LÍMITES DE FUNCIONES REALES
|
|
|
- Víctor Manuel Sáez Montero
- hace 8 años
- Vistas:
Transcripción
1 INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 11 JUNIO DE 11 UNIDADES 01 INDICADORES DE DESEMPEÑO Determina adecuadamente el límite de funciones reales, aplicando sus teoremas fundamentales. Desarrolla ordenadamente las actividades propuestas por el profesor. LÍMITES DE FUNCIONES REALES Después de haber trabajado en el período anterior todo lo relacionado con las funciones reales y sus aplicaciones, pasas ahora a manejar uno de los conceptos más fundamentales que tiene el cálculo como es la teoría de límites. Los conocimientos que vas adquiriendo van enlazados unos con otros y son muy importantes tanto para tu desarrollo intelectual como para la aplicación en próimos conceptos matemáticos. Es así, por ejemplo, como el concepto de límite nos llevará al estudio de otros de los temas fuertes del cálculo como lo es la derivada cuyo estudio realizarás en el último período. Continúa adelante con tu trabajo que ya falta muy poco para que logres alcanzar una meta más en otra etapa esencial de tu vida. Racionales Factorización LÍMITES DE FUNCIONES reales Irracionales Laterales Racionalización Factorización y/o racionalización Definición intuitiva de límite: Sea Y= f () una función cualquiera y sean a y L dos números reales, queremos analizar el comportamiento que tiene Y a medida que la variable X se acerca o se aproima al número real a. X se puede aproimar al número a por dos lados: por la izquierda de a o por la derecha de a. 1
2 Si a medida que X se aproima a a por su izquierda ( < a ) tomando valores ligeramente menores que a pero muy cercanos, decimos que X a - ( se lee tiende a a por la izquierda ) y si a medida que esto ocurre f () se aproima al número real L entonces podemos decir que el límite cuando X tiende a a por la izquierda de f () es igual a L y se escribe: f () = L (límite lateral por la izquierda de a ). a - Si a medida que se aproima a a por su derecha de ( > a ) tomando valores ligeramente mayores que a pero muy cercanos, decimos que X a + ( se lee tiende a a por la derecha ) y si a medida que esto ocurre f () se aproima también al número real L, entonces podemos decir que el límite cuando X tiende a a por la derecha de f () es igual a L y se escribe: f () = L (límite lateral por la derecha de a ). a + Si el f () es igual al f () y son iguales al número real L, es porque el a - a + límite total eiste y podemos escribir: f () = L y eiste, es decir, el límite de a una función dada eiste cuando los dos límites laterales son iguales al mismo número real; por lo tanto el límite de la función dada no eiste cuando los dos límites laterales son diferentes. En tus cursos de cálculo universitario podrás analizar con todo el rigor matemático dicha definición. con mucha atención: Para hallar el límite con tendencia a real de una función no siempre es necesario calcular los límites laterales; para ello es suficiente con tener presente los siguientes teoremas o propiedades: 1. Unicidad del límite: El límite de una función si eiste debe ser único e igual a un número real.. ite de la función constante: El límite de una función constante es la misma constante, es decir, sea Y = f () = #, entonces: f () = # = # a a Ej: a. 5 = 5 ; b. ( - 8 / 5 ) = - 8 / 5 ; c. ab = ab -1
3 . ite de la función polinómica: El límite de una función polinómica se calcula reemplazando en el polinomio a la variable por su tendencia y el resultado es el límite, es decir, sea Y = f () con f () polinómica, entonces: f () = f (a) a Ej: ( 5 + ) = (0) 5 (0) + = 0 Desde aquí puedo observar que Colombia también tiene límites... Tendrá que ver esto con lo que estamos estudiando? Le preguntaré a Natalia Valencia. 4. ite de una potencia o de un raíz con base o cantidad subradical polinomios: Se procede de igual forma que el teorema. anterior, es decir, sea Y = f () un polinomio, entonces: [ f () ] P = [ f (a) ] P n n y f ( ) f ( a), donde en la a a raíz f(a) no puede dar cero porque en caso de dar cero es necesario analizar límites laterales, los cuales se analizarán un poco más adelante. Ej: a. [8 5 + ] = [ 8 (1/ ) - 5 ( 1/ ) + ] = [ 5/ + ] = 15/8 ½ 4 5 4( 1) 5( 1) b. = ite de la función racional: Sea Y = N () / D () una función racional (donde el numerador y el denominador son polinomios), entonces: N () / D () = N (a) / D (a) siempre y cuando D (a) 0 a Este teorema en palabras quiere decir lo siguiente: Para tomarle el límite a una función racional se reemplaza mentalmente en el denominador a la variable por la tendencia y si da cero, es necesario factorizar tanto el numerador y el denominador ( si es posible ) y se simplifica la fracción resultante ( recuerda como se simplifican fracciones algebraicas ) y luego se reemplaza a la variable por la tendencia y el resultado es el límite; ahora bien, si el denominador no da cero entonces no es necesario factorizar y se reemplaza directamente a la variable por la tendencia en toda la función racional y el resultado es el límite.
4 Presta mucha atención a la solución de los siguientes ejercicios aplicando este teorema 5: a aquí no es necesario factorizar porqueel denominador 1 5(1) 6 0 0; por lo tanto: no se anula b. 9 7 aquí el denominador ( 9) ( )( 9) se anula, ( )( ) ( )( 9) por lo tanto hay que factorizar. ( ) ( ) 9 () 9 c. 4 ( )( ) ( ) ( )( ) ( ) NOTA: Cuando te planteen el límite de la suma y/o de varias fracciones racionales, es recomendable efectuar las operaciones indicadas para obtener una sola fracción y luego se aplica el teorema 5. En este tema no dejaré pasar ninguna duda 6. ite de una función irracional: Sea Y = f () una función irracional (fraccionario con variable dentro de raíces); para calcular el límite a dicha función se procede de igual forma que en el teorema 5, pero si el denominador se anula es necesario racionalizar En general si al calcular el límite a una fracción el denominador se anula, es necesario factorizar r y/o racionalizar, simplificar y luego reemplazar a la variable por su tendencia y el resultado es el límite. Ej: a. b ( 1)( 7 6) (1 )( 1) ( 1)( 1)( (1 )( 1)( 7 6) 1) ( 1)( (1 )( ( 4)( 4)( 4 4 ( 4)( 4) 4 ) ( 4)( 4 ( 4)( 4)( ) ( ) ) (4 4)( 4 ) 7 6) 1) Aquí se factorizó, pero comoel denominador todavía se anula hay que racionalizar : 4
5 ( 1)( 7 6)( 7 6)(1 ) (1 )(1 )( 1)( 7 6) ( 1) (1 )( (7 6) (1 ) 1)( 7 6) ( 1)( 7 6)(1 ) (1 )( 1)( 7 6) ( 1)( 6)( 1)(1 ) (1 )( 1)( 7 6) ( 1)( 6)(1 )(1 ) (1 )( 1)( 7 6) ( 1)( 6)(1 ) ( 1)( 7 6) 10 NOTA: Cuando se tiene una función racional o irracional con varios factores en el numerador y/o en el denominador, sólo es necesario factorizar o racionalizar a aquellos factores que se anulan cuando se reemplaza a la variables por la tendencia. Con mucho juicio y aprovechando verdaderamente el tiempo realizo los siguientes ejercicios en un bloque de clase compartiendo mis conocimientos con mis compañeritas. El profesor me irá aclarando las dudas. RESPUESTA Del teto Hiperteto matemáticas 11º de Ed. Santillana que encuentro en el bibliobanco realizo: a. De la pág. 95 del numeral 5: a, b, d, g y h. b. De la pág. 100 del numeral 1: a, h, i, j. del numeral : a, b, e. c. De la pág. 100 del numeral : i, j, k, m, n, o, q. del numeral : a, b, c, e, f.. Debo tener muy presente que estos ejercicios los debo realizar en un bloque de clase, los que no termine de realizar los haré en mi casa. 5
6 1. Calculo con mucho ánimo e interés los siguientes límites: 5 4 m 5 4 a. b. c. X 1 64 m0 1 X 7 56 m d. ( y 8)(y 7y) t 9 m 5 e. f. Y (y y )( y y10) t t 7t m5 m 116 ( 4)( ) g. h. i. X X 1 1 X ( 8)( ) j. ( 1) ( 1) 1/10. Del teto Nueva matemática 11º de Ed. Santillana resuelvo de la pág. 10: 46, 47.. Del teto Glifos 11º resuelvo de la pág. 99: 4. b, d, e, g, j y de la pág. 10: los numerales y 7. Las preguntas 1 a 4 son de selección múltiple con única respuesta es igual a: A. 5/ B. 7/ C. 5/ D. 7/ X 1 f 4. Si f ( ), entonces es igual a: (0) X A. B. No eiste C. 4 D. 0 f ( ) k 9. Si 0, el valor de k es: A. B. - 6 C. 6 D. 4 k 4 4. Si 0, el valor de k es: A. 0 B. - C. D. - 4 HAY UN MOMENTO PERFECTO PARA PENSAR EN UN SUEÑO, PARA ENCONTRAR UN AMIGO, PARA REÍRSE. ESE MOMENTO ES... SIEMPRE 6
1. LÍMITE DE UNA FUNCIÓN REAL
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resolución Nº 88 de noviembre.8/ Secretaria De Educación Distrital REGISTRO DANE Nº-99 Teléfono 6 Barrio Bastidas Santa Marta DEPARTAMENTO DE MATEMATICAS
I. Determinar los siguientes límites, aplicando las propiedades. lim =
Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término
Potencias y radicales
Potencias y radicales Contenidos 1. Radicales Potencias de exponente fraccionario Radicales equivalentes Introducir y extraer factores Cálculo de raíces Reducir a índice común Radicales semejantes. Propiedades
Límite de una Función
Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
2. A continuación se presentan un grupo de polinomios y monomios:
República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 2do año Guía 3 1. Efectúa los siguientes
TEMA 6 LÍMITE Y CONTINUIDAD
TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando
INECUACIONES REALES SIN VALOR ABSOLUTO
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA
LÍMITE DE UNA FUNCIÓN EN UN PUNTO
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIPO DE GUIA: MATEMÁTICAS MATEMÁTICAS EDISON MEJIA MONSALVE CONCEPTUAL - EJERCITACION PERIODO GRADO 9 N 0 4 FECHA 7 DE ABRIL
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION Nombre de la alumna: Área: MATEMATICAS Asignatura: Matemáticas Docente: Luis López Zuleta Tipo de Guía: Conceptual PERIODO GRADO FECHA DURACION DOS 7º 25 de abril
el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.
NÚMEROS REALES 2, FUNCIONES ORIENTADOR: ESTUDIANTE: FECHA:
DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA : PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: NÚMEROS REALES, FUNCIONES SEGUNDO EJES TEMÁTICOS La recta numérica Suma de Números Enteros Resta de
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites
Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA
Epresiones racionales MATE 0008 Departamento de Matemáticas UPRA EXPRESIONES RACIONALES En las matemáticas, la palabra racional se asocia a epresiones con forma de fracción; o sea que tienen un numerador
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o
103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las
LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA
Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O.
Radicales y sus operaciones MATEMÁTICAS º CICLO E.S.O. Objetivos: Simplificar radicales Efectuar operaciones de suma, resta, multiplicación y división con radicales Racionalizar parte de una fracción Notación:
Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico
Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO
Unidad : Polinomios y fracciones algebraicas SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO. De las siguientes epresiones indicar las que son polinomios o pueden transformarse en polinomios
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos la función: f Su gráfica: si < si > Si toma valores próimos a, distintos de y menores que ej.: 9, 99, 999,,
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3
UNIDAD DIDÁCTICA 9: Límites y continuidad
accés a la universitat dels majors de anys acceso a la universidad de los mayores de años UNIDAD DIDÁCTICA 9: Límites y continuidad ÍNDICE Concepto de límite de una función en un punto. Indeterminaciones.
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático
Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de
Límites y continuidad de funciones
Límites y continuidad de funciones 1 Definiciónde límite Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan los valores de la función cuando x se aproxima al valor de a. lím
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS UNA - UCR - TEC - UNED - MEP - MICITT Álgebra e iπ + φ φ 0 III Nivel I Eliminatoria Marzo 06 Índice. Presentación. Contenidos 3. Algunos consejos útiles 4. Problemas
RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a
UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si
ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una
EXPRESIONES RACIONALES
EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones
Matemática 2 Módulo 1
Matemática Módulo Contenidos: Números reales. Repaso de racionales. Decimales periódicos, puros y mixtos. Irracionales. Operaciones con radicales. Racionalización. Actividades de inicio, desarrollo y cierre.
LÍMITES DE FUNCIONES GBG
LÍMITES DE FUNCIONES GBG - 010 1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Sea f una función real de variable real y a un punto de acumulación del dominio de f. de elementos del Decimos que f = L si y sólo si
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 8º ASIGNATURA: Matemática PERIODO: 2 PROFESORA: Selene Carballo UNIDAD Nº 2 NOMBRE DE LA UNIDAD: Operemos con
Proyecto Guao ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS
ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS Un modelo a escala de un auto de carreras está en proporción 1:x a un auto de carreras real. La longitud del modelo es unidades y la longitud del automóvil
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
Alumno/a:... Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente fraccionario.
Hoja Cálculos con radicales Calificación Alumno/a:... Curso: º E.S.O. A Definición de radical Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
Institución Educativa Distrital Madre Laura
Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
EJERCICIOS RESUELTOS DE NÚMEROS REALES
EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-
Límites y continuidad
Límites y continuidad LÍMITES El concepto de límite es la base fundamental con la que se construye el cálculo infinitesimal (diferencial e integral). Informalmente hablando se dice que el límite es el
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
TRABAJO INDEPENDIENTE
TRABAJO INDEPENDIENTE Docente Asignatura MATEMÁTICAS I Grado y grupo 1 No. de actividad 1 Semana 1 Semestre Modalidad Trabajo individual ( ) Trabajo en equipo ( ) Tema Números Reales. Objetivo de la actividad
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
La lección de hoy es sobre Simplificar Expresiones Radicales. El cuál es la expectativa para el aprendizaje del estudiante S.L.E LA.1.A1.
S.L.E. LA.1 A1.8 Simplifying Radical Expressions. La lección de hoy es sobre Simplificar Expresiones Radicales. El cuál es la expectativa para el aprendizaje del estudiante S.L.E LA.1.A1.8 Una expresión
Exponentes, Raíces y Radicales. Números Reales
Exponentes y Exponentes Fraccionarios, Raíces y Exponentes, Raíces y en los Números Reales Carlos A. Rivera-Morales Precálculo I Exponentes, Raíces y Tabla de Contenido Contenido Exponentes y Exponentes
GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES
GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES El método de fracciones parciales se utiliza cuando quiere integrarse una expresión de la forma, donde el numerador y el denominador son polinomios y el grado
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límites de sucesiones----------------------------------------------------------------------------
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1
ÁREA: Algebra COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ASIGNATURA: Matemática. NIVEL: Duodécimo grado ( CIENCIAS ) PROFESOR: José Alexander Echeverría Ruiz TRIMESTRE: I TÍTULO DE LA UNIDAD DIDÁCTICA: 1.
Fundación Uno. 1. Propiedades de las potencias de exponente racional. DESARROLLO
ENCUENTRO # 8 TEMA:Radicales. Propiedades. CONTENIDOS:. Propiedades de las potencias de exponente racional.. Radicales. Propiedades.. Simplificación de radicales.. Operaciones con radicales. EJERCICIO
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =
LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-
2Soluciones a las actividades de cada epígrafe PÁGINA 42
Soluciones a las actividades de cada epígrafe PÁGINA 4 Pág. 0 cm r r l l 0 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones.
Expresiones Algebraicas Racionales en los Números Reales
en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido
tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x
UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos
Límite de una función
Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA
PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la
9 Expresiones racionales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #9: viernes, 10 de junio de 2016. 9 Epresiones racionales 9.1 Fracciones
LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.
LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)
Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.
Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA :
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL PERIODO: GRADO FECHA N DURACION 2 7 ABRIL 10 /2015 UNIDADES
INDICADOR 401 Y 402 ACCIONES DE MEJORA
DEPARTAMENTO DE MATEMÁTICAS CUARTO PERIODO - 2014 NOMBRE DEL ESTUDIANTE: GRADO: OCTAVO CURSO: ASIGNATURA: MATEMÁTICAS PROFESOR (A): INDICADORES DE DESEMPEÑO 401. Comunicación Matemática: Justifica a través
Guía para maestro. Fracciones algebraicas. Compartir Saberes.
Guía para maestro Guía realizada por Yenny Marcela Naranjo Máster en Educación Matemática [email protected] Las fracciones algebraicas son generalmente explicadas mediante la simbología matemática,
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO
AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO Instrucciones. Lee cuidadosamente los conceptos, los ejemplos y desarrolla los ejercicios propuestos. No olvides guardar esta guía de trabajo en tu
1.5 Límites infinitos
SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos
+ 5x. Objetivos Simplificar expresiones algebraicas racionales. Sumar, restar, multiplicar y dividir expresiones algebraicas racionales.
COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor Epresiones algebraicas racionales Objetivos Simplificar epresiones algebraicas racionales Sumar, restar, multiplicar y
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
Propiedades de los límites
SECCIÓN 3 Cálculo analítico de ites 59 3 Cálculo analítico de ites Evaluar un ite mediante el uso de las propiedades de los ites Desarrollar usar una estrategia para el cálculo de ites Evaluar un ite mediante
4º E.S.O. Matemáticas A
4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (00874) UNIDAD N 2 (LIMITES) Profesora: Yuar Matute Diciembre 20 0 Definición Intuitiva de Límites
P RACTICA. 1 Opera y simplifica las siguientes expresiones: 2 Efectúa las siguientes operaciones y simplifica el resultado:
P RACTICA Operaciones con polinomios Opera y simplifica las siguientes epresiones ( ) ( )( ) ( ) ( ) ( )( ) ( 5) 4 ( ) ( )( ) (4 5) 6 9 4 4 6 7 4 4 4 0 75 0 77 4 ( 6 9) (9 ) (4 5) 4 8 4 5 4 5 8 Efectúa
DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE
DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales
Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...
Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son
Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim
Teóricas de Análisis Matemático (8) Práctica 6 L Hospital Caso cero sobre cero Veamos tres problemas de límites conocidos: Práctica 6 Parte Regla de L Hospital 3 3 3 sen(3) Los límites y se resuelven mediante
Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito
OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes
EL ÁNGULO DE REFERENCIA Y SUS APLICACIONES. Funciones trigonométricas de ángulos entre 90º y 360º (ángulo de referencia)
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA
PROGRAMA ANALÍTICO MATEMÁTICAS I
UNIVERSIDAD AGRO-ALIMENTARIA DE MAO IEES-UAAM ESTATUTO DE LA NUEVA UNIVERSIDAD VIRTUAL DOMINICANA Asamblea Universitaria Rectoría (Rector) Oficina Aseg. Calidad Colegio de Egresados Consejo Social Promoción
10. LIMITES DE FUNCIONES
10. LIMITES DE FUNCIONES Definición de límite La función no está definida en el punto x = 1 ya que se anula el denominador. Para valores próximos a x = 1 tenemos Taller matemático 1/12 Definición de límite
2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)
Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes
Capitulo IV - Inecuaciones
Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o
CENTRO ESCOLAR REPUBLICA DE NICARAGUA
CENTRO ESCOLAR REPUBLICA DE NICARAGUA GUION DE CLASE Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: 9º Grado A Asignatura: Matemática Tiempo: Periodo: UNIDAD 3. RESOLVAMOS ECUACIONES DE SEGUNDO
SESIÓN 8 EXPONENTESY RADICALES
SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:
LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función
FRACCIONES PARCIALES. 2011
DESCOMPOSICIÓN EN FRACCIONES PARCIALES El método de descomposición en fracciones parciales fue introducido por John Bernoulli, matemático suizo cuyas investigaciones fueron fundamentales en el desarrollo
