÁLCULO I INTEGRAL. Repaso General sobre Métodos de Integración Indefinida Guía Complementaria No.03 Cálculo II c/geometría Analítica (MAT0), Secc.6 er Trimestre, er Semestre 06; er Parcial Documento Elaborado por: M.Sc. Ing. Julio César López Zerón CICH6 REPASO DE CÁLCULO I INTEGRAL Repaso General sobre

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fech Emisión: 205/09/30 Revisión No. 2 AC-GA-F-8 Págin de 5 NOMBRE DEL CONTENIDO PROGRAMÁTICO CÓDIGO 2202 PROGRAMA TECNOLOGÍA EN ELECTRÓNICA Y COMUNICACIONES ÁREA Y/O COMPONENTE

Más detalles

Guía de Estudio No.8 2do Parcial Aplicaciones de la Derivada Optimización de Funciones (Guía Complementaria No.8 2do Parcial) SOLUCIONARIO v1.

Guía de Estudio No.8 2do Parcial Aplicaciones de la Derivada Optimización de Funciones (Guía Complementaria No.8 2do Parcial) SOLUCIONARIO v1. Cálculo I Diferencial c/geometría Analítica (MAT04), Secc.905 do Trimestre, er Semestre 05; doparcial 8vaGuíaEstudio Elaorado por: M.Sc. Ing. Julio César López Zerón CICH46 Guía de Estudio No.8 do Parcial

Más detalles

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Longitud de un curv. Prof. Frith J. Briceño N. Objetivos cubrir Longitud de un curv. Áre de un superficie de revolución. Ejercicios Código : MAT-CDI. resueltos Ejemplo :

Más detalles

Integración múltiple de Riemann 34 TEMA 5 - INTEGRACIÓN MÚLTIPLE DE RIEMANN

Integración múltiple de Riemann 34 TEMA 5 - INTEGRACIÓN MÚLTIPLE DE RIEMANN nterción múltiple de Riemnn 4 TEMA 5 - NTEGRACÓN MÚLTPLE E REMANN Rectánlos prticiones en rectánlos en R einición Siendo dos interlos clesqier de R se denomin rectánlo de ldos prlelos los ejes coordendos

Más detalles

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07 álculo tgrl (MAT, Scc.67 r Trimstr, do Smstr doprcil 7mGuíEstudio Documto lordo : M.Sc. g. Julio ésr Lóz Zró H6 7m Guí d Estudio do Prcil Estudio d Sris d Potci SOLUONAO Guí omlmtri No.7 omtrios Grls Ést

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

En el cálculo de los límtes se utilizarán los siguientes resultados: 1,siendoa una constante real distinta de cero.

En el cálculo de los límtes se utilizarán los siguientes resultados: 1,siendoa una constante real distinta de cero. En el cálclo de los límtes se tilizarán los sigientes resltados: I) II) III) IV) sin 1 sina a a a sin a a 1 sink a k a 1,siendoa na constante real distinta de cero. 1, siendo k na constante real distinta

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO 1. DATOS INFORMATIVOS. SILABO 1.1. Asigntur : Cálculo Diferencil e Integrl. 1.2. Código : 28-112 1.3 Áre : Formtivo 1.4 Fcultd : Ciencis de l Slud 1.5 Ciclo : Segundo 1.6 Créditos : 04. 1.7 Totl de hors

Más detalles

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x)

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x) rte Vriles letoris. Vriles letoris continus En l sección nterior se considerron vriles letoris discrets, o se vriles letoris cuo rngo es un conjunto finito o infinito numerle. ero h vriles letoris cuo

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

Tema 12. Integrales impropias

Tema 12. Integrales impropias Tem 2. Integrles impropis Jun Medin Molin 3 de mrzo de 2005 Introducción En este tem trtremos el estudio de ls integrles impropis que pueden ser de dos tipos, integrles donde el intervlo de integrción

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

Fórmulas de Derivación. Fórmulas de Integración

Fórmulas de Derivación. Fórmulas de Integración Integrl Inefini A l operción e clclr l ntieriv (primitiv) e n fnción se le llm integrción se enot con el símbolo qe es l inicil e l plbr sm. Si F( es n fnción primitiv e f( se epres: f ( F( C si sólo si

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

manual de normas gráficas

manual de normas gráficas mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II Fse generl INSTRUCCIONES: El lumno deerá elegir un de ls dos opciones

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE.

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE. CAMBIO E VAIABLES EN LA INEGAL OBLE. 7. Se = [, ] [, ] se define : como (, ) = ( +, ). Encontrr = ( ). Es inecti? Cd n de ls componentes = +, =, es fnción de n sol rible. Pr er qe es inecti, bst comprobr

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

a Y = X donde a 1 siendo Lg el logaritmo y

a Y = X donde a 1 siendo Lg el logaritmo y Mteri: Mtemátics de 4to ño Tem: Función logrítmic Mrco Teórico L función exponencil de l form f ( ) tiene un función invers, que llmmos función logrítmic y se escribe de l form: Un función > 0 g( ) Lg

Más detalles

Integral impropia Al definir la integral definida b

Integral impropia Al definir la integral definida b Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fech Emisión: 2011/09/15 Revisión No. 1 AC-DO-F-8 Págin 1 de 6 MATEMÁTICAS CÓDIGO 1724101 PROGRAMA Tecnologí en Atención Prehospitlri ÁREA DE FORMACIÓN Fundmentos de Biomédics -

Más detalles

Matrices. 2 0 1 1 1 1 3 0 y 2 1 5 1 3 0 3. siendo. Ejercicio nº 1.- Dadas las matrices: b) Halla una matriz, X, tal que AX B. Ejercicio nº 2.

Matrices. 2 0 1 1 1 1 3 0 y 2 1 5 1 3 0 3. siendo. Ejercicio nº 1.- Dadas las matrices: b) Halla una matriz, X, tal que AX B. Ejercicio nº 2. Mtrices Ejercicio nº - Dds ls mtrices: b) Hll n mtriz tl qe Ejercicio nº - Reselve el sigiente sistem mtricil: Ejercicio nº - Clcl los vlores de pr qe l mtriz: verifiqe l ección l donde l O son respectivmente

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Lortorio de Físic Universitri : Lentes de ire delgds junio 006 LENTES DE AIRE DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

Tema 22. El lema de bombeo para LR

Tema 22. El lema de bombeo para LR Tem 22 Lem de omeo pr LLC Dr. Luis A. Pined IBN: 970-32-2972-7 Cómo podemos decir si un lenguje es lire del contexto? Definir un GLC o diseñr un AP pr el lenguje Pero que tl si el lenguje se descrie por

Más detalles

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto.

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile,

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012. Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas.

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas. www.colegiosntcruzrioueno.cl Deprtmento de Mtemátic GUIA DE MATEMATICA Unidd: Álger en R Contenidos: - Conceptos lgericos ásicos - Operciones con epresiones lgerics - Vlorción de epresiones lgerics - Notción

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO

UNIVERSIDAD ALAS PERUANAS FACULTAD DE MEDICINA HUMANA y CIENCIAS DE LA SALUD Escuela Académico Profesional de Nutrición Humana SILABO 1. DATOS INFORMATIVOS. SILABO 1.1. Asigntur : Métodos Estdísticos. 1.2. Código : 28-205 1.3. Áre : Formtivo 1.4. Fcultd : Ciencis de l Slud 1.5 Ciclo : Tercero 1.6 Créditos : 03 1.7 Totl de hors : 04 Teorí

Más detalles

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS Un specto importnte pr el nálisis y l dministrción de n inventrio es determinr qé rtíclos representn l myor prte del vlor del mismo - midiéndose s

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

APÉNDICE A INTERPRETACIONES GEOMÉTRICAS DE ALGUNOS PRODUCTOS NOTABLES

APÉNDICE A INTERPRETACIONES GEOMÉTRICAS DE ALGUNOS PRODUCTOS NOTABLES Universidd Autónom de Bj Cliforni Fcultd de Ingenierí Meicli APÉNDICE A INTERPRETACIONES GEOMÉTRICAS DE ALGUNOS PRODUCTOS NOTABLES Un inomio l cudrdo de l form (+), donde,, puede interpretrse de mner geométric

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a Sint Gspr College MISIONEROS DE LA PRECIOSA SANGRE Formndo Persons Íntegrs Deprtmento de Mtemátic RESUMEN PSU MATEMATICA GUÍA NÚMERO 9 ECUACIONES: () Un ecución es un iguldd condiciond en l que plicndo

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

POLINOMIOS. se denominan coeficientes.

POLINOMIOS. se denominan coeficientes. POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile, tod epresión de l form: tl que: 0... n n 0 R; R; R;... ; n R n 0 siendo n N0 En tl epresión, l letr represent un número rel

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

Válvulas de Control Direccional 2/2 Serie 95000

Válvulas de Control Direccional 2/2 Serie 95000 Válvuls de Control Direccionl 2/2 Serie 95000 Válvuls de siento plno con ccionmiento eléctrico directo G1/4, 1/4 NPT Presión de trjo desde 0 r Corto tiempo de conmutción Aplicle pr vcío inferior 1,33 10-3

Más detalles

TEMA 14 Números complejos *

TEMA 14 Números complejos * TEMA 4 Números complejos * Definiciones Supongmos que quiero resolver l ecución de segundo grdo x + 0. Quedrá: x, luego x ±, que evidentemente no pertenecen l conjunto de los números reles. Por tnto tenemos

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís correspode los espcios cdémicos e los que el estudite del Politécico Los Alpes puede profudizr y reforzr sus coocimietos e diferetes tems de cr l eme de dmisió de l

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

CA LCULO Hoja 11. Integrales triples. Aplicaciones.

CA LCULO Hoja 11. Integrales triples. Aplicaciones. CA LCULO Hoj.. Clculr ls siguientes integrles triles en los recintos indicdos: () xzy x yzdxdydz, = (x, y, z) R : x, y, z. () zxy (d) y dxdydz, = (x, y, z) R : x, y, z. (c) π. z y zx zx dxdydz, con el

Más detalles

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación Licdo Eliezer Motoy Rese de los Métodos de Itegrció Tbls de derivció dy L derivd por defiició f ( ) D f y d D ( ) D ( ) D ( ) ) D ( ) D ( c) 0 D D ( ) ) D D ( ) ) D ( v) D ( ) D ( v) 3) D ( v) D v vd vd

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Enrique Sánchez y Aguiler. Rodolo Estrd Guerrero. LENTES DE VIDRIO DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos de convergenci

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Problemas de Lenguajes y Autómatas

Problemas de Lenguajes y Autómatas Trjo VIII Semestre A2005 Prolems Prolems de Lengujes y Autómts 1. Pr los lengujes ddos sore Σ = {, } construir un expresión regulr de él y un Autómt Finito que lo cepte: ) L = {w w tiene un numero pr de

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles