Probabilidad y estadística
|
|
|
- Mario Domínguez Barbero
- hace 8 años
- Vistas:
Transcripción
1 Probabldad y estadístca Grupo PM4 Trabajado gráfcas,meddas de tedeca cetral, meddas de dspersó e terpretado resultados Prof. Mguel Hesquo Garduño. Depto. De Igeería Químca Petrolera ESIQIE-IPN [email protected] Agosto de 03 Prof. Mguel Hesquo Garduño
2 Cotedo de Carboo e u meral sub-btumoso Prof. Mguel Hesquo Garduño
3 Dato mayor, dato meor (podramos ordearlos) Prof. Mguel Hesquo Garduño
4 Ordeados de meor a mayor Prof. Mguel Hesquo Garduño
5 Meddas de tedeca Cetral Datos o agrupados Meda de todos los datos de la muestra: Prof. Mguel Hesquo Garduño
6 Medaa: dato de e medo, cual es? Ordearlos de meor a mayor, so 30 datos, el dato de la mtad esta etre el dato 5 y el dato 6, que hacemos? MODA El dato que aparece mayor úmero de veces Prof. Mguel Hesquo Garduño
7 Ordeados de meor a mayor Prof. Mguel Hesquo Garduño
8 Nuestros resultados Datos de % cotedo de carbo e meral. =30 Mo Prof. Mguel Hesquo Garduño
9 E EXCEL =moda(a: a30) =medaa( a:a30) =promedo( a:a30) Prof. Mguel Hesquo Garduño
10 Meddas de dspersó Cuales ecotraro? Ecuacoes que les defe? Prof. Mguel Hesquo Garduño
11 Prof. Mguel Hesquo Garduño Varaza ) ( ) ( s ) ( Poblacoal muestral Desvacó Estádar ) ( s
12 Y estas ecuacoes so fácles de mplemetar e ua calculadora ordara? Hay ua ecuacó equvalete, porque la ecuacó que defe a la varaza es complcada de mplemetar e ua calculadora: s Prof. Mguel Hesquo Garduño
13 Ejemplo prevo ( secllto) U geero realza motoreos sobre la catdad de sóldos suspeddos e muestras de agua de río, e las medcoes durate días ecuetra: 4,,,8,30,63,9,63,55,9,0 E ppm. ( qué es ppm?) Calcular la meda y la medaa ( y de paso la moda). Calcular la varaza y la desvacó estádar Prof. Mguel Hesquo Garduño
14 Calcular para los datos del problema de Carbó ( ver la tabla de datos ordeados de meor a mayor) s ( ) s Cómo se hace e ecel? Prof. Mguel Hesquo Garduño
15 Ademas de obteer uas gráfcas, f el agrupar los datos e clases srve para otra cosa más? L- Ls Lr- Lrs Marca de clase fabs frel % de C Prof. Mguel Hesquo Garduño
16 Ecuacoes para datos agrupados Meda k f Sgfcado de las varables: Prof. Mguel Hesquo Garduño
17 Medaa L Límte real feror de la clase medaa ~ L ( f) m f med c ( f) m Número de datos Suma de las frecuecas de todas las clases por debajo de la clase medaa f med Frecueca de la clase medaa c Prof. Mguel Hesquo Garduño Acho del tervalo de la clase medaa
18 Moda L c L = Límte real Iferor de la clase modal = Eceso de la frecueca modal sobre la frecueca de la clase cotgua feror = Eceso de la frecueca modal sobre la frecueca de la clase cotgua superor c= acho del tervalo de la clase modal Prof. Mguel Hesquo Garduño
19 Prof. Mguel Hesquo Garduño Ecuacoes para datos agrupados Varaza Desvacó estádar f f s k k f f s k k
20 Relacoes empírcas ˆ 3( ~) ˆ 3( ~) Prof. Mguel Hesquo Garduño
21 Ordeado Datos e Clases Cuatas clases K = Tamaño de tervalo de clase: c=(dato mayor-datomeor)/ c=rago/k X=marca de clase=(lrs-lr)/ O podemos establecer tamaños u poco mayores?respoder despues de hacer el ejercco Prof. Mguel Hesquo Garduño
22 Costruyedo la tabla L- Ls Lr- Lrs cueta Marca de clase Fabs Prof. Mguel Hesquo Garduño
23 Frecueca absoluta y relatva L- Ls Lr- Lrs Marca de clase fabs frel Prof. Mguel Hesquo Garduño
24 f f Hstograma % de C Polígoo de Frecuecas % de C Prof. Mguel Hesquo Garduño
25 frel acumulada Ua ojva de frecueca relatva Ojva % C frecueca relatva acumulada Prof. Mguel Hesquo Garduño
26 Tratado el problema de las muestras de carbó. Datos Agrupados L- Ls Lr- Lrs Marca de clase fabs f f Prof. Mguel Hesquo Garduño
27 Podamos tomar otros valores de lmtes de clase? Hacerlo e equpo.etregar e papel para el jueves prómo e clase, y ese msmo día por correo electróco:nombre_apelldo_proyecto.doc, y Nombre_apelldo_Proyecto.ls. Icado e 70, co acho de clase de 5, Elaborar Hstograma, polgoo de frecuecas,ojva. Calcular meddas de tedeca cetral ( como datos agrupados) Realzar el cálculo de varaza y desvaco estádar L-Ls f 90- Prof. Mguel Hesquo Garduño
28 U ejercco smple: A.A. Mchelso ( 85-93) realzó ua sere de medcoes sobre la velocdad de la luz, usado u espejo rotatoro obtuvo: Para la dfereca de: (velocdad de la luz)-9700 km/s. De éstos datos: a) Calcular la medaa y la moda b) Ecotrar la varaza y la desvacó estádar c) A partr de los resultados de a) y b), estmar el valor promedo de la velocdad de la luz y el error de dcha varable Prof. Mguel Hesquo Garduño
Probabilidad y estadística
Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química
Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo
Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos
Estadística Descriptiva
Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.
GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A
Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto
Estadística Descriptiva
Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u
TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx
TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la
Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión
Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA
PARÁMETROS ESTADÍSTICOS ... N
el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto
MEDIDAS DE TENDENCIA CENTRAL
Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes
Estadística Descriptiva
Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama
PROBABILIDAD Y ESTADISTICA
1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca
ESTADÍSTICA poblaciones
ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:
VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.
CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.
Estadística descriptiva
Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca [email protected] http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda
4º MEDIO: MEDIDAS DE POSICIÓN
4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co
MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.
MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:
La inferencia estadística es primordialmente de naturaleza
VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la
5.3 Estadísticas de una distribución frecuencial
5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor
MEDIDAS DE CENTRALIZACIÓN
Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca
CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL
CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL 3. CARACTERISTICAS NUMERICAS DE UNA VARIABLE S tratamos de represetar uestras edades medate u polígoo de frecuecas, y os ubcamos e el tempo: hace 0 años, hoy
Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética
Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado
Laboratorio de Física PRÁCTICA 1
PRELABORATORIO: MEDICIÓN - Medr. - Aprecacó. - Meddas drectas. - Meddas drectas. MEDIDAS DE LONGITUD - Cta métrca. - Verer. - Torllo mcrométrco. MEDIDAS DE TIEMPO - Croómetro. Error. - Error sstemátco.
NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN
UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008
MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades
MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS
Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión
Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la
ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo
V II Muestreo por Conglomerados
V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos
Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:
Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral
Medidas de Tendencia Central
Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo
Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.
Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra
EJERCICIOS RESUELTOS TEMA 3.
INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.
I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS
Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2
MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD
UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS
Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS
Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo
DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL
Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: [email protected] Resume: De acuerdo al Teorema
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores
Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:
Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,
PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción
Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de
TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS
Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE
El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad
Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede
3 Metodología de determinación del valor del agua cruda
3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos
Estadística Espacial. José Antonio Rivera Colmenero
Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su
ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL
ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.
1 Estadística. Profesora María Durbán
Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:
CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro
ANGEL FRANCISCO ARVELO LUJAN
ANGEL FRANCISCO ARVELO LUJAN es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 40 años de expereca e las más recoocdas uversdades del área metropoltaa de Caracas. Uversdad
MEDIDAS DE TENDENCIA CENTRAL
Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos
NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD
NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos
MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias:
PARÁMETROS ESTADÍSTICOS Puesto que las represetacoes grácas o sempre cosgue orecer ua ormacó completa de ua sere de datos, es ecesaro aalzar procedmetos umércos que permta resumr toda la ormacó del eómeo
MEDIDAS DE FORMA Y CONCENTRACIÓN
MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de
Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.
Estadístca Alguos Coceptos Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma
INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS
INGENIERÍA INDUTRIAL A meudo, e la práctca, se requere resolver prolemas que clue cojutos de varales, cuado se sae que este algua relacó herete etre ellas, esa relacó se puede ecotrar a partr de la formacó
UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)
UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.
Tema 16: Modelos de distribución de probabilidad: Variables Continuas
Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,
CAPITULO II. Medidas estadísticas. Objetivo. Contenido. Calcular las medidas posición, de tendencia central, de dispersión y de forma.
CAPITULO II Meddas estadístcas Objetvo Calcular las meddas poscó, de tedeca cetral, de dspersó y de forma. Cotedo * * * * * * Itroduccó Meddas de poscó Meddas de tedeca cetral Meddas de dspersó Meddas
Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia
Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN [email protected] [email protected] Regresón lneal El
Análisis estadístico de datos muestrales
Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.
1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada
ANÁLISIS DE REGRESIÓN. Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez
ANÁLISIS DE REGRESIÓN Feradez Departameto de Matemátcas Uversdad de Puerto Rco Recto Uverstaro de Mayagüez REGRESIÓN LINEAL SIMPLE Regresó: cojuto de téccas que so usadas para establecer ua relacó etre
Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases
Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto
Tema 2: Distribuciones bidimensionales
Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;
Análisis de Regresión
Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o
MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA
ema ta zabal zazu EUSKAL HERRIKO UNIBERTSITATEA UNIVERSIDAD DEL AIS VASCO MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA Resolucó del ejercco fal. rmera covocatora. Curso INDUSTRIA INGENIARITZA TEKNIKOKO UNIBERTSITATE
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales
Medidas de Tendencia Central
1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida
En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )
Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo
MEDIDAS DE TENDENCIA CENTRAL. _ xi
EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee
-Métodos Estadísticos en Ciencias de la Vida
-Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable
ESTADÍSTICA UNIDIMENSIONAL
ESTADÍSTICA UIDIMESIOAL L estadístca és u mètode per predre decsos, per axò s utltza e molts estuds cetífcs. L estadístca es pot dvdr e estadístca descrptva, que s ocupa de comptar, ordear classfcar les
REGRESIÓN LINEAL SIMPLE
RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó
Línea de Investigación: Fisicoquímica de Alimentos. Programa Educativo: Licenciatura en Química. Nombre de la Asignatura: Química Analítica V
Área Académca de: Químca Líea de Ivestgacó: Fscoquímca de Almetos Programa Educatvo: Lcecatura e Químca Nombre de la Asgatura: Químca Aalítca V Tema: Represetacoes gráfcas de las relacoes propedadcocetracó
4. SEGUNDO MÓDULO. 4.1 Resumen de Datos
4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato
Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo
Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza
4 METODOLOGIA ADAPTADA AL PROBLEMA
4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor
Regresión lineal simple
Descrpcó breve del tema Regresó leal smple Tema. Itroduccó. El modelo de regresó smple 3. Hpótess del modelo Lealdad, homogeedad, homocedastcdad, depedeca ormaldad 4. Estmacó de los parámetros Mímos cuadrados,
Incertidumbre de las medidas.
Icertdumbre de las meddas. Al realzar el proceso de medcó, el valor obtedo y asgado a la medda dferrá probablemete del valor verdadero debdo a causas dversas, algua de las cuales ombraremos más adelate.
Regresión Simple. Resumen. Ejemplo de StatFolio: simple reg.sgp
STATGRAPHICS Rev. 4/5/7 Regresó Smple Resume El procedmeto de Regresó Smple está dseñado para costrur u modelo estadístco que descrba el mpacto de u solo factor cuattatvo X sobre ua varable depedete Y.
